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1. Data cited in the text

1.1 Starting materials chart
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Chart S1. Substrates used in this work.
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1.2 Screening of reaction conditions

Table S1. Screening of reaction conditions in terms of photocatalyst loading, solvent and light

source.

TBADT (2 mol%)

0] LED lamp (390 nm)
Q + Ph—=—S0,Me
MeCN (1 mL), rt
1a 2a Ar, 12 h
5 equiv. (0.1 M)

Variation from conditions

none
TBADT (1.0 mol%), 24 h
TBADT (0.5 mol%), 24 h
TBADT (0.1 mol%), 24 h
Solvent: MeCN/H,0 9:1
Solvent: Me,CO
A =405 nm
no light
no TBADT

m
© oo ~NOOON~NWN-= 3
<

Consumption of 2a

100%
100%
100%
70%
100%
100%
100%
0%
0%

o
Ph%O

3

3, GC Yield

74%
66%
65%
40%
69%
68%
62%
0%
traces

Reaction conditions: 2a (0.1 M), la (5 equiv., 0.5 M), tetrabytulammonium decatungstate
(BusN)4[W10032] (2 mol%) in 1 mL of the chosen solvent under inert atmosphere (Ar-sparged
solution). After irradiation, dodecane (1 pul/mL) was added as external standard and the mixture was
filtered through a short SiO- plug to remove the catalyst. The resulting solution was then analyzed
via GC-FID analysis and yields were calculated by means of calibration curves with authentic

samples.
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1.3 Kinetic analysis of the reaction

Figure S1 shows the typical kinetic profile of the reaction between tetrahydrofuran (1a) and 2a and
between cyclohexane (1n) and 2a (see Scheme Sla-c). The reactions were monitored over a period
of 24 hours. Small aliquots were subtracted from the reaction mixture at 1, 2, 5, 6, 7, 12 and 24
hours, analysed via GC-FID and consumptions/yields were calculated by means of calibration
curves with authentic samples (external standard: dodecane).

0 TBADT (2 mol%) O
a) + Ph——=——SO0O,Me Ph—— \j
MeCN (1 mL), Ar
1a, 5 eq. 2a 0.1 M 40 W Kessil LED (390 nm) 3
- TBADT (2 mol%)
b) + Ph————SO0O,Me Ph——
MeCN (1 mL), Ar
1n, 5 eq. 2a 0.1 M 40 W Kessil LED (390 nm) 16
- TBADT (5 mol%)
c) + Ph—=——SO0O,Me Ph——
MeCN (1 mL), Ar
1n, 5 eq. 2a 0.1 M 40 W Kessil LED (390 nm) 16

Scheme S1. Reactions studied for the kinetic analysis.
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Figure S1. Kinetic profile of reaction a) (orange circles), reaction b) (grey squares) and reaction c)
(green stars). SM: Starting Material.
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1.4 Quantum yield measurement

Quantum yield (QY) was determined via ferrioxalate actinometry according to a procedure reported
in the literature.5!? Potassium ferrioxalate was prepared according to a procedure reported in the
literature.>® In particular, 3.2 g of FeCls were dissolved in 8 mL of distilled H>O and were added to
a hot solution of 12 g of K2C204 in 20 mL of distilled H.O. After a couple of minutes at 100°C, the
mixture was let cooling down at room temperature and crystallization was triggered with a glass
stick. After crystallization was complete, the mother liquor was removed via a Pasteur pipette and
the green crystals (Ks[Fe(C20a4)s]) were dissolved again in 20 mL of distilled H,O. Potassium
ferrioxalate was recrystallized two more times. Light green crystals (4 g, 41%) were obtained,
washed with MeOH and dried at 45°C for 1 hour.

As for the actinometry, two solutions were prepared (NB: the following steps were carried out in
the dark, with a deep red lamp):

a) Ferrioxalate solution: 59 mg in 10 mL of distilled H20 (0.012 M). For this concentration, the
fraction of absorbed photons is >99% and decomposition QY was reported to be ~ 1.2.5?

b) o-phenantroline solution: 10 mg of o-phenantroline (0.0055 M), 22.5 g of sodium acetate
trihydrate in 10 mL (0.016 M) of distilled water.

At this point, 1 mL of solution a) was transferred into a vial. This operation was repeated three
times to get 3 identical solutions: one of them was kept in the dark (in a drawer), while the other
two were irradiated with the same setup adopted for explorative experiments (see below) for 60
seconds.

After irradiation, 20 puL of each of the three solutions were withdrawn and diluted with 2 mL of
solution b) each (first dilution). The diluted solutions were then left equilibrating for 1 hour.
Afterwards, they were diluted further (1:5) with distilled H.O (second dilution). Then, a dual-beam
spectrophotometer was used to read the difference of absorbance (AA) between the irradiated
solutions and the blank.

Entry AAL AA2
1 1.2141 0.2506
2 1.2025 0.2498

AA: is the difference in absorbance after the first dilution; AA; is the difference in absorbance after
the second dilution.

Then the following formula was used for the calculation of the moles of photons per second (E-s2):
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moIFez+ after irradiation

[Fe2t]inirradiated solutions

-

[Fe2t] after 1st dilution

EFe 2+] after 2nd dilution

—

AA L 25X1073L  22x1073L 0 5
EF.osl— e x1 0.5x 10-3L ~ 0.02 x 10—3L
® X t,

Results are reported in the following table. We calculated the quantum yield after of 1 hour, when
3.70x107° moles of product 3 were formed (Figure S1). QY was calculated from the ratio between
the moles of product produced after 1 hour and the moles of photon reaching the reaction vial in 1
hour.

Entry AAdil Est Eht MOlprod [0
1 0.2506 1.53x1077 5.51x107 3.70x10° 0.07
2 0.2498 1.52x10~7 5.49x107* 3.70x10°° 0.07

QY was determined to be 0.07, indicating that the process is not a radical-chain reaction.
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1.5 Deuterium labeling experiments

Kinetic Isotope Effect for the model reaction

An experiment under the optimized conditions was carried out in the presence of a mixture of
protiated 1a (5.0 equiv) and deuterated THF la-ds (5.0 equiv, see Scheme S2 and Figure S2). After
irradiation, the reaction mixture was filtered through a short silica plug in a pasteur pipette, diluted
with dichloromethane and finally analyzed via GC/MS (see Experimental Section below).

(@)
HE} +
1a

5 equiv

Scheme S2.

TBADT (2 mol%)

o 0
> Ph— + Ph—{:
MeCN (1 mL), Ar, 4h H D

Kessil Lamp 390 nm 60%, 3 40%, 3-d;

KIE = 1.50

0]
SOzMe
D‘E} + =
/
Ph/

1a'd8
5 equiv

2a
0.1M

Kinetic Isotope Effect for the model reaction between la and 2a.
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Figure S2. GC/MS analysis results for the reaction reported in Scheme S2: chromatogram (TIC),
chromatogram (mass range: 171.50 — 172.50 m/z), chromatogram (mass range: 177.50 — 178.50
m/z), mass spectrum for peak at 15.15 min (3), mass spectrum for peak at 15.08 (3-d-).
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Deuterium labeling

In order to understand the mechanism operating when using chloroalkyne 2r in the role of radical
trap, we performed the experiments listed in Scheme S3. All the experiments were interrupted at
low conversion of the starting chloroalkyne (< 30%). In particular, we performed:

experiment a) to evaluate the Kinetic Isotope Effect;

experiment b) to assess the origin of the H-atom in the formation of 31,

experiment c) to exclude that acetonitrile acts as the quencher of the vinyl radical adduct.
experiment d) to actually prove either that a proton scrambling equilibrium at the level of the
reduced form of the photocatalyst is operating or an ET/PT sequence is responsible for the
closure of the photocatalytic cycle.

E} DE} / TBADT (2 mol%) w ‘g_G /
+
MeCN (1 mL), Ar, 4h

K ||_
1a 1a-d essilLamp 390 nm 44 439, 31-dy, 7% r, 75%

5 equiv. 5 equiv. 0-1 M KlE = 186

(0] 0
Cl TBADT (2 mol% Ph Cl
b) DE} + / (2 mol%) \ 0 N /
D Ph

Ph MeCN (1 mL), Ar, 4h cl
1a-dg or Kessil Lamp 390 nm 31-dy, 23% 2r, 72%
5 equiv. 0.1 M
o H
Cl TBADT (2 mol% Ph Cl
o) o = D S &
Ph CDsCN (1 mL), Ar, 4h cl Ph
1a 2 Kessil Lamp 390 nm 31, 21% 2r. 78%
5 equiv. 0.1 M

o) 0
of TBADT (2 mol%) 0 o) Cl
o) . S Ve g SR
MeCN/D,0O 9:1 (1 mL), Ar, 4h cl H ph

1a 2r

Ph

Kessil Lamp 390 nm 31, 6% 31-d,, 8% 2r, 80%

5 equiv. 0.1 M

Scheme S3. Deuterium labeling experiments in the reaction between 1a and 2r.
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Figure S3. GC/MS analysis results for the reaction reported in Scheme S3: chromatogram (TIC),
chromatogram (mass range: 207.50 — 208.50 m/z, 31), chromatogram (mass range: 214.50 — 215.50
m/z, 31-d7), mass spectrum for peak at 16.83 min (31), mass spectrum for peak at 16.77 (31-dv).
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Figure S4. GC/MS analysis results for experiment b) in Scheme S3: chromatogram (TIC), mass
spectrum for peak at 16.77 min (31-d7).
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Figure S5. GC/MS analysis results for experiment ¢) in Scheme S3: chromatogram (TIC), mass
spectrum for peak at 16.77 min (31).
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Figure S6. GC/MS analysis results for experiment d) in Scheme S3: chromatogram (TIC), mass
spectrum for peak at 16.76 min (31-d1).
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1.6 Proposed mechanism for the formation of 14"

15HAT ©)\)1j[sozme closure Q)q back-HAT Hﬁ
SO,Me
orl H 2 SO,Me

sHIl SV’

Scheme S4. Mechanism for the formation of product 14" when 11 is used in the role of H-Donor.

In Scheme S4 an overview of the mechanism leading to the formation of product 14" is offered. In
detail, the first HAT step occurs at the formyl site of 3-phenylpropanal (1l) to afford the
corresponding acyl radical S-1°. This intermediate adds onto sulfone 2a through an ipso attack at the
same carbon that bears the sulfonyl group. Thus, the highly reactive C(sp?)-centered radical S-11° is
generated and abstracts intramolecularly a H atom from the benzyl site of the aldehyde to get S-111°
via 1,5-HAT. Finally, ring closure via intramolecular radical addition to form S-1V* followed by
back HAT afford product 14"
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1.7 *H-NMR analysis of the reaction crude between 1a and 2I

C HZ Br. CHy
2 <
(0.1875 mmol) Hs"\/\®/ ©

w&/\/§>
| T IY

10.0 9.5 9.0 85 80 7.5 7.0 65 60 55 50 45 40 35 3.0 2.5 20 15 1.0 05 0.0
f1 (ppm)
Figure S7. The experiment was run by adopting the explorative setup (vide infra). After 36 h, the

reaction was interrupted, the solvent removed and replaced with CDCIs. Dibromomethane (CH2Br2
= 25 g¢g/mL) was used as the external standard.

0.1875 mmol, 325 mg, p =

1.43]

1.004
10.527
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1.8 Computational Analysis

The aptitude of different moieties (X) to act as radicofugal groups (X°) in the studied process has
been evaluated computationally by means of the equation reported in Table S2. The methyl-
substituted vinyl radicals indicated in the equation formally arise from the addition of a methyl
radical onto the considered alkynylating agent. Methyl radical has been chosen as a simplified
model of the photogenerated radical intermediates studied in this work and its use has allowed to
speed up calculations and to limit the need to perform tedious conformational searches. The validity
of such assumption, however, has been fully justified by considering the actual substitution with the
2-tetrahydrofuranyl group (see Computational Methods below).

Thus, by taking the case of the methanesulfonyl group as a reference, the reported equation gives a
quantitative measure of the tendency of a given group to stabilize the vinyl radical adduct with
respect to its intrinsic stability as a free radical. Specifically, a positive value indicates a weaker
radicofugal group aptitude with respect to the methanesulfonyl radical and viceversa. The full set of
data is gathered in Table S2.

Table S2. Relative stabilization of radicofugal groups.

n X positive AG ~ SO,Me
PR
3 O negative AG 3

X AG, kcal mol?

cr +20.8
PhSOy’ +0.7
MeSO,’ 0
tolSO2’ -0.1
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2. Experimental section
2.1 General Information

H-donors 1 were commercially available and used as received, except for oxygenated H-donors la-
g and aldehydes 1k,I, which were distilled prior to use. Acetonitrile (HPLC grade) employed for the

photochemical reactions was used as received. TBADT was synthesized as indicated elsewhere.>*

NMR spectra were recorded on a 376 (for °F), 300 (for *H) or 75 (for 1*C) MHz spectrometer; the
attributions were made based on H and 3C NMR. Data for H and *F NMR are reported as
follows: chemical shift referred to TMS (& ppm), multiplicity (s = singlet, bs = broad singlet, d =
doublet, t = triplet, g = quadruplet, quint = quintuplet, sext = sextuplet, sept = septuplet, m =
multiplet), coupling constant (Hz) and integration. Data for **C NMR are reported in terms of
chemical shift.

Thin-layer chromatography (TLC) was performed on silica gel 60 F-254 plates. Visualization of the
developed plates was performed by fluorescence quenching, 2,4-dinitrophenylhydrazine or KMnO4

staining.

GC/MS analyses were carried out on a Thermo Scientific DSQII single quadrupole GC/MS system.
The injection in the GC/MS system was performed at 250 °C split mode. The initial oven
temperature of 80 °C was maintained for 5 min, increased by 10 °C/min to 250 °C and held for 10
min. A Restek Rxi-5ms 30 m x 0.25 mm x 0.25 um film thickness capillary column was used with
helium as the carrier gas at a constant flow rate of 1.0 mL/min. The transfer line temperature was
270 °C and the ion source temperature was 250 °C. Electron ionization mode was used with 70 eV
and the ions were registered in full scan mode in a mass range of m/z 40-600 amu. The
chromatogram acquisition, detection of mass spectral peaks and their waveform processing were
performed using Xcalibur MS Software Version 2.1 (Thermo Scientific Inc.). Assignment of
chemical structures to chromatographic peaks was based on the comparison with the databases for
GC-MS NIST Mass Spectral Library (NIST 08) and Wiley Registry of Mass Spectral Data (8"
Edition). The percentage content of each component was directly computed from the peak areas in
the GC/MS chromatogram.
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GC-FID analyses were performed on an Agilent 7820A. The injection was performed at 250 °C in
split mode. The initial oven temperature of 80 °C was maintained for 2 min, increased by 10 °C/min
to 250 °C and held for 5 min. An Agilent HP5 30 m x 0.32 mm x 0.25 pm film thickness capillary

column was used with nitrogen as the carrier gas at a constant flow rate of 6.0 mL/min.
The light source for photochemical experiments was a 40 W Kessil LED (centered at 390 nm) at

full power (technical specifications at https://www.kessil.com/science/PR160L). See section 2.3 for

further information.
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2.2 Synthesis and characterization of alkynylation reagents

General procedure for the synthesis of methylsulfones (2a-2l)

Sulfones (2a-2I) were synthesized according to a procedure adapted from the literature via the 2-
step procedure reported below.%®

R—
. o)
CAN (2.5 equiv.) I o
2.5 mmol Nal (1.2 equiv.) lﬁ)(/*ﬁ_ K,CO3 (2 equiv.) 1
. - o R—=—S5—
I
MeCN R Me,CO o
N\
LS -2a - I-2I 2a-2l
Na O
1.2 equiv.

Step 1: An oven-dried 3-necks 100 mL round-bottom flask was charged with sodium
methanesulfinate (354 mg, 3.0 mmol, 1.2 equiv.) and Nal (449 mg, 3.0 mmol, 1.2 equiv.) under
inert atmosphere (Argon). Dry MeCN (15 mL) was added and the suspension was bubbled with
Argon for 10 minutes. While keeping a vigorous stirring, the alkyne was added via syringe (2.5
mmol, 1.0 equiv.), then CAN (3.4 g, 6.25 mmol, 2.5 equiv.) in dry MeCN (25 mL) was added
dropwise by means of a pressure-equalizing dropping funnel. The suspension turned to dark red
and, after 4 hours, to bright yellow: typically, aromatic alkynes substituted with electron-
withdrawing groups reacted faster than the corresponding electron-donating substituted derivatives.
The reaction was checked via TLC, GC-FID or NMR (CDCls) and, upon completion, quenched
with brine (50 mL). Then, the crude mixture was extracted with dichloromethane. The organic
phase was washed again with brine (3x30 mL), dried over NaxSO4 and the solvent was removed
under reduced pressure to get iodosulfones 1-2. These products were typically obtained as a fluffy
solid and purified via column chromatography (silica gel, cyclohexane/ethyl acetate mixtures as the

eluant).

Step 2: Afterwards, iodosulfones 1-2 were dissolved in Me.CO (25 mL) and refluxed with K.COs3 (2
equiv.) to completion. Reaction was conveniently monitored via GC-FID and, once completed,
carbonate was filtered away, acetone was removed via rotary evaporation and the crude was
purified via column chromatography (silica gel, cyclohexane/ethyl acetate mixtures as the eluant).
N.B. 1: The conversion of 1-2 to 2 was also conveniently monitored via NMR (CDCIs), since the

signals for the methyl groups of iodosulfones typically fall below 3 ppm, while those of the final
sulfones are more deshielded (>3 ppm).

N.B. 2: this synthesis is very sensitive to the purity grade of sodium methanesulfinate, which
should be used in >98% grade. Sulfinate should be always stored under inert atmosphere.
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o ((methylsulfonylethynyl)benzene (2a) From 1-ethynylbenzene (274 uL, 2.5
Q%ﬁ— mmol, 1.0 equiv., p = 0.93 g/mL) to get iodosulfone I-2a (616 mg, 80%; mp:

O 99-100 °C, lit.5® 99-101 °C) as a white solid. 1-2a was then treated with
potassium carbonate (553 mg, 4 mmol, 2.0 equiv.) in refluxing Me>CO (25 mL) overnight to get 2a
as a yellowish solid (328 mg, 91%; mp: 64-66 °C, lit.5’ 65-66 °C) after column chromatography
(silica gel, cyclohexane/ethyl acetate 9:1 as the eluant).

Spectroscopic data for 1-2a are in accordance with the literature:®
'H NMR (300 MHz, CDCl3) & 7.47 — 7.43 (m, 2H), 7.41 — 7.35 (m, 3H), 7.31 (s, 1H), 2.68 (s, 3H).
13C NMR (75 MHz, CDCls) § 140.2, 139.4, 130.3, 128.2, 127.7, 114.8, 43.0.

Spectroscopic data for 2a are in accordance with the literature:S®

'H NMR (300 MHz, CDCl3) 3 7.65 — 7.55 (d, J = 8 Hz, 2H), 7.54 — 7.47 (m, 1H), 7.41 (t, J = 8 Hz,
2H), 3.31 (s, 3 H).

13C NMR (75 MHz, CDCl3) § 132.6, 131.8, 129.0, 117.2, 91.4, 84.6, 46.5.

F 1-fluoro-2-((methylsulfonylethynyl)benzene  (2b) From  1-ethynyl-2-

L O fluorobenzene (286 pL, 2.5 mmol, 1.0 equiv., p: 1.06 g/mL) to get iodosulfone

< /> = 1§ 1-2b (303 mg, 37%; mp: 97-99 °C, lit.%5 97-99 °C) as a yellowish solid. 1-2b
was then treated with potassium carbonate (257 mg, 1.9 mmol, 2.0 equiv.) in

refluxing Me>CO (20 mL) overnight to get 2b as a yellowish oil that solidified upon standing at -4

°C for 20 minutes to give an off-white solid (182 mg, 93%; mp: 63-66 °C) after column
chromatography (silica gel, cyclohexane/ethyl acetate 8:2 - 7:3 as the eluant).

Spectroscopic data for 1-2b are in accordance with the literature:®

'H NMR (300 MHz, CDCl3) § 7.41 — 7.29 (m, 2H), 7.38 (s, 1H), 7.22 — 7.15 (m, 1H), 7.12 — 7.02
(m, 1H), 2.84 (s, 3H).

13C NMR (75 MHz, CDCls) § 157.1 (d, J = 249 Hz), 141.6, 132.1 (d, J = 8 Hz), 129.7 (d, J = 2 Hz),
127.6 (d, J =15 Hz), 124.3 (d, J = 4 Hz), 116.0 (d, J = 21 Hz), 106.9, 42.9.

F NMR (376 MHz, CDCl3) § —112.46 (ddd, J1 = 10 Hz, J; = 7 Hz, J3 = 5 Hz).

Spectroscopic data for 2b:

'H NMR (300 MHz, CDCl3) § 7.70 — 7.41 (m, 2H), 7.31 — 7.03 (m, 2H), 3.31 (s, 3H).

13C NMR (75 MHz, CDCls) § 157.1 (d, J = 249 Hz), 141.6, 132.1 (d, J = 8 Hz), 129.7 (d, J = 2 Hz),
127.58 (d, J = 15 Hz), 124.3 (d, J = 4 Hz), 116.0 (d, J = 21 Hz), 106.9, 42.9 (d, J = 2 Hz).

F NMR (376 MHz, CDCl3) § — 106.74 (dtd, J1 = 10 Hz, J. = 5 Hz, J3 = 3 Hz).

Anal. Calcd for CoH7FO,S: C, 54.54; H, 3.56; Found: C, 54.4; H, 3.6.

1-fluoro-3-((methylsulfonylethynyl)benzene  (2¢) From  1-ethynyl-3-
o (.S?_ fluorobenzene (286 pL, 2.5 mmol, 1.0 equiv., p: 1.05 g/mL) to get iodosulfone
2:> ~ 3 1-2c(682 mg, 42%; mp: 104-106 °C, lit.5¢ 103-105 °C) as a yellowish solid. I-

2c was then treated with potassium carbonate (289 mg, 2.1 mmol, 2.0 equiv.)
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in refluxing Me>CO (30 mL) overnight to get 2c as a yellow oil after column chromatography
(silica gel, cyclohexane/ethyl acetate 8:2 as the eluant).

Spectroscopic data for 1-2¢ are in accordance with the literature:®

'H NMR (300 MHz, CDCls3) § 7.37 (td, J1 = 8 Hz, J, = 6 Hz, 1H), 7.31 (s, 1H), 7.23 (ddd, J1 = 8
Hz, J, =2 Hz, J3 = 1 Hz, 1H), 7.14 (dt, J1 = 9 Hz, J> = 2 Hz, 1H), 7.08 (tdd J1 = 8 Hz, J, = 3 Hz, J3
=1 Hz, 1H), 2.75 (s, 3H).

13C NMR (75 MHz, CDCls) § 162.0 (d, J = 249 Hz), 141.4 (d, J = 8 Hz), 140.8, 130.2 (d, J = 8 Hz),
123.7 (d, J =3 Hz), 117.5 (d, J = 21 Hz), 115.2 (d, J = 23 Hz), 112.8 (d, J = 2 Hz), 43.4.

F NMR (376 MHz, CDCl3) § — 111.54 — -111.95 (m).

Spectroscopic data for 2c:

'H NMR (300 MHz, CDCl3) & 7.41 — 7.34 (m, 2H), 7.30 — 7.17 (m, 2H), 3.30 (s, 3H).

13C NMR (75 MHz, CDCls) & 162.2 (d, J = 249 Hz), 130.8 (d, J = 8 Hz), 129.0 (d, J = 3 Hz), 119.6
(d, J =24 Hz), 119.4 (d, J = 21 Hz), 89.6 (d, J = 3 Hz), 85.05.

1F NMR (376 MHz, CDCl3) § -111.11 — -111.39 (m).

Anal. Calcd. for CoH7FO,S: C, 54.54; H, 3.56; Found: C, 54.5; H, 3.6.

0 1-fluoro-4-((methylsulfonylethynyl)benzene (2d). From 1-ethynyl-4-
FO%ﬁ— fluorobenzene (286 pL, 2.5 mmol, 1.0 equiv., p = 1.048 g/mL) to get

O  iodosulfone 1-2d (420 mg, 52%; mp: 102-104 °C, lit.5® 112-114 °C) as a
white fluffy solid. 1-2d was then treated with potassium carbonate (356 mg, 2.6 mmol, 2.0 equiv.)
in refluxing Me,CO (25 mL) overnight to get 2d as a yellowish solid (241 mg, 93%; mp: 74-76 °C)
after column chromatography (silica gel, cyclohexane/ethyl acetate 8:2 as the eluant).

Spectroscopic data for 1-2d are in accordance with the literature:S®

'H NMR (300 MHz, CDCl3) § 7.53 — 7.43 (m, 2H), 7.30 (s, 1H), 7.13 — 7.03 (m, 2H), 2.73 (s, 3H).
13C NMR (75 MHz, CDCls) § 163.6 (d, J = 252 Hz), 140.4, 135.5, 130.4 (d, J = 9 Hz), 115.7 (d, J =
22 Hz), 113.8, 43.3.

F NMR (376 MHz, CDCl3) § -109.18 (tt, J1 = 8 Hz, J, = 5 Hz).

Spectroscopic data for 2d:

'H NMR (300 MHz, CDCl3) § 7.52 — 7.43 (m, 2H), 7.14 — 7.00 (m, 2H), 2.73 (s, 3H).

13C NMR (75 MHz, CDCls) & 164.6 (d, J = 256 Hz), 135.4 (d, J = 9 Hz), 116.6 (d, J = 22 Hz),
113.8 (d, J =4 Hz), 90.6, 84.5 (d, J = 2 Hz), 46.9.

F NMR (376 MHz, CDCl3) § —104.5 (ttd, J1 = 8 Hz, J. = 5 Hz, Js = 1 Hz).

Anal. Calcd for CoH7FO,S: C, 54.54; H, 3.56; Found: C, 54.4; H, 3.6.

0 1-chloro-4-((methylsulfonyl)ethynyl)benzene (2e). From 1-ethynyl-4-
Cl@%ﬁ— chlorobenzene (341 mg, 2.5 mmol, 1.0 equiv.) to get iodosulfone I-2e

O (500 mg, 58%; mp: 132-134 °C; 1it.® 116-117 °C) as a pale yellow solid.
I-2e was then treated with potassium carbonate (403 mg, 2.9 mmol, 2.0 equiv.) in refluxing Me.CO
(25 mL) overnight to get 2e as a yellowish solid (110 mg, 45%; mp: 101-103 °C) after column
chromatography (silica gel, cyclohexane/ethyl acetate 8:2 as the eluant).
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Spectroscopic data for 1-2e are in accordance with those reported in the literature:S®

IH NMR (300 MHz, CDCls) § 7.38 — 7.29 (m, 5H), 2.70 (s, 3H).
13C NMR (75 MHz, CDCls) & 140.5, 137.9, 136.6, 129.4, 128.7, 113.5, 43.3.

Spectroscopic data for 2e:

'H NMR (300 MHz, CDCls) & 7.53 (d, J = 9 Hz, 2H), 7.41 (d, J = 9 Hz, 2H), 3.30 (s, 3H).
13C NMR (75 MHz, CDCls3) § 138.6, 134.2, 129.5, 116.2, 90.3, 85.5, 46.9.

Anal. Calcd. for CoH7CIO,S: C, 50.36; H, 3.29; Found: C, 50.4; H, 3.3.

0 1-bromo-4-((methylsulfonylethynylbenzene (2f). From 1-ethynyl-4-
Br@%ﬁ— bromobenzene (452 mg, 2.5 mmol, 1.0 equiv.) to get iodosulfone 1-2f (682

O mg, 70%) as a beige crystalline solid (mp: 128-130 °C). I-2f was then
treated with potassium carbonate (483 mg, 3.5 mmol, 2.0 equiv.) in refluxing Me>CO (30 mL)
overnight to get 2f as a white solid (252 mg, 56%; mp: 116-118 °C) after column chromatography
(silica gel, cyclohexane/ethyl acetate 8:2 as the eluant).

Spectroscopic data for 1-2f:5°

IH NMR (300 MHz, CDCl3) & 7.53 (d, J = 9 Hz, 2H), 7.33 (d, J = 9 Hz, 2H), 7.31 (s, 1H), 2.75 (s,
3H).

13C NMR (75 MHz, CDCl3) § 140.9, 138.8, 132.1, 130.0, 125.4, 114.0, 43.8.

Spectroscopic data for 2f:

'H NMR (300 MHz, CDCl3) § 7.57 (d, J = 9 Hz, 2H), 7.45 (d, J = 9 Hz, 2H), 3.30 (s, 3H).
13C NMR (75 MHz, CDCl3) § 134.2, 132.4, 127.0, 116.6, 90.3, 85.5, 46.9.

Anal. Calcd. for CoH7BrO.S: C, 41.72; H, 2.72; Found: C, 41.7; H, 2.7.

0 1-((methylsulfonyl)ethynyl)-4-(trifluoromethyl)benzene (2g). From 1-
F3C©%§— ethynyl-4-(trifluoromethyl)benzene (408 puL, 2.5 mmol, 1.0 equiv., p =

o 1.043 g/mL) to get iodosulfone 1-2g (400 mg, 42%; mp: 113-115 °C,
lit.5¢ 113-114 °C) as a mixture of inseparable Z/E-isomers as yellowish crystalline solid. 1-2g
(without any further purification, purity 85% by GC) was then treated with potassium carbonate
(483 mg, 3.5 mmol, 2.0 equiv.) in refluxing Me,CO (30 mL) overnight to get 2g as a white solid
(165 mg, 63%; mp: 91-93 °C) after column chromatography (silica gel, cyclohexane/ethyl acetate
7:3 as the eluant).

Spectroscopic data for 1-2g:5¢

Major isomer: *H NMR (300 MHz, CDCls) § 7.65 (d, J = 8 Hz, 2H), 7.53 (d, J = 8 Hz, 2H), 7.36 (s,
1H), 2.78 (s, 3H).

13C NMR (75 MHz, CDCls) & 143.0, 140.8, 132.1 (q, J = 33 Hz), 128.2, 125.4 (q, J = 4Hz), 123.6
(g, J = 274 Hz), 112.7, 43.4.

19 NMR (376 MHz, CDCl3) & —63.38 (m).

Minor isomer: *H NMR (300 MHz, CDCls) & 7.65 (d, J = 8 Hz, 2H), 7.53 (d, J = 8 Hz, 2H), 7.21 (s,
1H), 3.18 (s, 3H).
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3C NMR (75 MHz, CDCl3) § 144.8, 139.1, 132.5 (g, J = 20 Hz), 129.0, 125.9 (q, J = 4Hz), 114.9,
42.0. NB: the CFs group for the minor isomer could not be detected.
F NMR (376 MHz, CDCls) 5 —63.37 (m).

Spectroscopic data for 2g:

'H NMR (300 MHz, CDCls3) & 7.75 — 7.67 (m, 4H), 7.26 (s, 1H), 3.32 (s, 3H).

13C NMR (75 MHz, CDCls) & 133.5 (g, J = 32 Hz), 133.3, 126.0 (q, J = 4 Hz), 123.44 (q, J = 274
Hz), 121.5 (g, J = 1 Hz), 89.2, 86.3, 46.9.

F NMR (376 MHz, CDCls3) § —63.76.

Anal. Calcd. for C10H7F30:S: C, 48.39; H, 2.84; Found: C, 48.3; H, 2.9.

0 1-methoxy-4-((methylsulfonyl)ethynylhbenzene (2h). From 1-ethynyl-
MeOO%#— 4-methoxybenzene (324 pL, 2.5 mmol, 1.0 equiv., p = 1.019 g/mL) to

o get iodosulfone 1-2h (582 mg, 69%) as a yellow oil. 1-2h was then
treated with potassium carbonate (475 mg, 3.4 mmol, 2.0 equiv.) in refluxing Me2CO (50 mL)
overnight to get 2h as a yellow oil after column chromatography (silica gel, cyclohexane/ethyl
acetate 8:2 as the eluant).

Spectroscopic data for I-2h:

'H NMR (300 MHz, CDCl3) § 7.47 (d, J = 9 Hz, 2H), 7.24 (s, 1H), 6.89 (d, J = 9 Hz, 2H), 3.83 (s,
3H), 2.67 (s, 3H).

13C NMR (75 MHz, CDCls3) § 161.3, 139.5, 131.6, 130.3, 115.6, 113.8, 55.5, 43.0.

Anal. Calcd. for C10H11103S: C, 35.52; H, 3.28; Found: C, 35.5; H, 3.3.

Spectroscopic data for 2h:

'H NMR (300 MHz, CDCl3) § 7.53 (d, J = 9 Hz, 2H), 6.91 (d, J = 9 Hz, 2H), 3.85 (s, 3H), 3.28 (s,
3H).

13C NMR (75 MHz, CDCl3) § 162.5, 135.0, 114.7, 109.3, 92.9, 83.9, 55.6, 47.0.

Anal. Calcd. for C10H1003S: C, 57.13; H, 4.79; Found: C, 57.1; H, 4.8.

0 1-methyl-4-((methylsulfonylethynyl)benzene (2i). From 1-ethynyl-4-
H3C©%§— methylbenzene (581 mg, 2.5 mmol, 1.0 equiv.) to get iodosulfone I-2i

O (522 mg, 65%; mp: 129-131 °C, lit.5% 129-130 °C) as a yellowish
crystalline solid. 1-2i was then treated with potassium carbonate (449 mg, 3.2 mmol, 2.0 equiv.) in
refluxing Me-CO (30 mL) overnight to get 2i as a yellowish solid (175 mg, 56%; mp: 65-67 °C)
after column chromatography (silica gel, cyclohexane/ethyl acetate 9:1 as the eluant).

Spectroscopic data for 1-2i are in accordance with the literature:S®

'H NMR (300 MHz, CDCls) § 7.37 (d, J = 8 Hz, 2H), 7.27 (s, 1H), 7.19 (d, J = 8 Hz, 2H), 2.66 (s,
3H), 2.37 (s, 3H).

13C NMR (75 MHz, CDCls3) § 141.1, 140.0, 136.7, 129.2, 128.1, 115.6, 43.1, 21.6.

Spectroscopic data for 2i:
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IH NMR (300 MHz, CDCls) § 7.47 (d, J = 8 Hz, 2H), 7.21 (d, J = 8 Hz, 2H), 3.29 (s, 3H), 2.39 (s,
3H).
13C NMR (75 MHz, CDCls) & 142.8, 132.9, 129.7, 114.4, 92.3, 84.2, 47.0, 21.9.

o 1-((methylsulfonylethynyl)-4-propylbenzene (2f). From 1-ethynyl-4-
J_Q%ﬁ_ propylbenzene (360 mg, 2.5 mmol, 1.0 equiv.) to get iodosulfone I-2j

O (422 mg, 59%) as an off-white solid (mp: 109-111 °C; 1it.56 123-124
°C). 1-2j was then treated with potassium carbonate (333 mg, 2.4 mmol, 2.0 equiv.) in refluxing
Me.CO (30 mL) for 36 hours to get 2j as a yellowish liquid (215 mg, 81%) after column
chromatography (silica gel, cyclohexane/ethyl acetate 8:2 as the eluant).

Spectroscopic data for 1-2j are in accordance with the literature:®

'H NMR (300 MHz, CDCl3) & 7.39 (d, J = 8 Hz, 2H), 7.27 (s, 1H), 7.19 (d, J = 8 Hz, 2H), 2.63 (s,
3H), 2.63 — 2.55 (t, J = 8 Hz, 2H), 1.64 (h, J = 7 Hz, 2H), 0.94 (t, J = 7 Hz, 3H).

13C NMR (75 MHz, CDCl3) § 145.8, 140.1, 136.8, 128.5, 128.2, 115.6, 43.0, 38.0, 24.2, 13.9.

Spectroscopic data for 2j:

'H NMR (300 MHz, CDCl3) § 7.50 (d, J = 8 Hz, 2H), 7.22 (d, J = 8 Hz, 2H), 3.29 (s, 3H), 2.62 (t, J
=8 Hz, 2H), 1.64 (h, J = 7 Hz, 2H), 0.93 (t, J = 7 Hz, 3H).

13C NMR (75 MHz, CDCl3) § 147.4, 133.0, 129.1, 114.7, 92.4, 84.2, 47.0, 38.2, 24.2, 13.8.

Anal. Calcd. for C12H140,S: C, 64.84; H, 6.35; Found: C, 64.9; H, 6.4,

0 4-((methylsulfonylhethynyl)-1,1'-biphenyl (2k). From 4-ethynylbiphenyl
Ph@%ﬁ— (446 mg, 2.5 mmol, 1.0 equiv.) to get iodosulfone 1-2k (574 mg, 60%;

O mp: 140-142 °C) as a pale yellow powder. 1-2k was then treated with
potassium carbonate (415 mg, 3.0 mmol, 2.0 equiv.) in refluxing Me.CO (25 mL) overnight to get
2k as a beige powder (365 mg, 95%; mp: 143-145 °C) after column chromatography (silica gel,
cyclohexane/ethyl acetate 8:2 as the eluant).

Spectroscopic data for I-2k:

'H NMR (300 MHz, CDCl3) & 7.71 — 7.52 (m, 6H), 7.51 — 7.38 (m, 3H), 7.33 (s, 1H), 2.73 (s, 3H).
13C NMR (75 MHz, CDCls) & 143.4, 140.3, 139.8, 138.3, 129.1, 128.8, 128.2, 127.3, 127.0, 115.0,
43.2.

Anal. Calcd. for C15H1310.S: C, 46.89; H, 3.41; Found: C, 46.9; H, 3.4.

Spectroscopic data for 2k:

'H NMR (300 MHz, CDCl3) § 7.70 — 7.56 (m, 6H), 7.52 — 7.37 (m, 3H), 3.32 (s, 3H).

13C NMR (75 MHz, CDCls) & 144.7, 139.6, 133.5, 129.2, 128.6, 127.6, 127.3, 116.2, 91.8, 85.1,
47.0.

Anal. Calcd. for C15H120,S: C, 70.29; H, 4.72; Found: C, 70.3; H, 4.8.
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/\/\ o 1-(methylsulfonyl)hex-1-yne (21). From 1-hexyne (1.14 mL, 10 mmol, 1.0
N s/’\ equiv., p = 0.715 g/mL) to get iodosulfone I-2I (313 mg, 11%) as a colorless

o oil. 1-2I was then treated with potassium carbonate (30 mg, 0.4 mmol, 2.0
equiv.) in refluxing Me>CO (25 mL) overnight to get 2l as a colorless liquid (108 mg, 61%) after
column chromatography (silica gel, cyclohexane/ethyl acetate 9:1 as the eluant).

Spectroscopic data for 1-2I are in accordance with the literature:S®

'H NMR (300 MHz, CDCls) § 7.00 (s, 1H), 3.30 — 3.22 (m, 2H), 3.20 (s, 3H), 1.92 — 1.78 (m, 2H),
1.72 - 1.55 (m, 2H), 1.19 (t, J = 7 Hz, 3H).

13C NMR (75 MHz, CDCls) § 137.7, 127.5, 43.8, 39.9, 32.2, 21.7, 13.9.

Spectroscopic data for 2I:

'H NMR (300 MHz, CDCls) & 3.18 (s, 3H), 2.41 (t, J = 7 Hz, 2H), 1.67 — 1.53 (m, 2H), 1.53 — 1.32
(m, 2H), 0.93 (t, J = 7 Hz, 3H).

13C NMR (75 MHz, CDCI3) 6 95.8, 77.4, 46.8, 29.1, 22.1, 18.6, 13.5.

Anal. Calcd. for C7H120,S: C, 52.47; H, 7.55; Found: C, 52.5; H, 7.6.
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Synthesis of ((phenylethynyl)sulfonyl)benzene (2m)

5 mmol CAN (2 equiv.) E@ o
+ Nal (1.2 equiv.) | (E)/ (IDI K5,CO3 (2 equiv.) 7\ _ 5@
O\\ acetonitrile acetone — &')
Na O/ I-2m 2m, 34%
1.2 equiv.

((Phenylethynyl)sulfonyl)benzene was synthesized as described above for methylsulfones. In
particular, sodium benzenesulfinic acid salt (984 mg, 6 mmol, 1.2 equiv.) was used in place of
sodium methanesulfinate. 2m was purified via column chromatography (silica gel,
cyclohexane/ethyl acetate 9:1 as the eluant) to get a pale yellow solid (419 mg, 34% yield over two
steps; mp: 65-66 °C, 1it.5® 66-68 °C). Spectroscopic and characterization data of 2m are in
accordance with the literature.®

IH NMR (300 MHz, CDCls) & 8.13 — 8.06 (m, 2H), 7.73 — 7.65 (m, 1H), 7.65 — 7.57 (m, 2H), 7.56
—7.44 (m, 3H), 7.43 — 7.33 (M, 2H).

Synthesis of 1-methyl-4-((phenylethynyl)sulfonyl)benzene (2n)

5 | CAN (2 equiv.) 9 o
mmo Nal (1.2 equiv) @/ i KaCOs (2equiv) /™ __ & < >
+ _— > —
o) acetonitrile ° acetone — 5
\
. ,S@ I-2n 2n, 42%
Na O
1.2 equiv.

1-methyl-4-((phenylethynyl)sulfonyl)benzene (2n) was synthesized as described above for
methylsulfones. In particular, sodium p-toluenesulfinic acid salt (1.07 g, 6 mmol, 1.2 equiv.) was
used in place of sodium methanesulfinate. lodosulfone 1-2n was obtained as a red wax and was
purified via column chromatography (silica gel, cyclohexane/ethyl acetate 9:1 as the eluant).
However, we found that crude I-2n could be directly subjected to the second step of the reaction
without penalizing the yield. In particular, the red wax was dissolved in Me.CO (25 mL) and
refluxed with K>CO3z (1.38 g, 10 mmol, 2 equiv.) for at least 24 hours. Reaction was conveniently
monitored via GC-FID and, once completed, carbonate was removed by filtration and acetone via
rotary evaporation. The crude was recrystallized from hot cyclohexane to get 2n as a white solid
(537 mg, 42% vyield over two steps; mp: 76-78 °C, lit.5¢ 76-77 °C). Alternatively, 2n could be
purified via column chromatography (silica gel, cyclohexane/ethyl acetate 9:1 as the eluant).
Spectroscopic and characterization data of 2n are in accordance with the literature.S8

IH NMR (300 MHz, CDCls) § 7.96 (d, J = 8 Hz, 2H), 7.55 — 7.43 (m, 3H), 7.43 — 7.32 (m, 4H),
2.47 (s, 3H).
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Synthesis of 1-(phenylethynyl)-1,2-benziodoxol-3(1H)-one (20)

O
0
COOH  NalO, (1 equiv.) ©5< Ph———TMS ©i/</o
@I AcOHgq (30% v.v.) |/O TMSOTf (1.1 equiv.) !
reflux, dark, 3 h bH DCM \
Y: 94% HO-20, 71% Y- 76% 20,71% b,

Following a literature procedure,>! NalOs (2.1 g, 10.0 mmol, 1.0 equiv.) and 2-iodobenzoic acid
(2.4 g, 10.0 mmol, 1.0 equiv.) were suspended in 30% (v:v) aqueous AcOH (15 mL). The reaction
mixture was vigorously stirred and refluxed for 3 h in the dark. Ice-cold water was added and
allowed to cool to room temperature. The resulting white solid was filtered, washed with cold water
and acetone; after 2 hours of air-drying, HO-20 was obtained as a white solid (2.49 g, 94%).

The white solid was then suspended in DCM (100 mL) and TMSOTf (2.6 mL, 14.1 mmol, 1.5
equiv., p = 1.225 g/mL) was added dropwise: the white suspension turned into a yellow solution
after 30 seconds. After 1 h of stirring, trimethylsilyl alkyne (2.0 mL, 10.3 mmol, 1.1 equiv., p =
0.886 g/mL) was added dropwise and the solution turned gradually to brown.

After 2 days, the mixture was quenched with water and washed with sat’d NaHCOz and dried over
MgSOa. After solvent removal, an orange solid was obtained and recrystallized from MeCN to
afford an off-white solid (7.1 g, 76%; mp: 149 °C with decomp., lit.5*2 150 °C with decomp.).
Spectroscopic data of 20 are in accordance with the literature. 5

IH NMR (300 MHz, CDCl3) 5 8.44 — 8.38 (m, 1H), 8.28 — 8.22 (m, 1H), 7.83 — 7.71 (m, 2H), 7.65
—7.55 (m, 2H), 7.54 — 7.36 (M, 3H).

Synthesis of (iodoethynyl)benzene (2p)

TBAI (1.0 equiv.)

PIDA (1.0 equiv.
[ V= PRAGSe) T,
— MeCN, 24 h, rt

2p, 71%

Following a literature procedure,5'? tetrabutylammonium iodide (TBAI; 400 mg, 1 mmol, 1 equiv.)
was suspended in MeCN (10 mL) and ethynylbenzene (110 pL, 1.0 mmol, 1.0 equiv., p = 0.93
g/mL) was added dropwise. Phenyliodine(lll) diacetate (PIDA; 300 mg, 0.9 mmol, 0.9 equiv.) was
then added in portions: the mixture was stirred for 24 h at room temperature and then extracted with
ethyl acetate and sat’d Na»S>0s. lodoalkyne 2p was obtained after column chromatography (pure
cyclohexane as the eluant) as a yellowish liquid (160 mg, 71%) to be stored in the dark and at —21
°C. Spectroscopic data of 2p are in accordance with the literature.5™

IH NMR (300 MHz, CDCl3) 8 7.47 — 7.41 (m, 2H), 7.36 — 7.28 (m, 3H).
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Synthesis of (bromoethynyl)benzene (2q)

AgNO3 (4 mol%)
2 —— S > Q%Br
— NBS (1.2 equiv.)

acetone 2q, 75%

(Bromoethynyl)benzene (2q) was synthesized according to a previously reported procedure.>* In
particular, phenylacetylene (439 uL; 4 mmol; 1.0 equiv., p = 0.93 g/mL) was dissolved in acetone
(10 mL) in a 100 mL round-bottom flask. Then, AgNOs (34 mg; 0.2 mmol; 0.05 equiv.) was added
to get a fine suspension (sonication may be used, if necessary). Finally, N-bromosuccinimide (NBS)
(854 mg; 4.8 mmol; 1.2 equiv.) was added and the suspension was stirred by means of a magnetic
stirrer. After 3 hours, the suspension turned grey and finally yellow, which usually indicated
reaction completion. The reaction was constantly monitored via TLC (eluant: pure cyclohexane).
Once the reaction was complete, the solvent was removed and the crude product purified via
column chromatography (eluant: pure cyclohexane) to yield 2q as a colorless oil (543 mg, 75%
yield; storage at —21 °C is required). Spectroscopic data of 2g are in accordance with the
literature.5*

IH NMR (300 MHz, CDCl3) 8 7.51 — 7.42 (m, 2H), 7.37 — 7.28 (m, 3H).

N.B.: NBS was recrystallized from water (24 g in 250 mL) prior to use.

Synthesis of (chloroethynyl)benzene (2r)

7\ Ag>,CO3 (1 mmol)
— > ——(Cl
— NCS (2.0 equiv.) <:>
10 mmol n-ProH 2r, 52%

(Chloroethynyl)benzene (2r) was synthesized by modifying a previously reported procedure.® In
particular, an oven-dried (T: 130 °C, overnight) 100 mL Schlenk flask equipped with a magnetic
stirrer was charged with N-chlorosuccinimide (NCS) (2.67g, 20.0 mmol, 2.0 equiv.), K2CO3 (690
mg, 5.0 mmol, 0.5 equiv.) and Ag>COs supported on Celite (50% wt; 550 mg, 1.0 mmol, 0.1 equiv.)
under inert atmosphere (Argon). Finally, propanol (15 mL) was added. Then, phenylacetylene (1.1
mL, 10.0 mmol, 1.0 equiv., p = 0.93 g/mL) was added via syringe and the mixture was refluxed for
4 hours. Reaction was monitored via GC-FID and ultimately quenched with brine at 0 °C. The
crude was extracted with ethyl acetate (3x50 mL), the organic phases were combined, washed with
water, dried over Na>SO4 and then the solvent was removed under reduced pressure. Product (720
mg; 53% vyield) was obtained as a colorless liquid after column chromatography (eluant: petroleum
ether). Spectroscopic data of 2r are in accordance with the literature.S*

IH NMR (300 MHz, CDCls) & 7.48 — 7.40 (m, 2H), 7.38 — 7.28 (m, 3H).

S28



2.3 General procedures for the SOMOphilic Alkynylation of Aliphatic
Hydrogen Donors via Decatungstate-Photocatalyzed Hydrogen Atom

Transfer

To evaluate the broadness of the title reaction, explorative experiments were carried out (Figure S8,
left). For the isolation of the products, preparative experiments were performed (Figure S8, right).

28 / [T

APt

Figure S8. Reaction vessels for explorative (left) and preparative experiments (right).

Explorative runs: In a typical experiment, a MeCN solution (1 mL) of 2a (0.1 M), 1a (5.0 equiv, 0.5
M) and tetrabutylammonium decatungstate (TBADT, 2 mol%) was prepared in a borosilicate glass
vial (see Figure S8, left). The solution was bubbled with inert gas (Argon) for 1 minute prior to
irradiation. The vial was put in an Evoluchem apparatus (see Figure S9) equipped with a 8-spots
holder and irradiated with a 40 W Kessil LED (390 nm) at full power up to reaction completion
(reaction was monitored via GC-FID analysis to check the consumption of starting materials and
product formation).
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Figure S9. Equipment used for explorative xperiments.

Preparative runs: In a typical experiment, a MeCN solution (5 mL) of 2a (0.1 M), 1a (5.0 equiv, 0.5
M) and tetrabutylammonium decatungstate (TBADT, 2 mol%) was prepared in a Pyrex reaction
vessel (see Figure S8, right). Solution was bubbled with inert gas (Argon) for 5 minutes prior to
irradiation. While maintaining the solution under continuous stirring, a 40 W Kessil LED (390 nm)
was positioned 5 cm away from the reaction vessel (see Figure S10) and used at full power up to
reaction completion (reaction was monitored via GC-FID analysis to check for the consumption of
the starting material). After irradiation, the crude mixture was poured into a round-bottom flask and
the solvent was removed via rotary evaporation. Afterwards, the crude was adsorbed on SiO; and
purified via column chromatography.

S30



Figure S10. Equipment used for preparative experiments.
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2.4 Characterization of products 3-31

N.B.: NMR spectroscopy was performed in acetone-de or CDClI3, however partial decomposition
of the analyzed compounds (in particular, propargylic ethers) was observed in the latter solvent

within 24 hours.

Scope of the H-Donors (1a-0)

O
Q%Ph

(@)
——Ph
5
(@]
[ >%Ph
(@)
6a
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2-(phenylethynyl)tetrahydrofuran  (3). From  freshly distilled
tetrahydrofuran 1a (2.5 mmol, 0.5 M, 5.0 equiv., 200 pL, p = 0.889 g/mL)
and 2a (0.5 mmol, 0.1 M, 1.0 equiv., 90 mg). The crude mixture was
purified through column chromatography (SiO2: cyclohexane/ethyl acetate
9:1) to afford 3 as a colorless oil (61 mg, 71% yield). Spectroscopic data
of 3 are in accordance with the literature (CDCls used as the solvent).5®
'H NMR (300 MHz, acetone-ds) & 7.58 — 7.14 (m, 5H), 4.76 (dd, J1 = 7
Hz, J, = 5 Hz, 1H), 3.94 — 3.71 (m, 2H), 2.29 — 2.15 (m, 1H), 2.02 — 1.85
(m, 3H).

13C NMR (75 MHz, acetone-ds) § 132.4, 129.3, 129.3, 123.9, 90.7, 84.6,
69.0, 68.2, 34.2, 26.1.

2-(phenylethynyl)-1,4-dioxane (4). From freshly distilled 1,4-dioxane 1b
(2.5 mmol, 0.5 M, 5.0 equiv., 214 uL, p = 1.03 g/mL) and 2a (0.5 mmol,
0.1 M, 1.0 equiv., 90 mg). The crude mixture was purified through
column chromatography (SiOz: cyclohexane/ethyl acetate 95:5) to afford
4 as a colorless oil (57 mg, 61% yield) and 36 mg of starting sulfone (39%
yield). Spectroscopic data of 4 are in accordance with the literature
(CDCl3used as the solvent).5t

'H NMR (300 MHz, acetone-ds) § 7.46 — 7.15 (m, 5H), 4.43 (dd, J1 = 7
Hz, J> = 3 Hz, 1H), 3.76 (tt, J. = 10 Hz, J> = 3 Hz, 2H), 3.64 — 3.28 (m,
4H).

13C NMR (75 MHz, acetone-ds) & 132.5, 129.7, 129.5, 123.3, 86.4, 86.3,
71.0, 67.1, 66.9, 66.0.

3,3-dimethyl-2-(phenylethynyl)oxetane (5). From freshly distilled 3,3-
dimethyloxetane 1c (2.5 mmol, 0.5 M, 5.0 equiv., 258 uL, p = 0.83 g/mL)
and 2a (0.5 mmol, 0.1 M, 1.0 equiv., 90 mg). TBADT 5 mol% was used.
The crude mixture was purified through column chromatography (SiO.:
cyclohexane/ethyl acetate 8:2) to afford 5 as a colorless liquid (33 mg,
35% yield). Spectroscopic data of 5 are in accordance with the literature
(CDCl3 used as the solvent).5®

'H NMR (300 MHz, acetone-ds) § 7.54 — 7.46 (m, 2H), 7.40 (g, J = 4 Hz,
3H), 5.16 (s, 1H), 4.30 (d, J =5 Hz, 1H), 4.18 (d, J = 5 Hz, 1H), 1.39 (s,
3H), 1.32 (s, 3H).

13C NMR (75 MHz, acetone-ds) § 132.5, 129.7, 129.5, 123.6, 90.9, 87.45,
81.9, 80.5, 40.9, 26.1, 23.7.

2-(phenylethynyl)-1,3-dioxolane  (6a) and 4-(phenylethynyl)-1,3-
dioxolane (68). From freshly distilled 1,3-dioxolane 1d (2.5 mmol, 0.5 M,
5.0 equiv., 175 uL, p = 1.06 g/mL) and 2a (0.5 mmol, 0.1 M, 1.0 equiv.,
90 mg). The crude mixture was purified through column chromatography
(SiO2: petroleum ether/methyl tert-butyl ether 9:1) to afford a mixture of
6a and 6. as a colorless oil (57 mg, ratio 1:1, 67% overall yield). Further
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purification afforded pure fractions of each compound. Spectroscopic data
of 6a and 6g are in accordance with the literature (CDClI3z used as the
solvent).5°

Isomer 6a:

'H NMR (300 MHz, acetone-dg) & 7.56 — 7.45 (m, 2H), 7.44 — 7.37 (m,
3H), 5.86 (s, 1H), 4.11 — 4.01 (m, 2H), 4.01 — 3.90 (m, 2H).

13C NMR (75 MHz, acetone-dg) § 132.9, 130.3, 129.8, 123.0, 94.3, 86.5,
85.4, 65.4.

Isomer 6s:

'H NMR (300 MHz, acetone-dg) & 7.51 — 7.43 (m, 2H), 7.43 — 7.34 (m,
3H), 5.02 — 4.91 (m, 3H), 4.18 (dd, J: = 8 Hz, J = 6 Hz, 1H), 3.86 (dd, J1
=8 Hz, J2 =6 Hz, 1H).

13C NMR (75 MHz, acetone-dg) § 132.6, 129.8, 129.6, 123.3, 95.7, 87.6,
86.2, 71.4, 66.4.

2-methyl-2-(phenylethynyl)-1,3-dioxolane  (7a) and  2-methyl-4-
(phenylethynyl)-1,3-dioxolane (7s8). From freshly distilled 2-methyl-1,3-
dioxolane 1e (2.5 mmol, 0.5 M, 5.0 equiv., 224 uL, p = 0.98 g/mL) and 2a
(0.5 mmol, 0.1 M, 1.0 equiv., 90 mg). The reaction was performed in the
presence of NaHCOs (42 mg, 0.5 mmol, 0.1 M, 1.0 equiv.) to prevent the
hydrolysis of compound 7a. The crude mixture was purified through
column chromatography (SiO2: petroleum ether/methyl tert-butyl ether
9:1) to afford a mixture of 7a and 7s as a colorless oil (71 mg, ratio 3.3:1,
75% overall yield). Further purification afforded pure fractions of each
compound: 7a as a colorless solid (mp: 42-44 °C) and 7s as a colorless oil.
Spectroscopic data of 7a are in accordance with the literature (CDCIs used
as the solvent).52°

Isomer 7a:

'H NMR (300 MHz, acetone-dg) & 7.50 — 7.43 (m, 2H), 7.42 — 7.36 (m,
3H), 4.13 — 4.06 (m, 2H), 4.06 — 3.99 (m, 2H), 1.70 (s, 3H).

13C NMR (75 MHz, acetone-ds) § 132.5, 129.6, 129.4, 123.0, 103.2, 88.7,
82.9, 65.3, 26.8.

Isomer 7g:

'H NMR (300 MHz, acetone-dg) & 7.51 — 7.44 (m, 2H), 7.44 — 7.36 (m,
3H), 5.19 (g, J =5 Hz, 1H), 5.01 (dd, J =7 Hz, J = 6 Hz, 1H), 4.33 (dd, J
=8 Hz,J=7Hz, 1H), 3.84 (dd, J=8 Hz, J = 6 Hz, 1H), 1.34 (d, J = 5 Hz,
3H).

13C NMR (75 MHz, acetone-ds)  132.8, 130.0, 129.8, 123.6, 102.4, 88.4,
86.6, 72.2, 66.9, 20.0.

Anal. Calcd. for C12H1202: C, 76.57; H, 6.43; Found: C, 76.6; H, 6.5.

2,2-dimethyl-4-(phenylethynyl)-1,3-dioxolane (8). From 2,2-dimethyl-
1,3-dioxolane 1f (2.5 mmol, 0.5 M, 5.0 equiv., 276 uL, p = 0.93 g/mL)
and 2a (0.5 mmol, 0.1 M, 1.0 equiv., 90 mg). The crude mixture was
purified through column chromatography (SiO2: petroleum ether/ethyl
acetate 95:5) to afford 8 as a colorless oil (69 mg, 68% vyield).
Spectroscopic data of 8 are in accordance with the literature (CDClI3 used
as the solvent).5?!

'H NMR (300 MHz, acetone-dg) & 7.50 — 7.42 (m, 2H), 7.42 — 7.31 (m,
3H), 4.98 (t, J = 6.1 Hz, 1H), 4.24 (dd, J1 = 8 Hz, J> = 6 Hz, 1H), 3.96 (dd,
J1 =8 Hz, Jo =6 Hz, 1H), 1.46 (s, 3H), 1.34 (s, 3H).
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13C NMR (75 MHz, acetone-ds) & 132.4, 129.6, 129.5, 123.4, 110.8, 88.3,
85.7,70.8, 66.7, 26.7, 26.2.

2-(phenylethynyl)-1,3,5-trioxane (9) and (E)-2-(1-(methylsulfonyl)-2-
phenylvinyl)-1,3,5-trioxane (9'). From 1,3,5-trioxane 1g (2.5 mmol, 0.5
M, 5.0 equiv., 225 mg) and 2a (0.5 mmol, 0.1 M, 1.0 equiv., 90 mg). The
crude mixture was purified through column chromatography (SiOa:
cyclohexane/ethyl acetate 8:2) and products 9 and 9" were isolated as two
colorless oils (9: 43 mg, 45% yield; 9': 35 mg, 26% vyield).

Data for 9:

'H NMR (300 MHz, acetone-dg) & 7.56 — 7.50 (m, 2H), 7.46 — 7.39 (m,
3H), 6.00 (s, 1H), 5.36 (d, J = 6 Hz, 2H), 5.20 (d, J = 6 Hz, 2H).

13C NMR (75 MHz, acetone-dg) § 132.7, 130.4, 129.6, 122.1, 92.5, 91.4,
87.1, 83.8.

Anal. Calcd. for C11H100s: C, 69.46; H, 5.30; Found: C, 69.4; H, 5.4.

Data for 9s:

'H NMR (300 MHz, CDCls) & 7.77 (s, 1H), 7.64 — 7.52 (m, 2H), 7.43 —
7.38 (m, 3H), 5.97 (s, 1H), 5.33 (dd, J1 = 15 Hz, J2 = 6 Hz, 4H), 2.90 (s,
3H).

13C NMR (75 MHz, CDCls) & 143.2, 136.8, 132.5, 130.0, 129.8, 128.5,
97.5,93.9, 44.4.

Anal. Calcd. for C12H140sS: C, 53.32; H, 5.22; Found: C, 53.3; H, 5.2,

2-(phenylethynyl)tetrahydrothiophene (10). From tetrahydrothiophene
1h (2.5 mmol, 0.5 M, 5 equiv., 220 L, p = 1.00 g/mL) and 2a (0.5 mmol,
0.1 M, 1.0 equiv.,, 90 mg). The crude mixture was purified through
column chromatography (SiOz: cyclohexane/ethyl acetate 98:2 - 80:20)
to afford 10 as a yellowish oil (68 mg, 72% yield). Spectroscopic data of
10 are in accordance with the literature (CDCls used as the solvent).5?2

'H NMR (300 MHz, acetone-ds) & 7.66 — 6.98 (m, 5H), 4.31 (dd, J = 6.4
Hz, 5.5 Hz, 1H), 3.14 — 3.01 (m, 1H), 2.99 — 2.87 (m, 1H), 2.33 — 2.17 (m,
2H), 2.18 — 1.99 (m, 2H).

13C NMR (75 MHz, acetone-dg) § 132.3, 129.4, 129.1, 124.4, 91.9, 83.3,
39.8,37.4,33.2,31.2.

dimethyl(phenyl)(phenylethynyl)silane (112). From
dimethylphenylsilane 1i (1.0 mmol, 0.2 M, 2 equiv., 155 pL, p = 0.89
g/mL) and 2a (0.5 mmol, 0.1 M, 1.0 equiv., 90 mg). The crude mixture
was purified through column chromatography (SiO.: cyclohexane/ethyl
acetate 95:5) to afford 11 as a colorless oil (73 mg, 62% vyield).
Spectroscopic data of 11 are in accordance with the literature (CDCl3 used
as the solvent).523

'H NMR (300 MHz, acetone-dg) § 7.76 — 7.69 (m, 2H), 7.55 — 7.49 (m,
2H), 7.44 — 7.35 (m, 6H), 0.48 (s, 6H).

13C NMR (75 MHz, acetone-ds) & 137.8, 134.7, 132.9, 130.6, 130.0,
129.6, 129.0, 123.9, 107.8, 92.7, -0.5.
N-methyl-N-(3-phenylprop-2-yn-1-y)formamide (12a) and N,N-
dimethyl-3-phenylpropiolamide (12g). From N,N-dimethylformamide 1]
(2.0 mmol, 0.4 M, 4 equiv., 155 pL, p = 0.94 g/mL) and 2a (0.5 mmol, 0.1
M, 1.0 equiv., 90 mg). The crude mixture was purified through column
chromatography (SiO2: petroleum ether/ethyl acetate 7:3) to isolate 12a
(35 mg, 40% vyield) and 128 (2 mg, 3% yield). Spectroscopic data of 12a
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and 12s are in accordance with the literature (CDCIs used as the solvent).
Data for 124 (mixture of rotamers):52*

'H NMR (300 MHz, acetone-ds) & 8.19 (s, 1H), 8.07 (s, 1H), 7.58 — 7.41
(m, 4H), 7.42 — 7.31 (m, 6H), 4.41 (s, 2H), 4.39 (s, 2H), 3.11 (s, 3H), 2.94
(s, 3H).

13C NMR (75 MHz, acetone-ds) & 162.7, 162.6, 132.4, 129.5, 129.4,
129.4, 123.6, 123.3, 85.0, 84.8, 84.8, 83.9, 39.7, 33.7, 33.7, 29.1.

Data for 12g:5%°

'H NMR (300 MHz, acetone-dg) & 7.65 — 7.55 (m, 2H), 7.53 — 7.44 (m,
3H), 3.29 (s, 3H), 2.95 (s, 3H).

13C NMR (75 MHz, acetone-ds) & 154.8, 133.4, 131.3, 130.0, 121.9, 89.8,
83.1, 38.6, 34.2.

1-phenylnon-1-yn-3-one (13). From heptaldehyde 1k (0.5 mmol, 0.1 M,
1 equiv., 71 pL, p = 0.81 g/mL) and 2a (0.5 mmol, 0.1 M, 1.0 equiv., 90
mg). The crude mixture was purified through column chromatography
(SiO2: cyclohexane/ethyl acetate 9:1) to afford 13 as a colorless oil (72
mg, 67% vyield). Spectroscopic data of 13 are in accordance with the
literature (CDCl5 used as the solvent).5%

'H NMR (300 MHz, acetone-dg) § 7.65 — 7.60 (m, 2H), 7.58 — 7.43 (m,
3H), 2.67 (t, J = 7.3 Hz, 2H), 1.80 — 1.62 (m, 2H), 1.45 — 1.21 (m, 6H),
0.93-0.83 (m, 3H).

13C NMR (75 MHz, acetone-ds) & 187.9, 133.9, 131.9, 130.0, 121.1, 90.2,
88.6, 46.2, 32.5, 29.5, 24.9, 23.3, 14.5.

1,5-diphenylpent-1-yn-3-one  (14) and  2-(methylsulfonyl)-3,4-
diphenylcyclopentan-1-one (14"). From 3-phenylpropanal 1l (0.5 mmol,
0.1 M, 1 equiv., 66 pL, p = 1.02 g/mL) and 2a (0.5 mmol, 0.1 M, 1.0
equiv., 90 mg). The crude mixture was purified through column
chromatography (SiO.: cyclohexane/ethyl acetate 9:1) to isolate 14 (51
mg, 44%) and 14" (51 mg, 32%), both as colorless oils. Spectroscopic data
of 14 are in accordance with the literature (CDCl5 used as the solvent).5?’
Data for 14:

'H NMR (300 MHz, acetone-dg) § 7.69 — 7.61 (m, 2H), 7.60 — 7.44 (m,
3H), 7.33 - 7.16 (m, 5H), 3.05 (s, 4H).

13C NMR (75 MHz, acetone-ds) & 186.9, 141.7, 133.9, 131.9, 129.9,
129.4,129.4,127.1, 120.9, 90.8, 88.5, 47.7, 30.7.

Data for 14" (single stereoisomer):

'H NMR (300 MHz, CDCl3) § 7.16 — 7.06 (m, 6H), 6.75 — 6.69 (m, 4H),
4.50 (dd, J1 = 7 Hz, J2 = 6 Hz, 1H), 4.18 — 4.12 (m, 1H), 4.11 (d, J = 6 Hz,
1H), 3.13 (s, 3H), 2.97 (d, J = 8 Hz, 2H).

13C NMR (75 MHz, CDCIs) § 208.2, 138.2, 137.8, 128.5, 128.3, 128.0,
127.9, 127.5, 127.2, 73.0, 47.6, 45.8, 43.5, 41.2.

Anal. Calcd. for C1gH180sS: C, 68.77; H, 5.77; Found: C, 68.8; H, 5.8.
HSQC and COSY are reported at the end of this document.

4,4-dimethyl-6-phenylhex-5-ynenitrile (15). From isocapronitrile 1m
(5.0 mmol, 1.0 M, 10 equiv., 605 pL, p = 0.80 g/mL) and 2a (0.5 mmol,
0.1 M, 1.0 equiv., 90 mg). The crude mixture was purified through
column chromatography (SiO2: cyclohexane/ethyl acetate 90:10) to afford
15 as a colorless oil (59 mg, 60% vyield).

'H NMR (300 MHz, acetone-dg) § 7.46 — 7.39 (m, 2H), 7.37 — 7.30 (m,
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3H), 2.72 - 2.64 (m, 2H), 1.94 — 1.78 (m, 2H), 1.34 (s, 6H).

13C NMR (75 MHz, acetone-ds) & 132.4, 129.2, 128.8, 124.4, 120.9, 95.4,
82.6, 39.3, 32.3, 29.0, 13.9.

Anal. Calcd. for C14aH1sN: C, 85.24; H, 7.66; Found: C, 85.2; H, 7.8.

(cyclohexylethynyl)benzene (16). From cyclohexane 1n (2.5 mmol, 0.5
M, 5 equiv., 270 pL, p = 0.77 g/mL) and 2a (0.5 mmol, 0.1 M, 1.0 equiv.,
90 mg). TBADT was used 5 mol%. The crude mixture was purified
through column chromatography (SiO2: petroleum ether) to afford 16 as a
volatile colorless liquid (69 mg, 75% yield). Spectroscopic data of 16 are
in accordance with the literature (in CDCl3).5?

'H NMR (300 MHz, acetone-dg) & 7.39 — 7.33 (m, 2H), 7.33 — 7.25 (m,
3H), 2.58 (td, J1 =9 Hz, J> = 5 Hz, 1H), 1.93 - 1.78 (m, 2H), 1.79 — 1.66
(m, 2H), 1.58 — 1.43 (m, 3H), 1.43 — 1.25 (m, 3H).

13C NMR (75 MHz, acetone-ds) & 132.6, 129.57, 128.8, 125.4, 95.2, 81.7,
33.8, 30.6, 26.9, 25.8.

(phenylethynyl)cycloheptane (17). From cycloheptane 10 (2.5 mmol, 0.5
M, 5 equiv., 303 pL, p = 0.81 g/mL) and 2a (0.5 mmol, 0.1 M, 1.0 equiv.,
90 mg). TBADT was used 5 mol%. The crude mixture was purified
through column chromatography (SiO2: petroleum ether) to afford 17 as a
colorless oil (17: 61 mg, 61% vyield). Spectroscopic data of 17 are in
accordance with the literature.SY’

'H NMR (300 MHz, CDCl3) § 7.47 — 7.36 (m, 2H), 7.36 — 7.24 (m, 3H),
2.84 (tt, J1 =8 Hz, J» = 4 Hz, 1H), 2.07 — 1.87 (m, 2H), 1.86 — 1.73 (m,
5H), 1.67 — 1.50 (m, 7H).

13C NMR (75 MHz, CDCls) § 131.6, 128.3, 127.5, 124.4, 95.3, 80.9, 34.8,
31.8, 28.1, 25.8.

(phenylethynyl)cyclooctane (18). From cyclooctane 1p (2.5 mmol, 0.5
M, 5 equiv., 334 pL, p = 0.84 g/mL) and 2a (0.5 mmol, 0.1 M, 1.0 equiv.,
90 mg). TBADT was used 5 mol%. The crude mixture was purified
through column chromatography (SiO2: petroleum ether) to afford 18 as a
colorless oil (18: 83 mg, 78% vyield). Spectroscopic data of 18 are in
accordance with the literature.?°

'H NMR (300 MHz, CDCls) & 7.47 — 7.37 (m, 2H), 7.36 — 7.25 (m, 3H),
2.83 (tt, J1 = 8 Hz, Jo = 4 Hz, 1H), 2.05 - 1.91 (m, 2H), 1.89 — 1.74 (m,
4H), 1.71 — 1.46 (m, 8H).

13C NMR (75 MHz, CDCl3) § 177.1, 173.7, 173.6, 172.8, 169.8, 140.9,
126.0, 77.2,76.3,72.9, 71.0, 70.1.

2-(phenylethynyl)bicyclo[2.2.1]heptane (19). From norbornane 1qg (2.5
mmol, 0.5 M, 5 equiv., 240 mg) and 2a (0.5 mmol, 0.1 M, 1.0 equiv., 90
mg). TBADT was used 5 mol%. The crude mixture was purified through
column chromatography (SiO2: petroleum ether) to afford 19 as a
colorless oil (19: 45 mg, 46% vyield). Spectroscopic data of 19 are in
accordance with the literature (CDCls used as the solvent).%°

'H NMR (300 MHz, Acetone-dg) & 7.38 — 7.34 (m, 2H), 7.34 — 7.28 (m,
3H), 2.48 (ddd, J1 =9 Hz, J2 = 5 Hz, J3 = 1 Hz, 1H), 2.40 — 2.34 (m, 1H),
2.33-2.26 (m, 1H), 1.81 — 1.57 (m, 3H), 1.56 — 1.46 (m, 2H), 1.31 - 1.10
(m, 3H).

13C NMR (176 MHz, Acetone-dg) & 132.1, 129.2, 128.3, 125.1, 96.1, 81.0,
44.5, 40.0, 37.2, 37.0, 34.1, 29.3, 29.2.
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2-((2-fluorophenyl)ethynyl)tetrahydrofuran (20). From
tetrahydrofuran la (2.5 mmol, 0.5 M, 5 equiv., 202 uL, p = 0.89
g/mL) and 2b (0.5 mmol, 0.1 M, 1.0 equiv., 99 mg). The crude
mixture was purified through column chromatography (SiO2:
cyclohexane/ethyl acetate 90:10) to afford 20 as a colorless liquid (70
mg, 74% vyield). Spectroscopic data of 20 are in accordance with the
literature (CDCl5 used as the solvent).5°

'H NMR (300 MHz, acetone-ds) & 7.53 — 7.30 (m, 2H), 7.21 — 7.13
(m, 2H), 4.79 (dd, J1 = 7 Hz, J2 = 5 Hz, 1H), 3.96 — 3.85 (m, 1H),
3.83-3.72 (m, 1H), 2.29 — 2.15 (m, 1H), 2.01 — 1.86 (m, 3H).

13C NMR (75 MHz, acetone-dg) & 163.55 (d, J = 250 Hz), 134.5 (d, J
=1 Hz), 131.4 (d, J = 8 Hz), 125.3 (d, J = 4 Hz), 116.4 (d, J =21
Hz), 112.2 (d, J = 16 Hz), 96.1 (d, J = 3 Hz), 78.0, 69.1, 68.3, 34.2,
26.1.

F NMR (376 MHz, acetone-ds) 8 —~112.31 (ddd, J1 =10 Hz, J, = 7
Hz, J3 =5 Hz).

2-((3-fluorophenyl)ethynyl)tetrahydrofuran (21). From
tetrahydrofuran la (2.5 mmol, 0.5 M, 5 equiv., 202 pL, p = 0.89
g/mL) and 2c (0.5 mmol, 0.1 M, 1.0 equiv., 99 mg). The crude
mixture was purified through column chromatography (SiO2:
cyclohexane/ethyl acetate 90:10) to afford 21 as a colorless liquid (59
mg, 62% vyield). Spectroscopic data of 21 are in accordance with the
literature (CDCl5 used as the solvent).5°

!H NMR (300 MHz, acetone-ds) § 7.43 — 7.33 (m, 1H), 7.22 (dt, J1 =
8 Hz, Jo = 1 Hz, 1H), 7.18 — 7.07 (m, 2H), 4.74 (dd, J1 = 7 Hz, ), =5
Hz, 1H), 3.91 — 3.81 (m, 1H), 3.79 — 3.69 (m, 1H), 2.28 — 2.12 (m,
1H), 1.95 — 1.83 (m, 3H).

13C NMR (75 MHz, acetone-ds) § 163.6 (d, J = 245 Hz), 131.7 (d, J =
9 Hz), 128.9 (d, J = 3 Hz), 126.2 (d, J = 9 Hz), 119.2 (d, J = 23 Hz),
116.8 (d, J =21 Hz),92.1, 93.6 (d, J = 3 Hz), 69.2, 68.6, 34.4, 26.4.
1F NMR (376 MHz, acetone-dg) & —~114.67 — —114.81 (m).

2-((4-fluorophenyl)ethynyl)tetrahydrofuran (22). From
tetrahydrofuran 1a (2.5 mmol, 0.5 M, 5 equiv., 202 pL, p = 0.89
g/mL) and 2d (0.5 mmol, 0.1 M, 1.0 equiv., 99 mg). The crude
mixture was purified through column chromatography (SiO2:
cyclohexane/ethyl acetate 98:2 - 80:20) to afford 22 as a colorless
oil (75 mg, 79% yield). Spectroscopic data of 22 are in accordance
with the literature (CDCls used as the solvent).5t°

'H NMR (300 MHz, acetone-ds) & 7.47 (ddt, J1 = 8 Hz, J, =5 Hz, J3
= 3 Hz, 2H), 7.32 - 6.97 (m, 2H), 4.75 (dd, J1 = 7 Hz, J> = 5 Hz, 1H),
3.96 - 3.67 (m, 2H), 2.28 — 2.13 (m, 1H), 2.13 - 1.77 (m, 3H).

13C NMR (75 MHz, acetone-ds) & 163.3 (d, J = 248 Hz), 134.5 (d, J =
8 Hz), 120.2 (d, J = 3 Hz), 116.4 (d, J = 22 Hz), 90.4 (d, J = 2 H2),
83.4,68.9, 68.1, 34.1, 26.0.

F NMR (376 MHz, acetone-dg) & —113.15 (tt, J1 = 9 Hz, J, = 5 Hz).
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2-((4-chlorophenyl)ethynyltetrahydrofuran (23). From
tetrahydrofuran la (2.5 mmol, 0.5 M, 5 equiv., 202 pL, p = 0.89
g/mL) and 2e (0.5 mmol, 0.1 M, 1.0 equiv., 107 mg). The crude
mixture was purified through column chromatography (SiOz:
cyclohexane/ethyl acetate 90:10 - 80:20) to afford 23 as a colorless
liquid (67 mg, 65% yield). Spectroscopic data of 23 are in accordance
with the literature (CDCls used as the solvent).5*

H NMR (300 MHz, acetone-ds) & 7.39 (d, J = 8 Hz, 2H), 7.35 (d, J =
8 Hz, 2H), 4.75 — 4.64 (m, 1H), 3.89 — 3.80 (m, 1H), 3.78 — 3.68 (m,
1H), 2.23 - 2.11 (m, 1H), 2.05 — 1.82 (m, 3H).

13C NMR (75 MHz, acetone-ds) & 134.7, 133.9, 129.6, 122.6, 91.8,
83.4, 68.9, 68.2, 34.1, 26.0.

2-((4-bromophenyl)ethynyl)tetrahydrofuran (24). From
tetrahydrofuran la (2.5 mmol, 0.5 M, 5 equiv., 202 uL, p = 0.89
g/mL) and 2f (0.5 mmol, 0.1 M, 1.0 equiv., 130 mg). The crude
mixture was purified through column chromatography (SiO2:
cyclohexane/ethyl acetate 90:10) to afford 24 as a colorless liquid (78
mg, 62% vyield). Spectroscopic data of 24 are in accordance with the
literature (CDCl5 used as the solvent).5°

!H NMR (300 MHz, acetone-ds) & 7.57 (d, J = 8 Hz, 2H), 7.38 (d, J =
8 Hz, 2H), 4.77 (dd, J1 = 7 Hz, J» = 5 Hz, 1H), 3.97 — 3.85 (m, 1H),
3.85-3.71 (m, 1H), 2.31 - 2.17 (m, 1H), 2.11 — 1.84 (m, 3H).

13C NMR (75 MHz, acetone-dg) § 134.3, 132.7, 123.2, 123.0, 92.1,
83.6, 69.1, 68.3, 34.2, 26.2.

2-((4-(trifluoromethyl)phenyl)ethynyl)tetrahydrofuran (25). From
tetrahydrofuran 1a (2.5 mmol, 0.5 M, 5 equiv., 202 pL, p = 0.89
g/mL) and 2g (0.5 mmol, 0.1 M, 1.0 equiv., 124 mg). The crude
mixture was purified through column chromatography (SiO2:
cyclohexane/ethyl acetate 90:10) to afford 25 as a colorless liquid (53
mg, 46% yield) and 2g (17 mg, 14% vyield). Spectroscopic data of 25
are in accordance with the literature (CDCls used as the solvent).5*°
H NMR (300 MHz, acetone-ds) 8 7.72 (d, J = 8 Hz, 2H), 7.65 (d, J =
8 Hz, 2H), 4.81 (dd, J1 = 7 Hz, J> = 5 Hz, 1H), 3.97 — 3.87 (m, 1H),
3.80 (td, J1 =8 Hz, J> =5 Hz, 1H), 2.33 — 2.18 (m, 1H), 2.13 - 1.88
(m, 3H).

13C NMR (75 MHz, acetone-ds) & 133.1, 130.5 (g, J = 32 Hz), 128.1
(9, J=1Hz),126.4 (q, J = 4 Hz), 125.2 (g, J = 269 Hz), 93.6, 83.3,
69.0, 68.4, 34.2, 26.2.

F NMR (376 MHz, acetone-dg) 5 —63.80.

2-((4-methoxyphenyl)ethynyltetrahydrofuran (26). From
tetrahydrofuran la (2.5 mmol, 0.5 M, 5 equiv., 202 L, p = 0.89
g/mL) and 2h (0.5 mmol, 0.1 M, 1.0 equiv., 105 mg). The crude
mixture was purified through column chromatography (SiO2:
cyclohexane/ethyl acetate 80:20) to afford 26 as a colorless liquid (55
mg, 55% vyield) and 2h (13 mg, 12%). Spectroscopic data of 26 are in
accordance with the literature (CDCls used as the solvent).5°

'H NMR (300 MHz, acetone-ds) § 7.35 (d, J = 8.9 Hz, 2H), 6.91 (d, J
= 8.8 Hz, 2H), 4.73 (dd, J1 = 7.1, J2 = 5.0 Hz, 1H), 3.93 — 3.85 (m,
1H), 3.80 (s, 3H), 3.80 — 3.70 (m, 1H), 2.28 — 2.12 (m, 1H), 2.08 —
1.83 (m, 3H).
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13C NMR (75 MHz, acetone-ds) & 160.8, 133.8, 115.9, 114.9, 89.0,
84.6,69.1, 68.1, 55.7, 34.2, 26.1.

2-(p-tolylethynyl)tetrahydrofuran (27). From tetrahydrofuran la
(2.5 mmol, 0.5 M, 5 equiv., 202 pL, p = 0.89 g/mL) and 2i (0.5
mmol, 0.1 M, 1.0 equiv., 97 mg). The crude mixture was purified
through column chromatography (SiO2: cyclohexane/ethyl acetate
90:10) to afford 27 as a colorless liquid (63 mg, 68% yield).
Spectroscopic data of 27 are in accordance with the literature (CDCl3
used as the solvent).5%°

'H NMR (300 MHz, acetone-ds) & 7.31 (d, J = 8 Hz, 2H), 7.17 (d, J =
8 Hz, 2H), 4.75 (dd, J1 = 7 Hz, J; = 5 Hz, 1H), 3.96 — 3.85 (m, 1H),
3.83 —3.71 (m, 1H), 2.33 (s, 3H), 2.28 — 2.14 (m, 1H), 2.13 — 1.86
(m, 3H).

13C NMR (75 MHz, acetone-ds) & 139.2, 132.2, 130.0, 120.8, 89.9,
84.7,69.0, 68.0, 34.2, 26.0, 21.4.

2-((4-propylphenyl)ethynyl)tetrahydrofuran (28). From
tetrahydrofuran la (2.5 mmol, 0.5 M, 5 equiv., 202 puL, p = 0.89
g/mL) and 2j (0.5 mmol, 0.1 M, 1.0 equiv., 111 mg). The crude
mixture was purified through column chromatography (SiO2:
cyclohexane/ethyl acetate 95:5) to afford 28 as a colorless liquid (65
mg, 61% vyield). Spectroscopic data of 28 are in accordance with the
literature (CDCl5 used as the solvent).5°

!H NMR (300 MHz, CDCl3) § 7.34 (d, J = 8 Hz, 2H), 7.20 — 6.94 (m,
2H), 4.80 (dd, J1 = 7 Hz, J2 = 5 Hz, 1H), 4.13 — 3.94 (m, 1H), 3.94 —
3.73 (m, 1H), 2.56 (dd, J1 = 9 Hz, J>» = 7 Hz, 2H), 2.28 — 2.15 (m,
1H), 2.14 — 2.01 (m, 2H), 2.00 — 1.86 (m, 1H), 1.78 — 1.48 (m, 2H),
0.92 (t, J =7 Hz, 3H).

13C NMR (75 MHz, CDCl3) § 143.2, 131.7, 128.5, 120.1, 88.5, 84.7,
68.8, 68.0, 38.0, 33.6, 25.6, 24.4, 13.8.

2-([1,1'-biphenyl]-4-ylethynyl)tetrahydrofuran (29). From
tetrahydrofuran la (2.5 mmol, 0.5 M, 5 equiv., 202 puL, p = 0.89
g/mL) and 2k (0.5 mmol, 0.1 M, 1.0 equiv., 128 mg). The crude
mixture was purified through column chromatography (SiO2:
cyclohexane/ethyl acetate 90:10) to afford 29 as a yellowish wax (52
mg, 42% yield). Spectroscopic data of 29 are in accordance with the
literature (CDCls used as the solvent).53t

H NMR (300 MHz, acetone-ds) & 7.75 — 7.59 (m, 4H), 7.59 — 7.42
(m, 4H), 7.42 — 7.32 (m, 1H), 4.78 (dd, J1 = 7 Hz, J> = 5 Hz, 1H),
3.98 —3.83 (m, 1H), 3.84 — 3.70 (m, 1H), 2.31 — 2.17 (m, 1H), 2.12 —
1.85 (m, 3H).

13C NMR (75 MHz, acetone-dg) & 141.7, 140.9, 132.9, 129.8, 128.6,
127.8,127.7,122.8, 91.3, 84.4, 69.0, 68.1, 34.2, 26.0.

2-(hex-1-yn-1-yhtetrahydrofuran (30). From tetrahydrofuran la
(0.5 mmol, 0.5 M, 5 equiv., 40 pL, p = 0.89 g/mL) and 2k (0.1 mmol,
0.1 M, 1.0 equiv., 16 mg) in MeCN (1 mL). Reaction run under
explorative conditions (see Figure S7), product not isolated.

NMR yield of 30: 39%.

Remaining starting material: 53%.

Yield based on remaining starting material (brsm): 83%.
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(Z2)-2-(1-chloro-2-phenylvinyl)tetrahydrofuran (32). From
tetrahydrofuran la (2.5 mmol, 0.5 M, 5 equiv., 202 pL, p = 0.89
g/mL) and 2r (0.5 mmol, 0.1 M, 1.0 equiv., 68 mg). The crude
mixture was purified through column chromatography (SiOz:
cyclohexane/ethyl acetate 90:10) to afford 31 as a colorless oil (43
mg, 41% yield) and 2r (11 mg, 16%). Spectroscopic data of 31 are in
accordance with the literature (CDCls used as the solvent).5%?

'H NMR (300 MHz, CDCl3) 6 7.76 — 7.58 (m, 2H), 7.41 — 7.35 (m,
2H), 7.35 — 7.24 (m, 1H), 6.90 (s, 1H), 4.65 — 4.54 (m, 1H), 4.05 —
3.93 (m, 1H), 3.91 - 3.78 (m, 1H), 2.29 — 2.11 (m, 1H), 2.09 — 1.86
(m, 3H).

13C NMR (75 MHz, CDCls) & 135.8, 135.6, 130.1, 129.2, 128.8,
124.5, 82.9, 69.9, 32.0, 26.4.

NOESY is reported at the end of this document.



3. Computational Methods

General

All the calculations were carried out using the Gaussian16 (Rev. C.01) program packageS® at the
CINECA Supercomputer center (Italy). In our investigation, all the structures have been optimized
in the gas phase by having recourse to density functional theory (DFT), viz. adopting the ®B97XD
functional with an unrestricted (U) formalism in the case of open-shell species, along with the
def2tzvp basis set. To confirm the nature of the optimized structures, vibrational frequencies have
been calculated at the same level of theory as geometry optimizations, and it was verified that they
had only real frequencies. For each of the reported structures, a systematic investigation of all of the
possible conformations has been carried out. However, only the most stable conformation has been

reported and considered for further work.

Computational Analysis (see Table S2)

A rigorous determination of the radicofugal aptitude of the considered X groups would have
required the calculation of Bond Dissociation Energy (BDE) values for the relevant C—X bonds (X
= SO2R, benziodoxolonyl or halogen; Scheme S5a). However, this task calls for the use of high-
level calculations with huge computational cost,>** which is well beyond the aim of this work. As a
matter of fact, Density Functional Theory methods with unrestricted formalism may suffer from
spin contamination, with the immediate consequence that the wavefunction is no longer an
eigenfunction of the total spin. Accordingly, DFT approaches are unsuitable to address named
objective, since some error may be introduced into the calculation. A good trade-off consists in
having recourse to relative models (Scheme S5b).5% In doing so, the spin contamination is
normalized and the introduced errors cancel out, thus enabling for the evaluation of the relative

radicofugal aptitude of X groups with DFT methods.

Radicofugal
Aptltude .
R + X
(CXBDE)
. RELATIVE .
b) X o) Radicofugal - S02Me .
+ 1 Aptitude + X
R By T R

Scheme S5. Computational models for the evaluation of the absolute radicofugal aptitude via
determination of the C—X BDE value (a) and the relative radicofugal aptitude via a relative model
with the methanesulfonyl group as the reference (b).
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According to the mechanism reported in Scheme 5 in the main text, the elimination step required to
afford product 3 depends on the tendency of the X group to act as a radicofugal group at the level of
adduct I°. Thus, we compared the methanesulfonyl group and the chlorine atom in the role of
radicofugal groups (Scheme S6a), from which it can be concluded that the former has a stronger
radicofugal aptitude compared to the latter. We then extended this calculation to traps 2m-20 and,
in doing so, we replaced the tetrahydrofuran ring with the simpler methyl group to skip the need to
perform an extensive conformational search due to the different possible arrangements of the
heterocyclic ring. Of course, we checked the implications of this approximation on the energy value

(Scheme S6b) and, gratifyingly, found that the result was not significantly affected.

cl o “\S0:Me

+ Cl

R o .
o (@] AG = +20.9 kcal mol o)

2 Cl 0 : SO,Me
b) A v 0 - h + ol
CH S5 1 CH
3 -0 AG = +20.8 kcal mol 3

Scheme S6. Comparison of the radicofugal aptitude of methanesulfonyl group and chlorine atom at
the level of radical adduct I' (a) and evaluation of the effect of the replacement of the
tetrahydrofuran ring with a less computationally demanding methyl group.

DFT optimized geometries in the gas phase

In all cases, the structures reported below have been optimized at the (U)wB97XD/def2tzvp level of
theory in the gas phase and it was verified that these had no imaginary frequencies.

'\ SOzMe
CH,

TITOITIOITOOOOO0OO0

S42

0.10384900
-1.18424000
1.41419500
2.10732600
2.10737300
3.41668600
1.59038700
3.41673800
1.59048700
4.08109900
3.93200200
3.93210000

0.91239500
1.00016300
0.48635100
0.26694600
0.26701400
-0.15865900
0.43776700
-0.15859300
0.43786700
-0.37460100
-0.32566100
-0.32554800

-0.00002900
-0.00004100
0.00003500
-1.21760100
1.21763800
-1.20495200
-2.15288700
1.20493900
2.15294500
-0.00001200
-2.14228100
2.14225100



5.11052300
-2.18418700
-2.90711300
-2.90789700
-1.01634000
-0.40619100
-0.40540000
-1.62690800
-2.03164600
-2.67183100
-1.39620800
-2.67212100

T ITITITOITITOOOWLTIT

SOzMe

O

0.51659800
-0.72670500
-1.39318500

1.87448100

2.46149300

2.72712000

3.82503300

1.82049800

4.08766200

2.28911700
4.64816400

4.25926100

4.72596700

5.71889100
-2.85595400
-2.35942800
-3.72881800
-3.17218600
-3.46696300
-3.96724300
-1.85439800
-1.12974600
-1.94463200
-1.88353000
-2.40329800

-1.22265400
-1.62746800

OOWIOITITOIIOIIOIIIOIOIOOOOOOON

S43

-0.70764700
-0.50467200
-0.54124500
-0.54085400
-1.83653700
-1.79142500
-1.79151600
-2.73865100
2.24382500
2.26011300
3.12663200
2.25978900

-0.13035600
0.19988600
-1.98998600
-0.28848200
-0.61240900
-0.13547100
-0.76481000
-0.73317000
-0.29297400
0.09888600
-0.60708500
-1.00935300
-0.17360000
-0.73000300
-0.95433500
-0.74638000
-0.30807200
-2.44256800
-2.89388300
-2.61295500
-2.98052900
-3.11973100
-3.91666000
-0.72235000
-0.27969200
1.89876700
1.98619500

-0.00001400
0.00007800
1.23985800
-1.23926400
-0.00048500
-0.89916100
0.89765700
-0.00024500
-0.00013200
0.88306000
-0.00038300
-0.88311300

0.17842900
0.25838000
1.00063000
0.05916000
-1.19212300
1.18356900
-1.30004200
-2.05545700
1.04916800
2.14481100
-0.18710200
-2.26115500
1.91544200
-0.28210500
-0.56088400
-1.50933300
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TH-NMR ((CD3),CO, 300 MHZ)
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13C-NMR ((CD3)2CO, 75 MHz)
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