Supporting Information

Discovery of Diaminopyrimidine Carboxamide HPK1 Inhibitors as Preclinical Immunotherapy Tool Compounds

Brandon A. Vara,^{a,*} Samuel M. Levi,^a Abdelghani Achab,^a David A. Candito,^a Xavier Fradera,^b Charles A. Lesburg,^b Shuhei Kawamura,^a Brian M. Lacey,^c Jongwon Lim,^a Joey L. Methot,^a Zangwei Xu,^c Haiyan Xu,^c Dustin M. Smith,^d Jennifer A. Piesvaux,^c J. Richard Miller,^c Mark Bittinger,^e Sheila H. Ranganath,^e David J. Bennett,^a Erin F. DiMauro,^a and Alexander Pasternak^a

Table of Contents

Reverse Phase Prep-HPLC Purification Methods	3
General Synthetic Scheme	5
General Procedures	5
Compound Examples	7
Synthesis of Intermediates	27
Figure S-1. ¹ H NMR of 1 and ¹³ C NMR of 1 in d6-DMSO	30
Figure S-2. ¹ H NMR of 22 and ¹³ C NMR of 22 in d6-DMSO	32
Figure S-3. ¹ H NMR of 27 and ¹³ C NMR of 27 in d6-DMSO	34
Assay Materials and Methods	36
HPK1 Biochemical Assay	37
Human pSLP-76 Enzyme-Linked Immunosorbent Assay (ELISA)	38
Human IL-2 assay	39
Human PBMC IL-2 Curve Shapes for Compounds 17 and 22	40
Human PBMC IL-2 Curve Shapes for Compound 26	41
Human PBMC IL-2 Curve Shapes for Compound 27	41

^aDiscovery Chemistry, ^bComputational and Structural Chemistry, ^cQuantitative Biosciences, ^dPharmacokinetics and Drug Metabolism, ^eOncology Early Discovery, Merck & Co., Inc., Boston, MA 02115 USA

^{*}Brandon A. Vara - Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States.

Dendritic cell activation and analysis	43
Figure S-6. IL-6 and TNFa secretion levels for compound 27 as compared to S1	44
Protein Crystallography	45
Crystallography data for Compound 1, 6, & 27	45
In vivo ADME	46
Supplemental Data Tables	49
Full Kinone panel for Compound 1, in ascending order of off-target potencies	49
Full Kinone panel for Compound 7, in ascending order of off-target potencies	60
Full Kinone panel for Compound 22, in ascending order of off-target potencies	71
Full Kinone panel for Compound 27, in ascending order of off-target potencies	84

Synthetic chemistry

The compounds in the present invention can be prepared according to the following general schemes using appropriate materials, and are further exemplified by the subsequent specific examples. All reactions were stirred (mechanically, stir bar/stir plate, or shaken) and conducted under an ambient (air) atmosphere unless specifically stated otherwise. All temperatures are degrees Celsius (°C) unless otherwise noted. Ambient temperature is 15-25 °C. Most compounds were purified by reverse-phase preparative HPLC, MPLC on silica gel, recrystallization and/or trituration (suspension in a solvent followed by filtration of the solid). The course of the reactions was followed by thin layer chromatography (TLC) and/or LCMS and/or NMR and reaction times are given for illustration only. Intermediates were analyzed by NMR and/or TLC and/or LCMS. LC/HRMS (Xevo G2 Tof-XS; Column: Acquity UPLC BEH C18 1.7um; Flow rate: 0.7 ml/min; Column temperature: 40 Celsius, Injection Volume: 1 μL). NMR spectra were recorded on a Bruker 500MHz or 600MHz (1H, 500 or 600 MHz; 13C, 125 or 150 MHz) spectrometer. 1H and 13C NMR spectra were recorded using TMS as an internal reference. Chemical shifts are expressed in δ (ppm), and J values are given in Hz. Liquid chromatography mass spectra (LCMS) were obtained from Agilent 1100-LC/MSD VL using mobile phase: 0.1% formic acid in water and acetonitrile; ionization was achieved either by positive or negative mode. Purity of final compounds was determined by analytical HPLC, which was carried out on an Agilent 1100 series, conditions: Agilent XDB C18 (50x3mm, 5 micron OR 100x3 mm, 5 micron); flow rate 1 mL/min; UV detection at 215 or 254 nm; linear gradient from 95:5% of 0.01% TFA in water: acetonitrile to 100% acetonitrile in 5.5 min.

Reverse Phase Prep-HPLC Purification Methods

Purification Method A - TFA modifier

Reverse-phase Prep-HPLC [Waters SunFire OBD C18, 19 mm X 150 mm(5 μ m); gradient elution, MeCN/H₂O/0.1% TFA]. Electrospray (ESI) Mass-triggered fraction collected was employed using positive ion polarity scanning to monitor for the target mass.

HPLC Gradient:

Time	%	Mobile	Modifier
(min)	Acetonitrile	Phase	Flowrate
		Flowrate	(mL/min)
		(mL/Min)	
0.0	2	25	0.25
3.0	2	35	0.35
33.0	95	35	0.35
33.1	100	40	0.4
36.1	100	50	0.5
36.8/end	2	25	0.2

Purification Method B - NH₄OH modifier

Reverse-phase Prep-HPLC [Waters XBridge OBD C18, 19 mm X 150 mm(5 μ m); gradient elution, MeCN/H₂O/0.1% NH₄OH]. Electrospray (ESI) Mass-triggered fraction collected was employed using positive ion polarity scanning to monitor for the target mass

Time	%	Mobile	Modifier
(min)	Acetonitrile	Phase	Flowrate
		Flowrate	(mL/min)
		(mL/Min)	
0.0	2	25	0.25
3.0	2	35	0.35
33.0	95	35	0.35
33.1	100	40	0.4
36.1	100	50	0.5
36.8/end	2	25	0.2

General Synthetic Scheme

The below general procedures refer to compounds that were prepared using telescoped library techniques. The final purification following 'Step 2' uses reverse phase mass-directed HPLC according to 'Purification Method A' or "Purification Method B' (vida supra).

General Procedures

General Procedure 1 (Step 1 of General Synthetic Scheme)

To a stirred solution of the R1-amine (1 equiv.) and 2,4-dichloropyrimidine-5-carboxamide (1 equiv.) was added Hunig's base (2 equiv.) in one portion in Ethanol (0.4 – 0.3 M). The mixture was capped and stirred at 50 °C for 3 h. After this time the reaction was partitioned between DCM and water. The separated organic layer was washed with brine, dried over MgSO4, filtered, and evaporated under vacuum. The product was carried forward crude, unless otherwise stated (e.g., purified by silica gel column chromatography or reverse phase HPLC to give the title compound).

General Procedure 2 (Step 2 of General Synthetic Scheme)

To a stirred solution of the 2-chloro-4-(amino)pyrimidine-5-carboxamide (1 equiv.) was added the R2-amine (1.1 equiv.) in 2-methoxymethanol (0.3 M). HCl in Ethanol (1.25M, 2.5 equiv.) was added via syringe and the mixture was stirred at 110 °C for 3 h. Upon completion as observed by LCMS analysis, the reaction was partitioned between DCM and water. The separated organic

layer was washed with brine, dried over MgSO4, filtered, and evaporated under vacuum. The product was purified by silica gel column chromatography or reverse phase HPLC to give the title compound.

General Procedure 3 (Step 1 of General Synthetic Scheme)

Fresh LiHMDS (1M THF) (2 equiv.) was added via syringe to a solution containing the 2,6-disubstituted aniline (1 equiv.) and 2,4-dichloropyrimidine-5-carboxamide (1 equiv.) in dry THF (0.3M) and the mixture was stirred at 50 °C for 2 h. Upon completion, the mixture was cooled, and the solvent was evaporated. The resulting residue was diluted with DCM and quenched with sat. aq NH₄Cl and mixed thoroughly. The aqueous layer was extracted with DCM (x 2), filtered through a phase separator, and concentrated to afford the desired 2-chloro-4-[amino]pyrimidine-5-carboxamide as white solid and carried forward crude without purification.

General Procedure 4 (step 2 of General Synthetic Scheme)

To a stirred solution of the 2-chloro-4-(amino)pyrimidine-5-carboxamide (1 equiv.) was added the R2-amine (1.5 equiv.) in 2-methoxymethanol (0.3 M). Tosic acid (2.0 equiv.) was added and the mixture was stirred at 110 °C for 3 h. Upon completion as observed by LCMS analysis, the reaction was partitioned between DCM and water. The separated organic layer was washed with brine, dried over MgSO4, filtered, and evaporated under vacuum. The product was purified by silica gel column chromatography or reverse phase HPLC to give the title compound.

General Procedure 5 (Step 2 of General Synthetic Scheme)

A microwave vial was charged with the 2-chloro-4-(amino)pyrimidine-5-carboxamide (1 equiv.) and 6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-amine (1 equiv.). A stir bar was added followed by ethanol (0.15 M) and 2 mL HCl (1 equiv.). Argon was blown over the mixture and the vial was capped and heated in the microwave at 140 °C between 15 and 60 min. Precipitate formed when cooled to room temperature. The mixture was filtered with EtOH and washed with diethyl ether to afford the title compound.

Compound Examples

2-((6-Methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino)-4-(phenylamino) pyrimidine-5-carboxamide (1)

Step 1. Aniline (4.36 ml, 48.2 mmol) was added to a solution of ethyl 2,4-dichloropyrimidine-5-carboxylate (10.1 g, 45.9 mmol) and triethylamine (12.8 ml, 92 mmol) in ethanol (92 mL) at 0 °C. After the addition the reaction was allowed to reach room temperature and stirred overnight. Water was added (200 mL) and a solid precipitated. The solid was filtered and dried under a stream of nitrogen. This ethyl 2-chloro-4-(phenylamino)pyrimidine-5-carboxylate which was used without further purification. MS (ESI) m/z calc'd for $C_{13}H_{13}CIN_3O_2$ [M+H] * 278, found 278.

Step 2. A 500 mL 3-necked round bottomed flask with reflux condenser was charged with 6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-amine (I-1, 7.37 g, 38.3 mmol) and ethyl 2-chloro-4-(phenylamino)pyrimidine-5-carboxylate (9.68 g, 34.9 mmol). 2-methoxylethanol (100 mL) and was added followed by HCl (70 mL, 87 mmol, 1.25 M in ethanol) and the reaction was stirred at 110 °C overnight. The reaction was cooled in an ice bath and neutralized with NaOH_(aq) (approx. 50 mL, litmus test pH 7), solid began precipitate, distilled water (250 mL) was added and the reaction was stirred for 10 minutes. The solid was filtered off and dried under a stream of nitrogen. This provided ethyl 2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino)-

4-(phenylamino)pyrimidine-5-carboxylate which was used without further purification. MS (ESI) m/z calc'd for $C_{24}H_{28}N_5O_3$ [M+H] + 434, found 434.

Step 3. A 20 mL Biotage microwave vial was charged with ethyl 2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino)-4-(phenylamino)pyrimidine-5-carboxylate (1 g, 2 mmol). THF/water (14 mL, 1:1) was added followed by solid sodium hydroxide (0.48 g, 12 mmol). The reaction was heated to 60 °C and stirred for 3 d. The reaction was cooled, neutralized with $HCl_{(aq)}$ (2 M, litmus test), concentrated to remove the organic solvent. The solid was filtered, dried by azeotroping with isopropanol (3 x 50 mL) and further dried under high vacuum. This provided 2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino)-4-(phenylamino)pyrimidine-5-carboxylic acid which was used without further purification. MS (ESI) m/z calc'd for $C_{22}H_{24}N_5O_3$ [M+H] $^+$ 406, found 406.

Step 4. A 40 mL vial was charged with 2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7yl)amino)-4-(phenylamino)pyrimidine-5-carboxylic acid (0.77 g, 1.89 mmol), DMF (5 mL) was added followed by DIPEA (0.99 ml, 5.7 mmol) and HATU (1.44 g, 3.78 mmol) at RT. Additional DMF (10 mL) was added followed by ammonium chloride (0.20 g, 3.78 mmol) and the reaction was stirred at room temperature overnight. The contents of the reaction were transferred to an Erlenmeyer flask and water (150 mL) was added, the solution was stirred until a precipitate had formed. The solid was collected by filtration and the filter cake was slurried with MeOH (5 mL) and filtered, the process was repeated (x 2) and the solid was dried overnight under a stream of nitrogen. This provided 2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino)-4-(phenylamino)pyrimidine-5-carboxamide (331 mg, 45%) as a colorless solid. MS (ESI) m/z calc'd for $C_{22}H_{25}N_6O_2$ [M+H] + 405, found 405. ¹H NMR (499 MHz, DMSO- d_6) δ 11.55 (s, 1H), 10.69 (s, 1H), 8.68 (s, 1H), 8.38 (s, 1H), 8.06 (s, 1H), 7.65 (s, 1H), 7.60 - 7.52 (m, 2H), 7.48 - 7.29 (m, 3H), 7.14 - 7.03 (m, 1H), 6.94 (s, 1H), 4.24 - 4.02 (m, 2H), 3.81 (s, 3H), 3.59 - 3.20 (m, 2H), 3.17 - 2.98(m, 2H), 2.88 (s, 3H). ¹³C NMR (126 MHZ, DMSO- d_6) δ 169.6 160.5, 160.1, 158.6, 150.4, 139.1, 129.5, 127.2, 127.0, 123.8, 121.7, 120.4, 120.2, 111.3, 100.4, 56.3, 53.8, 50.7, 42.5, 25.5. HRMS (m/z) calc'd for C₂₂H₂₅N₆O₂ [M+H] + 405.2039, found 405.2025. HPLC (Ascentis Express C18 100X3 mm column, 45C, 2uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 1.84 min (97.3% purity).

N2-(6-Methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)-N4-phenylpyrimidine-2,4-diamine (2)

Step 1: A mixture of 2, 4-dichloropyrimidine (881 mg, 5.91 mmol) and aniline (550 mg, 5.91 mmol) was added TEA (1.648 mL, 11.82 mmol) in Ethanol (8.0 mL). The mixture was stirred at 100 °C for 12 h. LCMS showed desired product formed. Solvent was removed under reduced pressure. The residue was purified by silica gel (ISCO; 20 g 50-90% EtOAc/Pet.ether) to give crude product. The crude product was further purified by reversed MPLC (Biotage; 20 g Agela, C18, Eluent of $0\%^3$ 0% MeCN\H₂O (0.5% TFA) gradient @ 30 mL/min) to give 2-chloro-N-phenylpyrimidin-4-amine (185 mg, 11 % yield) as a white solid. MS (ESI): m/z calc'd for C₁₀H₉ClN₃ [M+H]⁺ 206, found 206.

Step 2: A mixture of 2-chloro-N-phenylpyrimidin-4-amine (29 mg, 0.142 mmol), 6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-amine I-1 (41 mg, 0.213 mmol), Xantphos (16.43 mg, 0.028 mmol) and t-BuONa (27.3 mg, 0.284 mmol) in Toluene (2.0 mL) was degassed and backfilled with N₂ (three times), Pd₂(dba)₃ (13.00 mg, 0.014 mmol) was added under N₂. The mixture was heated to 100 °C for 18 h. After cooling to room temperature, LCMS showed the desired product. The mixture was diluted with water (10 mL) and washed with EtOAc (5 mL x 3). The organic layers were separated, combined, washed with brine (5 mL), dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by Prep-HPLC (Condition water (0.1% TFA)-ACN Begin B 12 End B 42 Gradient Time (min) 11; 100% B Hold Time (min) 1.1; FlowRate (ml/min) 40; Injections 1) to give N₂-(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)-N₄-phenylpyrimidine-2,4-diamine (33 mg, 65% yield) as a colorless solid. MS (ESI): m/z calc'd for C₂₁H₂₄N₅O [M+H]⁺ 362, found 362. ¹H NMR (500 MHz, METHANOL-d4): δ 7.86 (br d, J = 7.0 Hz, 1H), 7.52 - 7.71 (m, 3H), 7.44 (t, J = 8.0 Hz, 2H), 7.30 (t, J = 7.0 Hz, 1H), 7.02 (s, 1H), 6.42 (d, J = 7.5 Hz, 1H), 4.01 - 4.31 (m, 2H), 3.90 (s, 3H), 3.63 - 3.82 (m, 1H), 3.35 - 3.56 (m, 1H), 3.15 - 3.27 (m, 2H), 3.05 (s, 3H).

N2-(6-Methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)-5-methyl-N4-phenylpyrimidine-2,4-diamine (3)

Step 1: Aniline (4.36 ml, 48.2 mmol) was added to a solution of ethyl 2,4-dichloropyrimidine-5-carboxylate (10.1 g, 45.9 mmol) and triethylamine (12.8 ml, 92 mmol) in ethanol (92 mL) at 0 °C. After the addition the reaction was allowed to reach room temperature and stirred overnight. Water was added (200 mL) and a solid precipitated. The solid was filtered and dried under a stream of nitrogen. This ethyl 2-chloro-4-(phenylamino)pyrimidine-5-carboxylate which was used without further purification. MS (ESI) m/z calc'd for $C_{13}H_{13}CIN_3O_2$ [M+H] * 278 found 278.

Step 2: A 500 mL 3-necked round bottomed flask with reflux condenser was charged with 6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-amine (7.37 g, 38.3 mmol) and ethyl 2-chloro-4-(phenylamino)pyrimidine-5-carboxylate (9.68 g, 34.9 mmol). 2-methoxylethanol (100 mL) and was added followed by HCl (70 mL, 87 mmol, 1.25 M in ethanol) and the reaction was stirred at 110 °C overnight. The reaction was cooled in an ice bath and neutralized with NaOH_(aq) (approx. 50 mL, litmus test pH 7), solid began precipitate, distilled water (250 mL) was added and the reaction was stirred for 10 minutes. The solid was filtered off and dried under a stream of

nitrogen. This provided ethyl 2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino)-4-(phenylamino)pyrimidine-5-carboxylate which was used without further purification. MS (ESI) m/z calc'd for $C_{24}H_{28}N_5O_3$ [M+H] + 434 found 434.

Step 3: DIBAL-H (0.288 ml, 0.288 mmol, 1M in hexanes) was added to a solution of ethyl 2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino)-4-(phenylamino)pyrimidine-5-carboxylate (25 mg, 0.058 mmol) in THF (5 mL) at room temperature and the reaction was stirred for 72 h. The reaction was quenched with HCl (2 M aqeuous, 1 mL) and concentrated. The crude was purified by preparative HPLC Reverse phase (C-18), eluting with Acetonitrile/Water + 0.1% TFA. This provided (2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino)-4-(phenylamino)pyrimidin-5-yl)methanol, TFA (5.3 mg, 10.48 μ mol, 18.18 % yield). MS (ESI) m/z calc'd for $C_{22}H_{26}N_5O$ [M+H] + 376 found 376. 1 H NMR (499 MHz, DMSO-d6) δ 9.88 (s, 1H), 9.58 (br s, 1H), 7.93 (s, 1H), 7.56 – 7.49 (m, 3H), 7.49 – 7.41 (m, 2H), 7.34 – 7.25 (m, 1H), 6.97 (s, 1H), 4.04 – 3.91 (m, 2H), 3.83 (s, 3H), 3.72 – 3.21 (m, 2H, overlapping with broad H_2O signal), 3.13 – 2.96 (m, 2H), 2.93 (s, 3H), 2.16 (s, 3H).

N2-(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)-N4-phenyl-5-(trifluoromethyl)pyrimidine-2,4-diamine (4)

<u>Step 1:</u> Aniline (0.412 ml, 4.55 mmol) was added to a solution of 2,4-dichloro-5-(trifluoromethyl)pyrimidine (494 mg, 2.277 mmol) in Dioxane at 0 °C. The reaction was allowed to reach room temperature and stirred overnight. The reaction was concentrated and the crude mixture was purified by preparative HPLC Reverse phase (C-18), eluting with Acetonitrile/Water

+ 0.1% TFA. This provided 2-chloro-N-phenyl-5-(trifluoromethyl)pyrimidin-4-amine (300 mg, 1.10 mmol, 48 % yield). MS (ESI) *m/z* calc'd for C₁₁H₈ClF₃N₃ [M+H] + 274 found 274.

Step 2: Tosic Acid (28.5 mg, 0.150 mmol) was added to a solution of 6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-amine (I-1, 21.2 mg, 0.110 mmol) and 2-chloro-N-phenyl-5-(trifluoromethyl)pyrimidin-4-amine (27.4 mg, 0.1 mmol) in 2-methoxylethanol (1 mL) and the reaction was stirred at 110 °C overnight. The crude was concentrated purified by preparative HPLC Reverse phase (C-18), eluting with Acetonitrile/Water + 0.1% TFA. This provided N2-(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)-N4-phenyl-5-(trifluoromethyl)pyrimidine-2,4-diamine (48 mg, 89% yield). MS (ESI) m/z calc'd for $C_{22}H_{23}F_3N_5O$ [M+H] + 430 found 430. 1H NMR (499 MHz, DMSO-d6) δ 10.00 (s, 1H), 8.87 (s, 1H), 8.35 (d, J = 13.7 Hz, 2H), 7.50 – 7.35 (m, 4H), 7.27 (t, J = 6.9 Hz, 1H), 6.90 (s, 1H), 3.98 – 3.86 (m, 2H), 3.81 (s, 3H), 3.67 – 3.59 (m, 1H), 3.33 – 3.23 (m, 1H), 3.12 – 2.97 (m, 2H), 2.93 (s, 3H).

4-(Cyclopentylamino)-2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino) pyrimidine-5-carboxamide (5)

Step 1. To a 2 dram vial with a stirbar, N-Ethyl-N-isopropylpropan-2-amine (41 μ l, 0.234 mmol) was added to a solution of cyclopentyl (14 mg, 0.156 mmol) and 2,4-dichloropyrimidine-5-carboxamide (30 mg, 0.156 mmol) in Ethanol (446 μ l). The mixture was capped and stirred at 50 °C for 3 h. The mixture was diluted with DCM (2 mL) and water (2 mL), capped, and stirred

vigorously for 5 min. The mixture was filtered through a phase separator and the organics were concentrated to afford 2-chloro-4-(cyclopentylamino)pyrimidine-5-carboxamide as a yellow oil. The compound was sufficiently pure and carried on crude to the subsequent reaction. MS (ESI): m/z calc'd for $C_{10}H_{14}CIN_4O$ [M+H]+ 241, found 241.

Step 2. 2-Chloro-4-(cyclopentylamino)pyrimidine-5-carboxamide (21 mg, 0.086 mmol) was added to a vial containing 6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-amine (I-1) (18.10 mg, 0.094 mmol) in 2-Methoxymethanol (245 μl). HCl in Ethanol (1.25M) (171 μl, 0.214 mmol) was added via syringe and the mixture was stirred at 110 °C for 3 h. Upon completion as observed by LCMS analysis, the mixture was cooled, diluted with DMA (2 mL), filtered, and purified by reverse phase preparative HPLC (Purification Method A), to afford 4-(cyclopentylamino)-2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino) pyrimidine-5-carboxamide (28 mg, 80%) as a colorless solid. MS (ESI): m/z calc'd for $C_{21}H_{29}N_6O_2$ [M+H]⁺ 397, found 397. ¹H NMR (600 MHz, DMSO-d6) δ 10.46 (d, J = 58.6 Hz, 1H), 9.80 (s, 1H), 9.10 (br s, 1H), 8.58 (d, J = 34.1 Hz, 1H), 8.00 (d, J = 112.7 Hz, 2H), 7.54 (s, 1H), 7.01 (s, 1H), 4.38 (d, J = 14.4 Hz, 1H), 4.34 - 4.26 (m, 1H), 4.26 - 4.16 (m, 1H), 3.87 (s, 3H), 3.65 (s, 1H), 3.33 (s, 1H), 3.16 (d, J = 6.0 Hz, 1H), 3.03 (d, J = 17.1 Hz, 1H), 2.93 (s, 3H), 2.05 - 1.93 (m, 2H), 1.78 - 1.60 (m, 3H), 1.60 - 1.47 (m, 2H). HPLC (Ascentis Express C18 100 X 3 mm column, 45C, 2uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 1.41 min (95% purity).

4-((2-Bromophenyl)amino)-2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-

yl)amino)pyrimidine-5-carboxamide (6). The preparation of 4-((2-bromophenyl)amino)-2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino)pyrimidine-5-carboxamide was carried out according to *General Procedure 1*, using 2-bromoaniline (0.448 g, 2.6 mmol). The

product from Step 1 was used crude as the starting material in Step 2, following *General Procedure 4* and Purification Method B, for preparation of the title compound (380 mg, 76%) as a colorless solid. MS (ESI): m/z calc'd for $C_{22}H_{24}BrN_6O_2$ [M+H]+ [^{79}Br]+ 383, found 383. ^{1}H NMR (499 MHz, DMSO- d_6) δ 11.67 (s, 1H), 8.71 (s, 1H), 8.35 (s, 1H), 8.21 (s, 1H), 8.03 (s, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.41 (s, 2H), 7.26 (s, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.78 (s, 1H), 3.77 (s, 3H), 3.27 (s, 2H), 2.80 (s, 2H), 2.58 (s, 3H), 2.34 (s, 3H). HPLC (Ascentis Express C18 100X3 mm column, 45C, 2uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 2.11 min (95% purity).

4-((2-Fluoro-6-methylphenyl)amino)-2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino)pyrimidine-5-carboxamide (7)

Step 1. *N*-Ethyl-*N*-isopropylpropan-2-amine (54.6 μ l, 0.313 mmol) was added to a solution of 2-fluoro-6-methylaniline (27.4 mg, 0.219 mmol) and 2,4-dichloropyrimidine-5-carboxamide (40 mg, 0.208 mmol) in Ethanol (595 μ l) and the mixture was stirred for 2 h at 40 °C. The mixture was cooled, diluted with DCM (2 mL) and water (2mL), and stirred vigorously for 5 min. The organics were filtered through a phase separator and concentrated to afford 2-chloro-4-((2-fluoro-6-methylphenyl)amino)pyrimidine-5-carboxamide and a colorless solid (58 mg, 99%). MS (ESI): m/z calc'd for $C_{12}H_{11}CIFN_4O$ [M+H]+ 281, found 281.

Step 2. 2-Chloro-4-((2-fluoro-6-methylphenyl)amino)pyrimidine-5-carboxamide (40 mg, 0.143 mmol) was added to a vial containing 6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-amine (30.1 mg, 0.157 mmol) in 2-Methoxyethanol (407 μl). Hydrogen chloride (1.25M in EtOH) (342 μl, 0.428 mmol) was added via syringe and the mixture was stirred at 90 °C for 3 h. The residue was cooled, dissolved in MeOH/DMA, filtered, and was purified by HPLC Purification Method B to give 4-((2-fluoro-6-methylphenyl)amino)-2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino)pyrimidine-5-carboxamide (8.8 mg, 14 % yield) as a colorless solid following dry down. MS (ESI): m/z calc'd for $C_{23}H_{26}FN_6O_2$ [M+H]⁺ 437, found 437. ¹H NMR (499 MHz, DMSO-d6) δ 10.68 (s, 1H), 8.67 (s, 1H), 8.03 (s, 1H), 7.76 (s, 1H), 7.40 (s, 2H), 7.30 (q, J = 6.3 Hz, 1H), 7.25 - 7.14 (m, 2H), 6.68 (s, 1H), 3.79 (s, 3H), 2.96 (s, 2H), 2.69 (s, 2H), 2.48 (s, 3H), 2.32 (s, 3H), 2.21 (s, 3H). ¹³C NMR (126 MHz, DMSO-d6) δ 169.6, 160.5, 160.1, 158.6, 150.4, 139.1, 129.5, 127.1, 123.8, 121.7, 111.2, 56.3, 53.8, 50.7, 42.5, 25.5. **HRMS** (m/z) calc'd for $C_{23}H_{26}FN_6O_2$ [M+H] ⁺ 437.2101, found 437.2089. HPLC (Ascentis Express C18 100 X 3 mm column, 45C, 2uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 1.95 min (100% purity).

4-(2-Fluoroanilino)-2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoguinolin-2-ium-7-

yl)amino]pyrimidine-5-carboxamide, HCl (8). A microwave vial was charged with 2-chloro-4-((2-fluorophenyl)amino)pyrimidine-5-carboxamide (80 mg, 0.30 mmol) and 6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-amine (58 mg, 0.3 mmol). A stir bar was added followed by ethanol (2 mL) and HCl (75 μ l, 0.30 mmol). Argon was blown over the mixture and the vial was capped and heated to 120 °C for 2 h. Precipitate formed when cooled to room temperature. The mixture was filtered with EtOH, and washed with diethyl ether to afford 4-((2-fluorophenyl)amino)-2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-

yl)amino)pyrimidine-5-carboxamide, HCl (60 mg, 44% yield) as a white solid. MS (ESI): m/z calc'd

for $C_{22}H_{24}FN_6O_2$ [M+H]⁺ 423, found 423. HPLC (Ascentis Express C18 50X3 mm column, 45C, 2uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 2.13 min (100% purity).

4-(2-Chloroanilino)-2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-

yl)amino]pyrimidine-5-carboxamide, HCl (9). A microwave vial was charged with 2-chloro-4-((2-chlorophenyl)amino)pyrimidine-5-carboxamide (85 mg, 0.30 mmol) and 6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-amine (58 mg, 0.3 mmol). A stir bar was added followed by ethanol (2 mL) and HCl (75 μ l, 0.30 mmol). Argon was blown over the mixture and the vial was capped and heated in the microwave at 160 °C for 15 min. Usual precipitate did not form. The mixture was concentrated and recrystallized from ethanol overnight (15 h) and filtered to afford 4-((2-chlorophenyl)amino)-2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino) pyrimidine-5-carboxamide, HCl (22 mg, 15 % yield) as a white solid. MS (ESI): m/z calc'd for $C_{22}H_{24}ClN_6O_2$ [M+H]⁺ 439, found 439. HPLC (Ascentis Express C18 50X3 mm column, 45C, 2uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 2.23 min (98% purity).

2-[(6-Methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]-4-(2-

methylanilino)pyrimidine-5-carboxamide, TFA (10). The preparation of 2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]-4-(2-methylanilino) pyrimidine-5-

carboxamide was carried out according to *General Procedure 1*, using 2-methylaniline (0.15 mmol). The product from Step 1 was used crude as the starting material in Step 2, following *General Procedure 4* and Purification Method A, for preparation of the title compound (52 mg, 82%) as a colorless solid. MS (ESI): m/z calc'd for $C_{23}H_{27}N_6O_2$ [M+H]⁺ 419, found 419. UPLC 2 min (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 0.72 min (100% purity).

2-[(6-Methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]-4-[2-

(trifluoromethyl)anilino]pyrimidine-5-carboxamide, TFA (11). The preparation of 2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]-4-[2-(trifluoromethyl) anilino]pyrimidine-5-carboxamide was carried out according to *General Procedure 1*, using 2-trifluoromethylaniline (0.15 mmol). The product from Step 1 was used crude as the starting material in Step 2, following *General Procedure 4* and Purification Method A, for preparation of the title compound (42 mg, 59%) as a colorless solid. MS (ESI): m/z calc'd for $C_{23}H_{24}F_3N_6O_2$ [M+H]⁺ 473, found 473. UPLC 2 min (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 0.78 min (100% purity).

4-(2-*tert*-Butylanilino)-2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]pyrimidine-5-carboxamide, TFA (12). The preparation of 4-(2-tert-butylanilino)-2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]pyrimidine-5-carboxamide was carried out according to *General Procedure 1*, using 2-(1,1-difluoroethyl)aniline (0.15 mmol).

The product from Step 1 was used crude as the starting material in Step 2, following *General Procedure 4* and Purification Method A, for preparation of the title compound (77 mg, 98%) as a colorless solid. MS (ESI): m/z calc'd for $C_{26}H_{33}N_6O_2$ [M+H]⁺ 461, found 462. UPLC 2 min (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 0.82 min (97% purity).

4-[2-(1,1-Difluoroethyl)anilino]-2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]pyrimidine-5-carboxamide, TFA (13). The preparation of 4-[2-(1,1-difluoroethyl)anilino]-2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]pyrimidine-5-carboxamide was carried out according to *General Procedure 1*, using 2-aniline (0.15 mmol). The product from Step 1 was used crude as the starting material in Step 2, following *General Procedure 4* and Purification Method A, for preparation of the title compound (4 mg, 8%) as a colorless solid. MS (ESI): m/z calc'd for $C_{24}H_{27}F_2N_6O_2$ [M+H]+ 469, found 469. HPLC (Ascentis Express C18 100X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR =

4-(2-Methoxyanilino)-2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-

2.11 min (99% purity).

yl)amino]pyrimidine-5-carboxamide, HCl (14). A microwave vial was charged with 2-chloro-4-((2-methoxyphenyl)amino)pyrimidine-5-carboxamide (44 mg, 0.156 mmol) and 6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-amine (30 mg, 0.156 mmol). A stir bar was added followed by ethanol (1 mL) and HCl (39 μ l, 0.156 mmol). Argon was blown over the mixture and

the vial was capped and heated to 120 °C for 2 h. Precipitate formed when cooled to room temperature. The mixture was filtered with EtOH, and washed with diethyl ether to afford 4-(2-methoxyanilino)-2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino] pyrimidine-5-carboxamide, HCl (11 mg, 15% yield) as a white solid. MS (ESI): m/z calc'd for $C_{23}H_{27}N_6O_3$ [M+H]⁺ 435, found 435. HPLC (Ascentis Express C18 50X3 mm column, 45C, 2uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 2.02 min (99% purity).

4-[2-(methoxymethyl)anilino]-2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]pyrimidine-5-carboxamide, HCl (15). A microwave vial was charged with 2-chloro-4-((2-(methoxymethyl)phenyl)amino)pyrimidine-5-carboxamide (11 mg, 0.038 mmol) and 6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-amine (7 mg, 0.038 mmol). A stir bar was added followed by ethanol (0.5 mL) and HCl (15 μ l mmol). Argon was blown over the mixture and the vial was capped and heated to 120 °C for 2 h. Precipitate formed when cooled to room temperature. The mixture was filtered with EtOH, and washed with diethyl ether to afford 4-(2-methoxyanilino)-2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino] pyrimidine-5-carboxamide, HCl (2.3 mg, 13% yield) as a white solid. MS (ESI): m/z calc'd for C₂₄H₂₉N₆O₃ [M+H]⁺ 449, found 449. HPLC (Ascentis Express C18 50X3 mm column, 45C, 2uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 1.89 min (98% purity).

4-[2-(1-Methoxyethyl)anilino]-2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]pyrimidine-5-carboxamide, TFA (16). The preparation of 4-[2-(1-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]pyrimidine-5-carboxamide, TFA (16).

methoxyethyl)anilino]-2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]pyrimidine-5-carboxamide was carried out according to *General Procedure 1*, using 2-(1-methoxyethyl)aniline (0.15 mmol). The product from Step 1 was used crude as the starting material in Step 2, following *General Procedure 4* and Purification Method A, for preparation of the title compound (73 mg, 99%) as a colorless solid. MS (ESI): m/z calc'd for $C_{25}H_{31}N_6O_3$ [M+H]⁺ 463, found 463. UPLC 2 min (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 0.73 min (10% purity).

4-[2-[(1S)-1-Methoxyethyl]anilino]-2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-yl)amino]pyrimidine-5-carboxamide (17). The preparation of 4-[2-[(1S)-1-Methoxyethyl]anilino]-2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-

yl)amino]pyrimidine-5-carboxamide was carried out according to *General Procedure 1*, using intermediate **I-2** (998 mg, 6.6 mmol). The product from Step 1 (50 mg, 0.163 mmol) was used as the starting material in Step 2, following *General Procedure 4* and Purification Method B, to isolate the title compound (11 mg, 12%) as a colorless solid. MS (ESI): m/z calc'd for $C_{25}H_{31}N_6O_3$ [M+H]⁺ 463, found 463. HPLC (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 2.04 min (100% purity).

2-[(6-Methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-yl)amino]-4-[2-(2-oxooxazolidin-3-yl)anilino]pyrimidine-5-carboxamide (18). The preparation of 2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-yl)amino]-4-[2-(2-oxooxazolidin-3-yl)anilino]pyrimidine-5-carboxamide was carried out according to *General Procedure 1*, using 3-(2-aminophenyl)oxazolidin-2-one (0.25 mmol). The product from Step 1 was used crude as the starting material in Step 2, following *General Procedure 2* and Purification Method B, for preparation of the title compound (38 mg, 39%) as a colorless solid. MS (ESI): *m/z* calc'd for

 $C_{25}H_{28}N_7O_4$ [M+H]⁺ 490, found 490. UPLC 2 min (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 0.62 min (100% purity).

2-[(6-Methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-yl)amino]-4-(2-

sulfamoylanilino)pyrimidine-5-carboxamide (19). The preparation of 2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-yl)amino]-4-(2-sulfamoylanilino)pyrimidine-5-carboxamide was carried out according to *General Procedure 1*, using 3-(2-aminophenyl)oxazolidin-2-one (0.25 mmol). The product from Step 1 was used crude as the starting material in Step 2, following *General Procedure 2* and Purification Method B, for preparation of the title compound (8 mg, 8%) as a colorless solid. MS (ESI): m/z calc'd for $C_{22}H_{26}N_7O_4S$ [M+H]+ 484, found 484. UPLC 2 min (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 0.59 min (100% purity).

2-[(6-Methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]-4-(2-

tetrahydropyran-3-ylanilino)pyrimidine-5-carboxamide, TFA (20). A vial was charged with compound 6 (20 mg, 0.041 mmol), [Ni(dtbbpy)(H_2O)₄]Cl₂¹ (1.945 mg, 4.14 µmol), TBAI (3.82 mg, 10.34 µmol), zinc (8.12 mg, 0.124 mmol) and lastly 3-bromotetrahydro-2H-pyran (13.7 mg, 0.083 mmol), to which a stir bar and DMA (414 µl) was quickly added, capped, flushed 3x with argon and heated to 80 °C. After 3 h LCMS aliquot suggested product and the mixture was diluted to 2 mL with DMSO, filtered, and submitted for purification using Purification Method A. 2-((6-Methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino)-4-((2-(tetrahydro-2H-pyran-3-

yl)phenyl)amino)pyrimidine-5-carboxamide, TFA (3.6 mg, 14 % yield) was isolated as a white solid. MS (ESI): m/z calc'd for $C_{27}H_{33}N_6O_3$ [M+H]⁺ 489, found 489. HPLC (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 2.2 min (99% purity).

2-[(6-Methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]-4-(2-

tetrahydrofuran-2-ylanilino)pyrimidine-5-carboxamide, HCl (21). The preparation of 2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]-4-(2-tetrahydrofuran-2-ylanilino)pyrimidine-5-carboxamide was carried out according to *General Procedure 1*, using 2-(tetrahydrofuran-2-yl)aniline (1.45 mmol). The product from Step 1 was used crude as the starting material in Step 2, following *General Procedure 5*, for preparation of the title compound (16 mg, 21%) as a colorless solid. MS (ESI): m/z calc'd for $C_{26}H_{31}N_6O_3$ [M+H]+ 475, found 475. HPLC (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 2.19 min (92% purity).

4-[2-(Hydroxymethyl)anilino]-2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-

yl)amino]pyrimidine-5-carboxamide (22). The preparation of 4-[2-(hydroxymethyl)anilino]-2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-yl)amino]pyrimidine-5-carboxamide was carried out according to *General Procedure 1*, using (2-aminophenyl)methanol (2.6 mmol). The product from Step 1 was purified on silica gel chromatography (5-15% MeOH in DCM) to afford the title compound (581 mg, 80% yield). 2-Chloro-4-((2-(hydroxymethyl)phenyl)amino)pyrimidine-5-carboxamide (60 mg, 0.215 mmol) was used as the

starting material in Step 2, following *General Procedure 2*, and purified using Purification Method B to afford the title compound (15 mg, 16%) as a colorless solid. MS (ESI): m/z calc'd for $C_{23}H_{27}N_6O_3$ [M+H]⁺ 435, found 435. ¹H NMR (499 MHz, DMSO-d6) δ 11.22 (s, 1H), 8.66 (s, 1H), 8.01 – 7.95 (m, 2H), 7.88 – 7.73 (m, 1H), 7.52 (s, 1H), 7.47 (d, J = 7.5 Hz, 1H), 7.33 (s, 1H), 7.27 – 7.20 (m, 1H), 7.17 (t, J = 7.1 Hz, 1H), 6.74 (s, 1H), 5.19 (t, J = 5.1 Hz, 1H), 4.50 (d, J = 4.8 Hz, 2H), 3.79 (s, 3H), 3.20 (s, 2H), 2.77 (t, J = 5.7 Hz, 2H), 2.59 (d, J = 5.2 Hz, 2H), 2.35 (s, 3H). ¹³C NMR: 13C NMR (126 MHz, DMSO) δ 169.5, 160.7, 160.3, 158.5, 149.9, 148.2, 136.4, 134.9, 128.9, 128.0, 127.6, 126.8, 126.0, 124.5, 119.1, 110.8, 100.3, 60.4, 57.8, 56.2, 52.9, 46.2, 29.1. HRMS (ESI): m/z calc'd for $C_{23}H_{27}N_6O_3$ [M+H]⁺ 435.2144, found 435.2141. HPLC (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 0.89 min (94% purity).

4-[2-(1-Hydroxy-1-methyl-ethyl)anilino]-2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-

7-yl)amino]pyrimidine-5-carboxamide (23). To a solution of methyl 2-((5-carbamoyl-2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino)pyrimidin-4-yl)amino)benzoate (50 mg, 0.11 mmol) in THF (2 mL), cooled to 0 °C by ice bath, was added methylmagnesium chloride (180 μ l, 0.541 mmol) dropwise via syringe. The mixture was allowed to warm to RT over 12 h. The reaction mixture was diluted in EtOAc and quenched with of sat. aq. NH₄Cl (10 mL), and the aqueous layers were extracted with EtOAc (2x). The combined organics were dried over Na₂SO₄, filtered, and concentrated in vacuo to dryness. The crude material was purified by Purification Method B to give 4-((2-(2-hydroxypropan-2-yl)phenyl)amino)-2-((6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl)amino)pyrimidine-5-carboxamide (4.4 mg, 9 % yield) as light yellow solid. MS (ESI): m/z calc'd for C₂₅H₃₁N₆O₃ [M+H]⁺ 463, found 463. HPLC (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 1.17 min (98% purity).

4-(2,6-Dimethylanilino)-2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-

yl)amino]pyrimidine-5-carboxamide (24). The preparation of 4-(2,6-dimethylanilino)-2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-yl)amino]pyrimidine-5-carboxamide was carried out according to *General Procedure 3*, using 2,6-dimethylaniline (25 mg, 0.21 mmol). The crude product from Step 1 (58 mg, 0.21 mmol) was used as the starting material in Step 2, following *General Procedure 2* and Purification Method B, to isolate the title compound (10 mg, 13%) as a colorless solid. MS (ESI): m/z calc'd for $C_{24}H_{29}N_6O_2$ [M+H]+ 433, found 433. HPLC (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 1.95 min (100% purity).

4-(2-Bromo-6-methyl-anilino)-2-[(6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-2-ium-7-yl)amino]pyrimidine-5-carboxamide, TFA (25). The preparation of 4-(2,6-dimethylanilino)-2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-yl)amino]pyrimidine-5-carboxamide was carried out according to *General Procedure 1*, using 2-bromo-6-methylaniline (242 mg, 1.3 mmol). The crude product from Step 1 (102 mg, 0.30 mmol) was used as the starting material in Step 2, following *General Procedure 5* and Purification Method A, to isolate the title compound (48 mg, 26%) as a colorless solid TFA salt. MS (ESI): m/z calc'd for $C_{23}H_{26}BrN_6O_2$ [M+H]+ [^{79}Br]+ 497, found 497. HPLC (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 2.09 min (87% purity).

4-(2,6-Difluoroanilino)-2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-

yl)amino]pyrimidine-5-carboxamide (26). The preparation of 4-(2,6-difluoroanilino)-2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-yl)amino]pyrimidine-5-carboxamide was carried out according to *General Procedure 3*, using 2,6-fluoroaniline (33 mg, 0.25 mmol). The crude product from Step 1 (74 mg, 0.25 mmol) was used as the starting material in Step 2, following *General Procedure 2* and Purification Method B, to isolate the title compound (3.6 mg, 3%) as a colorless solid. MS (ESI): m/z calc'd for $C_{22}H_{23}F_2N_6O_2$ [M+H]⁺ 441, found 441. HPLC (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 1.46 min (100% purity).

4-[2-Fluoro-6-(trifluoromethyl)anilino]-2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-

yl)amino]pyrimidine-5-carboxamide (27). The preparation of 4-[2-fluoro-6-(trifluoromethyl)anilino]-2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-

yl)amino]pyrimidine-5-carboxamide was carried out according to *General Procedure 3*, using 2-fluoro-6-(trifluoromethyl)aniline (249 mg, 1.4 mmol). The product from Step 1 (25 mg, 0.082 mmol) was used as the starting material in Step 2, following *General Procedure 2* and Purification Method B, to isolate the title compound (6.2 mg, 17%) as a colorless solid. MS (ESI): m/z calc'd for $C_{23}H_{23}F_4N_6O_2$ [M+H]⁺ 491, found 491. ¹H NMR (499 MHz, DMSO-d6) δ 11.07 (s, 1H), 8.72 (s, 1H), 8.09 (s, 1H), 7.89 (s, 1H), 7.83 - 7.68 (m, 2H), 7.63 (q, J = 8.0 Hz, 1H), 7.48 (s, 1H), 7.30 (s, 1H), 6.68 (s, 1H), 3.78 (s, 3H), 2.97 (s, 2H), 2.69 (d, J = 5.5 Hz, 2H), 2.49 (d, J = 5.6 Hz, 2H), 2.33 (s, 3H).

HPLC (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 1.64 min (100% purity). ¹³C NMR (126 MHz, DMSO-d6) δ 169.8, 161.8, 159.9, 159.8, 158.5, 157.8, 147.4 (d, J = 13.9 Hz), 129.3, 129.3, 128.1 (t), 126.6, 126.0, 125.1 (d, J = 18.0 Hz), 122.6 (m), 121.4, 121.2, 110.7, 100.2, 58.0, 56.3, 52.7, 46.2, 29.0. HRMS (ESI): m/z calc'd for C₂₃H₂₃F₄N₆O₂ [M+H]⁺ 491.1818, found 491.1813. HPLC (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 1.64 min (100% purity).

4-[2-Fluoro-6-(hydroxymethyl)anilino]-2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-yl)amino]pyrimidine-5-carboxamide (28). The preparation of 4-[2-fluoro-6-(hydroxymethyl)anilino]-2-[(6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-yl)amino]pyrimidine-5-carboxamide was carried out according to *General Procedure 1*, using (2-

amino-3-fluorophenyl)methanol (20 mg, 0.104 mmol). The crude product from Step 1 (31 mg, 0.104 mmol) was used as the starting material in Step 2, following *General Procedure 2* and Purification Method B, to isolate the title compound (8.1 mg, 18%) as a colorless solid. MS (ESI): m/z calc'd for $C_{23}H_{26}FN_6O_3$ [M+H]⁺ 453, found 453. HPLC (Sunfire C18 50X3 mm column, 45C, 1 uL injection, 215 nm) (CH₃CN in 0.1% TFA): tR = 1.00 min (98% purity).

Synthesis of Intermediates

Intermediate I-1. 6-Methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-amine

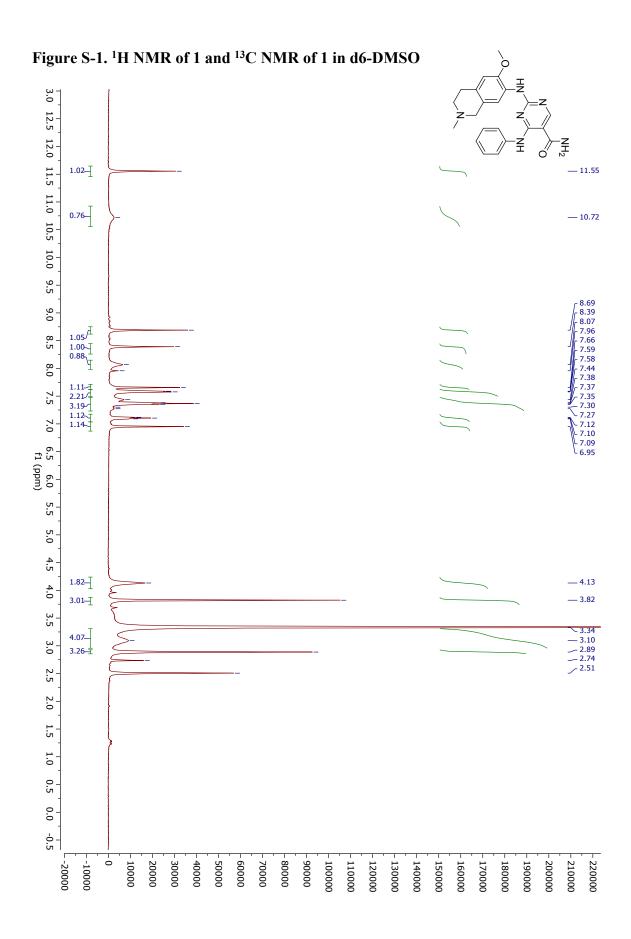
Step 1. A 20-L pressure reactor was charged with Raney-Ni (200 g), MeOH (10 L) and 2-(3-methoxyphenyl)acetonitrile (1000 g, 6.80 mol). The resulting solution was stirred overnight at $35\,^{\circ}$ C under an atmosphere of H_2 (30 atm). The reaction vessel was purged with N2 (g) and the mixture was filtered and concentrated in vacuo, affording of 2-(3-methoxyphenyl)ethanamine (740 g, 72% yield) as a tan oil.

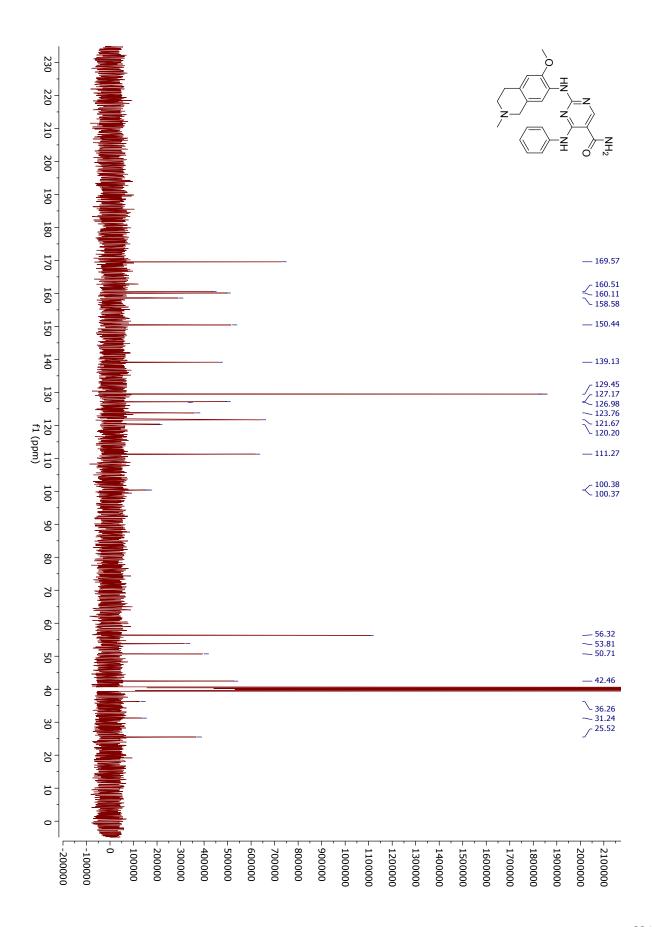
Step 2. A 20-L 4-necked round-bottom flask was charged with 2-(3-methoxyphenyl)ethanamine (740 g, 4.89 mol), formic acid (7.4 L), H_2O (740 mL), formaldehyde (151 g, 5.04 mol) under an atmosphere of nitrogen. The resulting solution was stirred overnight (16 h) and concentrated in vacuo. To this mixture, was added acetyl chloride (370 mL) in MeOH (6 L) and the mixture stirred at RT for 30 minutes. The mixture was concentrated in vacuo and then triturated in the presence of EtOAc (1 L) to provide the desired product, 6-methoxy-1,2,3,4-tetrahydroisoquinoline (370 g, 46% yield) as a tan solid upon vacuum filtration.

Step 3. A 5-L 4-necked round-bottom flask was charged with 6-methoxy-1,2,3,4-tetrahydroisoquinoline (370 g, 2.27 mol), MeOH (4.0 L) and formaldehyde (1.1 L) was added slowly at 0 °C. The resulting solution was stirred for 15 min, then NaBH₄ (300 g, 7.93 mol) was

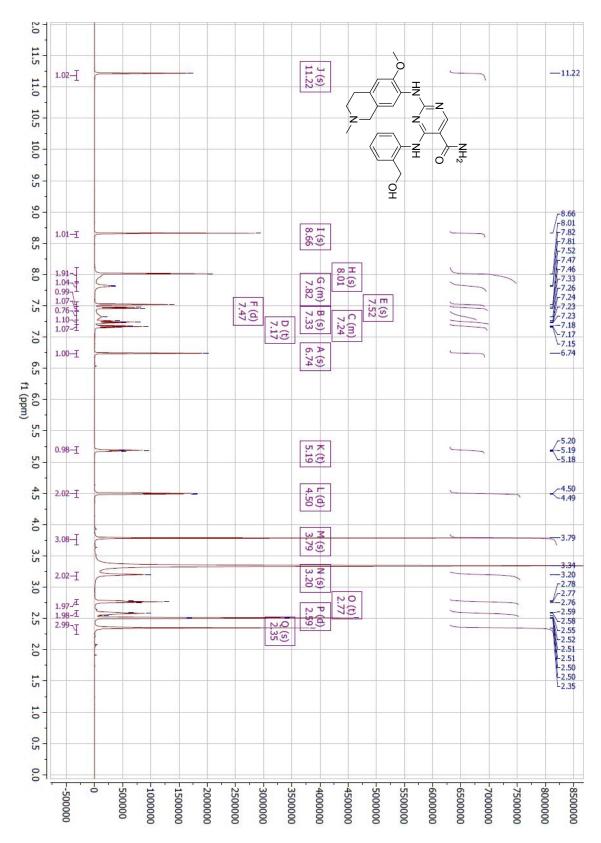
added in portions at 0 °C. The resulting solution was stirred for 3 h, and quenched with water (1 L). The resulting mixture was stirred for 30 min, then concentrated under reduced pressure. The resulting mixture was diluted with water (5 L) and extracted with DCM (3 x 3 L). The combined organic layers were concentrated in vacuo, giving 6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline (260 g) as a tan solid.

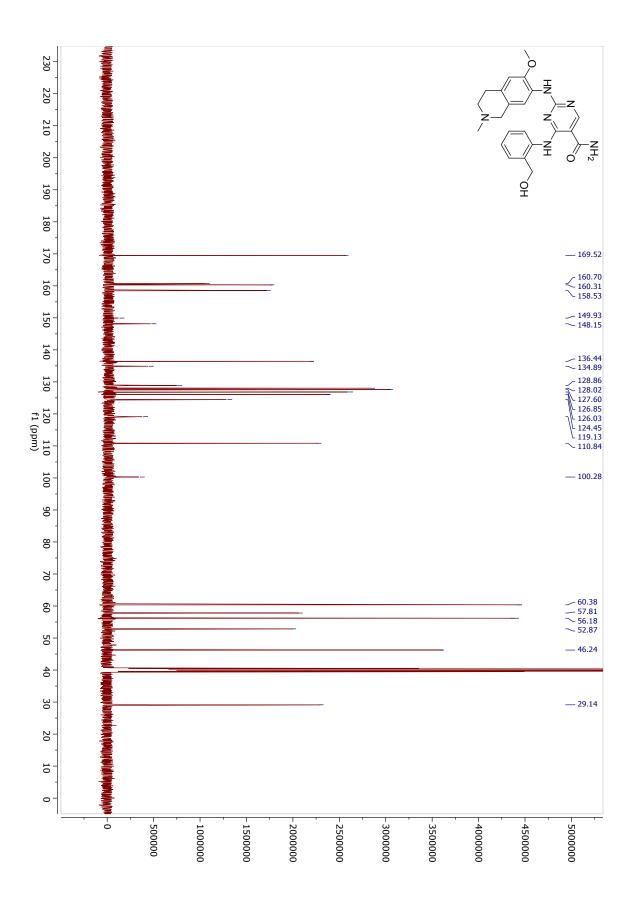
Step 4. A 5-L 4-necked round-bottom flask was charged with TFA (2.0 L), 6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline (260 g, 1.47 mol), and HNO₃ (150 g, 2.38 mmol). The resulting solution was stirred for 1 h and concentrated in vacuo. The residue was diluted with water (3 L), adding 4 N NaOH to adjust the pH to 10. The resulting solution was extracted with DCM (3 x 3 L) and concentrated. The residue was purified by chromatography on SiO_2 (5% MeOH/DCM) to provide 6-methoxy-2-methyl-7-nitro-1,2,3,4-tetrahydroisoquinoline (130 g) as an orange solid.

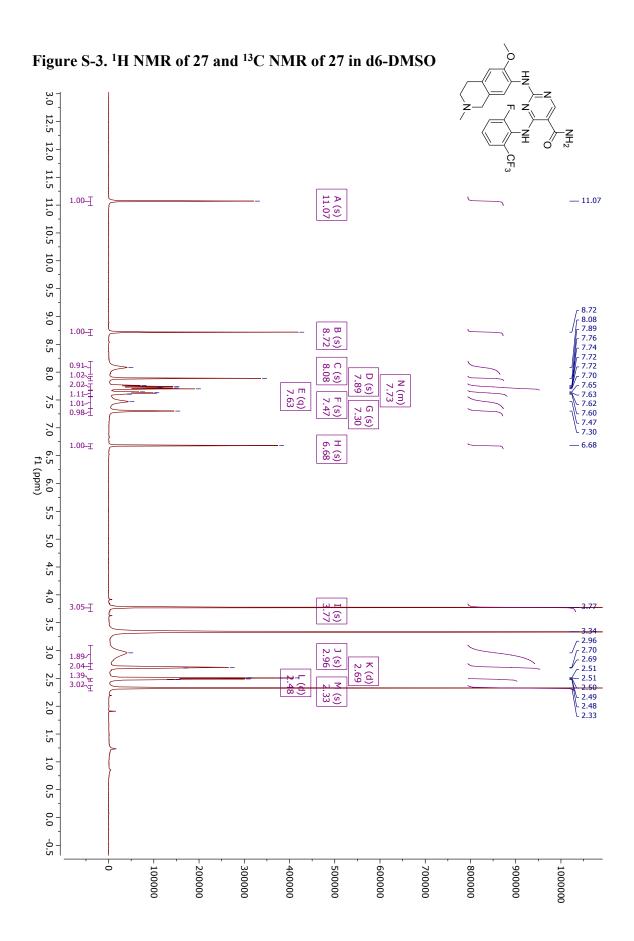

Step 5. A 3-L 4-necked round-bottom flask was charged with 6-methoxy-2-methyl-7-nitro-1,2,3,4-tetrahydroisoquinoline (130 g, 593 mmol), Pd/C (20 g, 188 mmol), MeOH (1.5 L). The flask was evacuated and flushed three times with nitrogen, followed by flushing with hydrogen gas. The mixture was stirred 3 h at 40 °C under an atmosphere of hydrogen (balloon). The mixture was filtered and the filtrate concentrated in vacuo, providing 6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-amine (97 g, 85% yield) as a tan solid. MS (EI) m/z calc'd for $C_{11}H_{17}N_2O$ [M+H]+ 193, found 193. 1H NMR (300 MHz, CDCl₃) δ 6.53 (s, 1 H), 6.39 (s, 1 H), 3.83 (s, 3 H), 3.62 (bs, 2 H), 3.46 (d, J = 1.2 Hz, 2 H), 2.83 (m, 2 H), 2.67 (m, 2 H), 2.45 (s, 3 H).

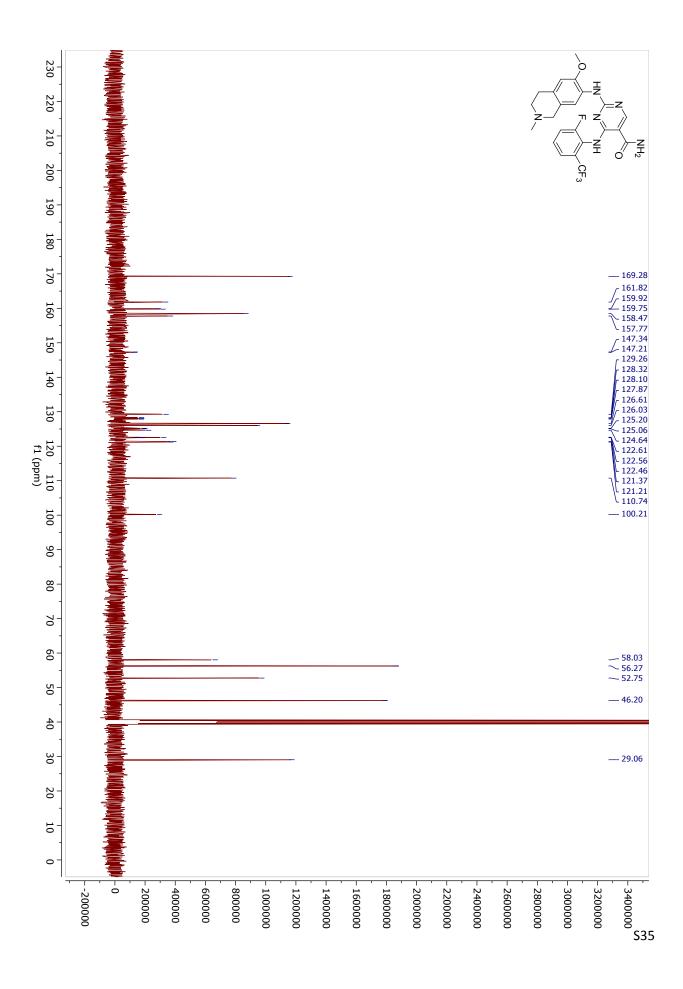

Intermediate I-2. (S)-2-(1-methoxyethyl)aniline (I-2)

Step 1: A 100 mL flask was charged with (*S*)-1-(2-nitrophenyl)ethan-1-ol (2.38 g, 14.24 mmol) and sodium hydride (0.85 g, 21.4 mmol) in THF (28.5 ml) at 0 C and the mixture was allowed to warm to RT over 30 min. Methyl iodide (2.67 ml, 42.7 mmol) was added via syringe and stirred for 2 h. The mixture was quenched with sat. aq. ammonium chloride and extracted with diethyl ether,


dried (MgSO₄), filtered, and concentrated to afford (S)-1-(1-methoxyethyl)-2-nitrobenzene. This material was carried forward directly onto aniline reduction.


Step 2: A 250 mL round bottom flask was charged with (*S*)-1-(1-methoxyethyl)-2-nitrobenzene (2.6 g, 14.4 mmol), MeOH (72 ml), flushed 3X with argon, and Pd-C (0.305 g, 2.87 mmol) was added in one portion. The mixture was flushed with a hydrogen balloon and stirred under hydrogen atmosphere at RT overnight. The mixture was purged with N2 and filtered over a bed of celite with EtOAc and the organics concentrated to afford (*S*)-2-(1-methoxyethyl)aniline (2.1 g, 99% yield) as a tan oil. 1 H NMR (499 MHz, Chloroform-d) δ 7.11 (td, J = 7.7, 1.5 Hz, 1H), 7.01 (dd, J = 7.5, 1.3 Hz, 1H), 6.72 (td, J = 7.4, 0.9 Hz, 1H), 6.67 (d, J = 7.9 Hz, 1H), 4.42 (q, J = 6.7 Hz, 1H), 3.50 (s, 2H), 3.30 (s, 3H), 1.56 (d, J = 6.7 Hz, 3H).





Assay Materials and Methods²

Commercial Reagents

Buffers and biochemical reagents were purchased from Sigma-Aldrich unless otherwise noted (St. Louis, MO). HPK1 kinase (catalytic domain residues 1-346 accession number NP 009112.1 with a N-terminal DYKDDDDK tag) was purchased from Carna Biosciences, Inc. (Japan). MAP4K3 kinase (catalytic domain residues 1-380 accession number NP 003609.2 with N-terminal GST tag) was purchased from ThermoFisher Scientific (Carlsbad, CA). Anti-phospho-SLP-76 (Ser376) (D7S1K) Rabbit mAb (Alexa Fluor 647 Conjugate) was purchased from Cell Signaling Technology (Danvers, MA). Lance Ultra Ulight-p70 S6K (Thr 389) and Lance Ultra Europium-anti-phosphop70 S6K (Thr389) antibody were purchased from Perkin Elmer (Waltham, MA). SLP-76 and phospho-SLP-76 Ser 376 antibodies, protease/phosphatase inhibitor cocktail, mouse phospho-SLP-76 (Ser376) ELISA kit, and PathScan® human phospho-SLP-76 (Ser376) sandwich 384-well ELISA kits were purchased from Cell Signaling Technology. AlphaLISA SureFire Ultra p-SLP-76 (Ser376) HV assay kit was purchased from PerkinElmer. Phospho-SLP-76 (Ser376) cellular kit was purchased from Cisbio (Bedford, MA). Human IL-2 ELISA plates were purchased from Meso Scale Diagnostics (MSD), LLC (Rockville, Maryland). Dynabeads™ Human T-Activator CD3/CD28 and 384 channel reservoirs were purchased from Thermo Fisher Scientific. CellTiter-Glo® luminescent cell viability assay reagent was purchased from Promega (Madison, WI). 384-well tissue culture plates were purchased from Corning. RPMI GlutMax media, non-essential amino acids and sodium pyruvate were purchased from Life Technologies (Carlsbad, CA). Hamilton Robotics CORE TIPS were purchased from Hamilton. Echo LDV source plates were purchased from Labcyte (San Jose, CA). Single molecule arrays (SiMoA) related reagents were purchased from Quanterix Corporation (Billerica, MA).

Cells

Cryopreserved human PBMC were purchased from Cellular Technology Limited (Shaker Heights, OH). Jurkat cells were purchased from ATCC (Manassas, VA). HPK1 deficient Jurkat knock out clones were created by Thermo Fisher Scientific (Waltham, MA). Mouse spleen T cells were isolated from C57BL/6 mice.

HPK1 Biochemical Assay

All assay solutions were prepared in assay buffer consisting of 50 mM HEPES (pH 7.5), 10 mM MgCl₂, 1 mM EGTA, 0.01% Brij–35, 0.05 % BSA and 0.5 mM TCEP. Assay solutions were dispensed into a black 384-well assay plate (Corning 3820) using a BioRPTR (Beckman Coulter). HPK1 enzyme solution (5 μ L, at one and a half times its final concentration of 75 pM) was added to all wells and the kinase reaction initiated by addition of 2.5 μ L of substrate solution (at three times the final concentration of 10 nM SLP76 protein and 10 μ M ATP, or at other concentrations as indicated in figure legends). Following incubation at room temperature for one hour, reactions were quenched by addition of 2.5 μ L of stop and detection solution (at four times the final concentrations of 10 mM EDTA, 0.75 nM LANCE Eu-W1024 Anti-6xHis Ab and 0.75 nM Phospho-SLP-76 (Ser376) (D7S1K) XP Rabbit mAb (AF 647 Conjugate)). After an additional one-hour of incubation at room temperature, the TR-FRET signal was measured on an Envision (Perkin Elmer) plate reader set for 320 nm excitation and dual emission detection at 615nm (Eu) and 665nm (AF647).

Compound Preparation and Dilution for Biochemical Inhibition Assays

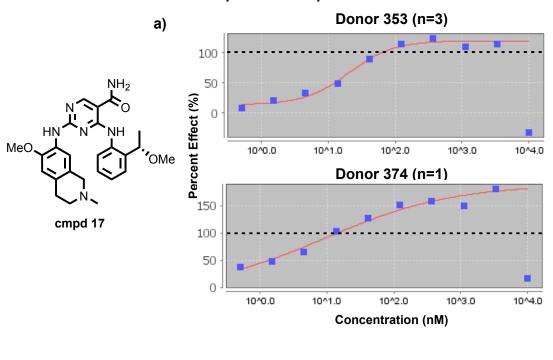
Compounds were solvated as 10 mM stocks in DMSO and were further diluted to 1 mM or 100 μ M as needed for the concentration range to be tested. Compounds were serially diluted 3-fold in Echo LDV plates using a Hamilton STAR Plus liquid handler and dispensed into assay plates using an Echo acoustic dispenser (Labcyte). For inhibition assays, compounds were preincubated with either HPK1 or MAP4K3 for 30 minutes prior to initiation by addition of ATP and peptide/protein substrate. After 60-120 minutes (HPK1, MAP4K3, respectively) of incubation at

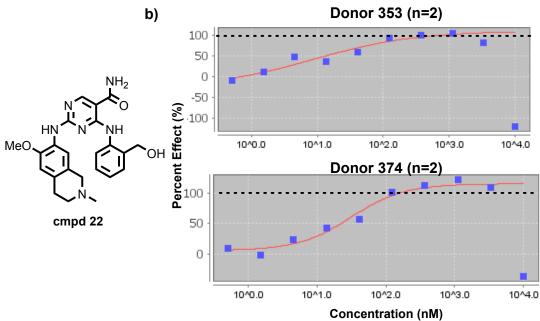
room temperature the reactions were quenched as described above. TR-FRET signal was normalized relative to control wells containing DMSO only or no kinase.

Human pSLP-76 Enzyme-Linked Immunosorbent Assay (ELISA)

Human PBMC were thawed, counted, and incubated in RPMI GlutMax supplemented with NEAA, sodium pyruvate and 10% fetal bovine serum overnight in a 37°C incubator with 5% CO₂. The next day, cells were counted again and seeded on 384-well tissue culture plates at a density of 60000 per well in a volume of 10µL with columns 1 and 24 as no cell blank controls. Intermediate plates containing 2x compounds were made by acoustic transfer (Echo, Labctyte) 100nL of compound and addition of 50 µL media, followed by a brief spin and 1 minute of shaking at 1200 rpm. A Hamilton liquid dispenser was used to add 10 µL of fresh media containing 2x compounds to the cell plate, followed by a brief spin to collect liquid at the bottom of the plate. Plates were incubated in a 37 °C incubator supplemented with 5% CO₂ for one hour. T cells were activated by adding10 μL of anti-CD3/CD28 dynabeads (beads: cells=2:1) to the plate and 10 μL of media was used as a negative control. After a 30-second shake at 1200 rpm followed by a brief spin, plates were incubated in a 37 °C incubator with 5% CO₂ for 25 minutes. Using the Hamilton liquid dispenser, 10 µL of 4x lysis buffer containing protease/phosphatase inhibitor was added, followed by a brief centrifugation and 10 minutes of shaking at 1000 rpm. Plates were frozen immediately in minus 80 °C freezer. Plates were thawed the following day on 37 °C heat blocks, followed by a spin at 3500 rpm at 4 °C for 5 minutes. Cell lysates (20 μL) were transferred to a 384-well pSLP-76 ELISA plates and incubated for 2h at room temperature with constant shaking at 1000 rpm. After washing plates 6 times with 1x wash buffer, 20 µL of detection antibody was added and incubated for 1 hour at room temperature with constant shaking at 1000 rpm. After washing plates 6 times with 1x wash buffer, 20 µL of HRP-conjugated secondary antibody was added and incubated for 1 hour at room temperature with constant shaking at 1000rpm. After washing plates 6 times with 1x wash buffer, 20 µL of TMB substrate solution was added for blue color development and 20 µL of stop solution was added. Plates were read at 450nm using media only wells (no cells) as a reference blank.

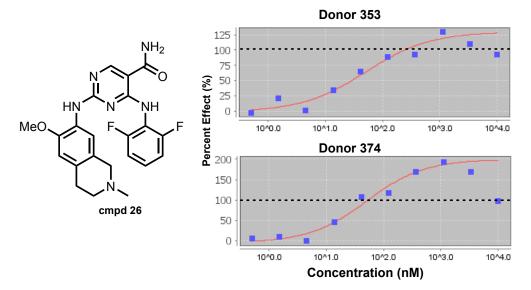
Human IL-2 assay


Human PBMC cells were thawed, seeded and treated with HPK1 inhibitors identically as mentioned in pSLP-76 ELISA assay above. The major difference is that cells were incubated with anti-CD3/CD28 dynabeads overnight for 16-18 hours in a 37 °C incubator with 5% CO_2 . Supernatants taken from the cell plates were diluted 8-fold with 1x PBS. Diluted supernatants (10 μ L) were transferred to human IL-2 MSD ELISA plates and the assay was performed according to the manufacturer's instructions.


Compound **S1** derived from existing literature (Genentech):

Chan, B., et. al. ISOQUINOLINES AS INHIBITORS OF HPK1. PCT Patent Publication WO 2018183964 A1 2018. (Genentech)

Additional work utilizing compound **S1**: Lacey, B. M., et. al. Development of High-Throughput Assays for Evaluation of Hematopoietic Progenitor Kinase 1 Inhibitors. *SLAS Discov. Adv. Sci. Drug Discov.* **August 2020**. https://doi.org/10.1177/2472555220952071.


Human PBMC IL-2 Curve Shapes for Compounds 17 and 22

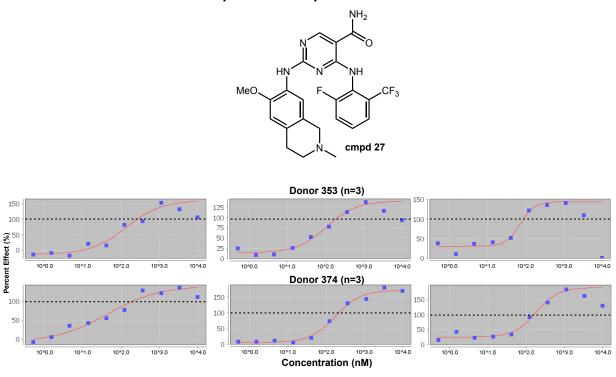


Figure S-4. a) IL-2 functional response curve for compound **17** in PBMC Donor 353 (n=2) and Donor 374 (n=2). b) the IL-2 functional response curve for compound **22** in PBMC Donor 353 (n=2) and Donor 374 (n=2). Standard benchmark "100% Effect" vs. control **S1** (dotted line) presents a qualitative assessment of elevated or sustained IL-2 responses when inhibitor is present.

Human PBMC IL-2 Curve Shapes for Compound 26

Human PBMC IL-2 Curve Shapes for Compound 27

Figure S-5. IL-2 functional response curves for compound **27** in PBMC Donor 353 (n=3) and 374 (n=3). Peak shapes varied between donors and between runs, although this compounds consistently expressed elevated and sustained IL-2 curve shapes, suggesting a sustained IL-2 secretion through the highest concentration examined. Further, max% inhibition at the maximum dose was elevated compared to many compounds, consistently >100% effect at 10 uM, most notably in Donor 374. Standard benchmark "100%

Effect" vs. control **S1** (dotted line) presents a qualitative assessment of elevated or sustained IL-2 responses when inhibitor is present.

Dendritic cell activation and analysis

Mouse bone marrow cells were harvested from the femurs of C57/BL6 mice and cultured in cRPMI with recombinant 20 ng/mL mouse GM-CSF and 20 ng/mL mouse IL-4 for 6 days to generate immature DCs. Human DCs purchased from HemaCare and immature mouse DCs generated in house were pretreated with Compound 1 for 1 hour and then stimulated with LPS. After 18 to 24 hours of incubation, media were collected for cytokine measurement, and cells were stained with fluorescence-labeled antibodies against CD11c, mI-A/I-E, mCD40, mCD86, hCD80, hCD83 and hCD86 for flow cytometry analysis.

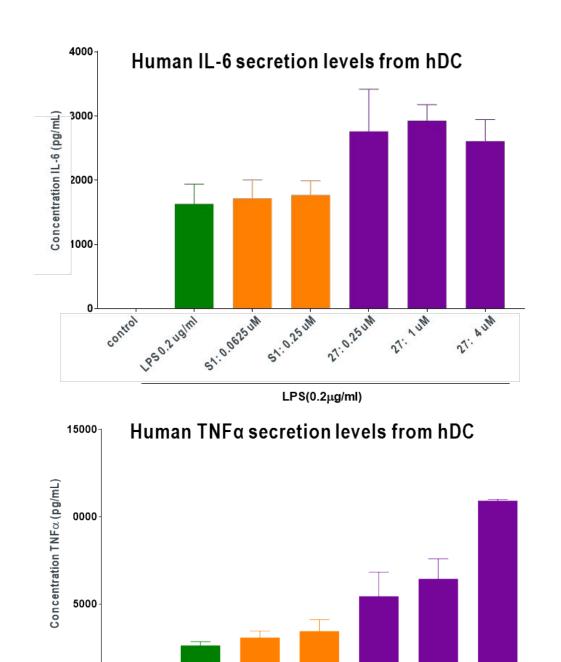


Figure S-6. IL-6 and TNFa secretion levels for compound 27 as compared to S1.

51.0.25.11

LPS(0.2µg/ml)

LP50.2119/ml 51.0.062511M

0

27:0.251111

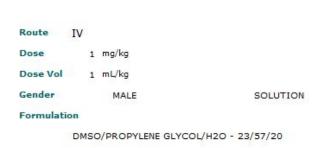
27. 1411

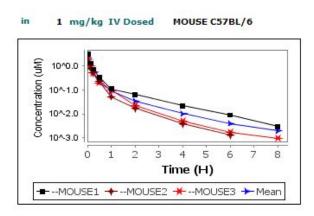
27. AUM

Protein Crystallography

Crystallography data for Compound 1, 6, & 27

Crystallographic Data Collection and Refinement Statistics


	HPK1 / 1	HPK1 / 6	HPK1 / 27
PDB code	7M0K	7M0L	7M0M
Data Collection and Processing			
X-ray source	SLS PXII	SLS PXII	DLS 103
Detector	PILATUS 6M	PILATUS 6M	PILATUS 6M
Wavelength (Å)	1.0000	1.0001	0.9762
Temperature (K)	100	100	100
Space group	P1	P1	P1
Cell: a, b, c (Å), α, β, γ (°)	45.1, 76.6, 89.2	44.9, 76.7, 88.4	51.2, 57.0, 63.5
	90.0, 97.0, 90.0	90.0, 97.8, 90.0	86.1, 86.6, 67.1
Resolution (Å)*	80-2.01 (2.26-2.01)	88-2.43 (2.68-2.43)	63-1.93 (2.18-1.93)
Unique Reflections	74 742 (21 707)	42 306 (10 850)	48 216 (14 591)
Multiplicity	2.2 (2.2)	2.2 (2.1)	2.2 (2.3)
Completeness (%)	94.7 (92.6)	96.1 (96.2)	97.3 (96.1)
R _{sym} (%)	3.4 (44.8)	4.3 (43.3)	3.9 (44.2)
R _{meas} (%)	4.5 (59.0)	5.7 (56.3)	5.1 (57.6)
Mean(I)/sd	12.37 (2.15)	12.89 (2.99)	13.66 (2.52)
Refinement			
Resolution (Å)	89-2.01	88-2.43	63-1.93
No. reflections (work / test)	72 002 / 1 704	41 326 / 980	46 005 / 2 211
$R_{\text{cryst}} / R_{\text{free}}$ (%)	24.8 / 27.8	24.6 / 29.3	18.6 / 22.0
Total No. Atoms			
Protein	9 146	9 102	4 670
Water	215	72	350
Ligand	120	124	70
Deviation from Ideality			
Bond lengths (Å)	0.011	0.012	0.011
Bond Angles (°)	1.47	1.57	1.59
Ramachandran Analysis			
Most favored (%)	92.5	90.3	91.6
Additionally allowed (%)	7.5	9.4	8.4
Generously allowed (%)	0.0	0.3	0.0
Disallowed (%)	0.0	0.0	0.0


^{*} Values in parentheses indicate highest resolution shell

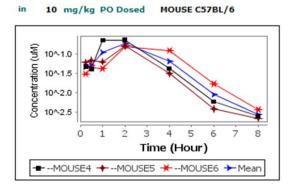
Crystal structures were obtained commercially from Proteros biostructures GmbH, Martinsried, Germany

In vivo ADME

IV/PO mouse PK for compound 22. 1 mg IV/10 mg PO

		Sub	ject	Sub	ject	Sub	ject	Mean
		моц	JSE1	MOL	JSE2	моц	JSE3	n=
		(0-∞)	(0-x)	(0-∞)	(0-x)	(0-∞)	(0-x)	3
AUC	uM-h	0.871	0.865	0.450	0.448	0.528	0.526	0.616
%AUC Extrap	9/0	0.	69	0.	44	0.	38	0.54
Cl	mL/min/kg	44.0		85.2		72.6		67.3
Vd	L/kg	2.33		2.58		2.58		2.50
MRT	h	0.881		0.504		0.592		0.659
t 1/2	h	1.3	390	1.0	90	1.7	720	1.400
Regression Points	h	4 (58	2 4	4 6	4 (58	

Route PO


 Dose
 10 mg/kg

 Dose Vol
 10 mL/kg

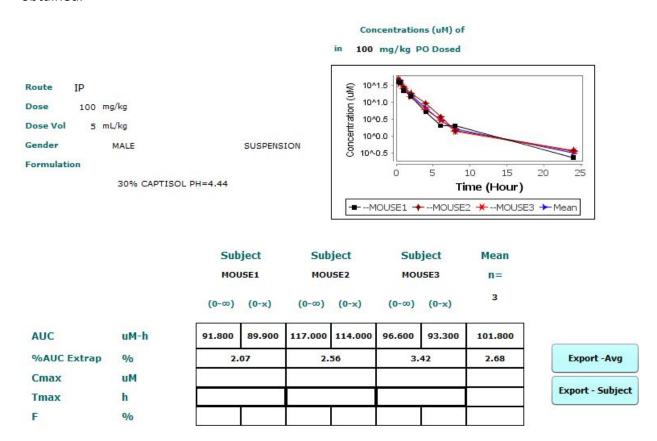
Gender MALE SOLUTION

Formulation

DMSO/PROPYLENE GLYCOL/H2O - 23/57/20

Mean

Subject


		MOL	JSE4	MOL	JSE5	MOL	ISE6	n=
		(0-∞)	(0-x)	(0-∞)	(0-x)	(0-∞)	(0-x)	3
AUC	uM-h	0.574	0.571	0.359	0.356	0.535	0.531	0.489
%AUC Extrap	0/0	0.	52	0.	84	0.	75	0.67
Cmax	uM	0.	23	0.	16	0.	15	0.18
Tmax	h	2.	00	2.	00	2.	00	2.00
F	%	9.310	9.310	5.830	5.810	8.670	8.660	7.937

Subject

Subject

Compound 22 dosed 100 mpk PO with 1.5 mpk ABT (IP):

Study Notes: 15 minutes after dosing animals with **22** body temperatures decreased and activity decreased. The animals were recovered at 24 hours but did not return to normal. A homogenous opaque suspension with fine particles observed for IP. 1.50 mpk ABT was pre-dosed by 2 hours and the dose volume was 5 ml/kg. The vehicle was 0.5% methocel for ABT and clear solution was obtained.

Supplemental Data Tables

Full Kinone panel for Compound 1, in ascending order of off-target potencies

Kinome Selectivity Counterscreen: Screening performed at Invitrogen (Thermofisher), 3-point titrations. MAP4K3 screening was tested in the internal LanthaScreen binding assay and MAP4K4 and MAP4K5 screening were tested in the internal Z'-Lyte kinase assay kit.

Enzyme	Efficient	Percent	Median
	IC ₅₀ (μM)	Inhibition	Result Dose
CSF1R	< 0.001	89.49	0.01
STK22D	0.004021	68.76	0.01
LRRK2 (G2019S)	0.005564	59.71	0.01
STK4	0.00707	53.95	0.01
LRRK2	0.00723	55.46	0.01
STK3	0.008521	50.01	0.01
STK25	0.01015	48.56	0.01
MST4	0.01039	46.71	0.01
STK24	0.01112	46.3	0.01
PRKD1	0.01282	42.97	0.01
TNIK	0.01335		
FES	0.01613	39.6	0.01
NUAK1	0.01649	40.91	0.01
TYK2	0.01699	37.15	0.01
TAOK2	0.01706	37.34	0.01
PRKD2	0.02007	30.86	0.01
PRKCN	0.02039	33.79	0.01
PTK2	0.02328	24.04	0.01
EGFR(T790M L858R)	0.02655	27.93	0.01

EGFR(T790M) 0.03323 71.84 0.1 RPS6KA2 0.0347 72.6 0.1 FER 0.04081 69.82 0.1 PTK2B 0.04775 63.98 0.1 JAK2 0.05261 63.5 0.1 JAK3 0.05662 62.65 0.1 PAK4 0.05666 61.9 0.1 FGR 0.05938 61.17 0.1 RPS6KA3 0.06156 55.08 0.1 INSRR 0.07655 54.26 0.1 STK22B 0.08203 53.16 0.1 JAK2 JH1 JH2 MT 0.08207 53.74 0.1 YES1 0.09064 50.15 0.1 PRKCG 0.09239 50.62 0.1 RPS6KA1 0.09691 50.32 0.1 JAK1 0.09834 50.44 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) <th>PAK7</th> <th>0.03193</th> <th>73.78</th> <th>0.1</th>	PAK7	0.03193	73.78	0.1
FER 0.04081 69.82 0.1 PTK2B 0.04775 63.98 0.1 JAK2 0.05261 63.5 0.1 JAK3 0.05662 62.65 0.1 PAK4 0.05666 61.9 0.1 FGR 0.05938 61.17 0.1 RPS6KA3 0.06156 55.08 0.1 INSRR 0.07655 54.26 0.1 STK22B 0.08203 53.16 0.1 JAK2 JH1 JH2 MT 0.08207 53.74 0.1 YES1 0.09064 50.15 0.1 PRKCG 0.09239 50.62 0.1 RPS6KA1 0.09691 50.32 0.1 JAK1 0.09834 50.44 0.1 LYNB 0.1055 48.67 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) 0.1208 45.6 0.1 PDGFRA(V561D)	EGFR(T790M)	0.03323	71.84	0.1
PTK2B 0.04775 63.98 0.1 JAK2 0.05261 63.5 0.1 JAK3 0.05662 62.65 0.1 PAK4 0.05666 61.9 0.1 FGR 0.05938 61.17 0.1 RPS6KA3 0.06156 55.08 0.1 INSRR 0.07655 54.26 0.1 STK22B 0.08203 53.16 0.1 JAK2 JH1 JH2 MT 0.08207 53.74 0.1 YES1 0.09064 50.15 0.1 PRKCG 0.09239 50.62 0.1 RPS6KA1 0.09691 50.32 0.1 JAK1 0.09834 50.44 0.1 IGF1R 0.1009 50.66 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 PRK4	RPS6KA2	0.0347	72.6	0.1
JAK2 0.05261 63.5 0.1 JAK3 0.05662 62.65 0.1 PAK4 0.05666 61.9 0.1 FGR 0.05938 61.17 0.1 RPS6KA3 0.06156 55.08 0.1 INSRR 0.07655 54.26 0.1 STK22B 0.08203 53.16 0.1 JAK2 JH1 JH2 MT 0.08207 53.74 0.1 YES1 0.09064 50.15 0.1 PRKCG 0.09239 50.62 0.1 RPS6KA1 0.09691 50.32 0.1 JAK1 0.09834 50.44 0.1 IGF1R 0.1009 50.66 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK	FER	0.04081	69.82	0.1
JAK3 0.05662 62.65 0.1 PAK4 0.05666 61.9 0.1 FGR 0.05938 61.17 0.1 RPS6KA3 0.06156 55.08 0.1 INSRR 0.07655 54.26 0.1 STK22B 0.08203 53.16 0.1 JAK2 JH1 JH2 MT 0.08207 53.74 0.1 YES1 0.09064 50.15 0.1 PRKCG 0.09239 50.62 0.1 RPS6KA1 0.09691 50.32 0.1 JAK1 0.09834 50.44 0.1 IGF1R 0.1009 50.66 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2	PTK2B	0.04775	63.98	0.1
PAK4 0.05666 61.9 0.1 FGR 0.05938 61.17 0.1 RPS6KA3 0.06156 55.08 0.1 INSRR 0.07655 54.26 0.1 STK22B 0.08203 53.16 0.1 JAK2 JH1 JH2 MT 0.08207 53.74 0.1 YES1 0.09064 50.15 0.1 PRKCG 0.09239 50.62 0.1 RPS6KA1 0.09691 50.32 0.1 JAK1 0.09834 50.44 0.1 IGF1R 0.1009 50.66 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646	JAK2	0.05261	63.5	0.1
FGR 0.05938 61.17 0.1 RPS6KA3 0.06156 55.08 0.1 INSRR 0.07655 54.26 0.1 STK22B 0.08203 53.16 0.1 JAK2 JH1 JH2 MT 0.08207 53.74 0.1 YES1 0.09064 50.15 0.1 PRKCG 0.09239 50.62 0.1 RPS6KA1 0.09691 50.32 0.1 JAK1 0.09834 50.44 0.1 IGF1R 0.1009 50.66 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) 48.03 0.1 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	JAK3	0.05662	62.65	0.1
RPS6KA3 0.06156 55.08 0.1 INSRR 0.07655 54.26 0.1 STK22B 0.08203 53.16 0.1 JAK2 JH1 JH2 MT 0.08207 53.74 0.1 YES1 0.09064 50.15 0.1 PRKCG 0.09239 50.62 0.1 RPS6KA1 0.09691 50.32 0.1 JAK1 0.09834 50.44 0.1 IGF1R 0.1009 50.66 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) FLT3(D835Y) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	PAK4	0.05666	61.9	0.1
INSRR 0.07655 54.26 0.1 STK22B 0.08203 53.16 0.1 JAK2 JH1 JH2 MT 0.08207 53.74 0.1 YES1 0.09064 50.15 0.1 PRKCG 0.09239 50.62 0.1 RPS6KA1 0.09691 50.32 0.1 JAK1 0.09834 50.44 0.1 IGF1R 0.1009 50.66 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	FGR	0.05938	61.17	0.1
STK22B 0.08203 53.16 0.1 JAK2 JH1 JH2 MT 0.08207 53.74 0.1 YES1 0.09064 50.15 0.1 PRKCG 0.09239 50.62 0.1 RPS6KA1 0.09691 50.32 0.1 JAK1 0.09834 50.44 0.1 IGF1R 0.1009 50.66 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	RPS6KA3	0.06156	55.08	0.1
JAK2 JH1 JH2 MT 0.08207 53.74 0.1 YES1 0.09064 50.15 0.1 PRKCG 0.09239 50.62 0.1 RPS6KA1 0.09691 50.32 0.1 JAK1 0.09834 50.44 0.1 IGF1R 0.1009 50.66 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) V617F) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	INSRR	0.07655	54.26	0.1
YES1 0.09064 50.15 0.1 PRKCG 0.09239 50.62 0.1 RPS6KA1 0.09691 50.32 0.1 JAK1 0.09834 50.44 0.1 IGF1R 0.1009 50.66 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	STK22B	0.08203	53.16	0.1
PRKCG 0.09239 50.62 0.1 RPS6KA1 0.09691 50.32 0.1 JAK1 0.09834 50.44 0.1 IGF1R 0.1009 50.66 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 (V617F) 0.1105 48.03 0.1 FLT3(D835Y) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	JAK2 JH1 JH2 MT	0.08207	53.74	0.1
RPS6KA1 0.09691 50.32 0.1 JAK1 0.09834 50.44 0.1 IGF1R 0.1009 50.66 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	YES1	0.09064	50.15	0.1
JAK1 0.09834 50.44 0.1 IGF1R 0.1009 50.66 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	PRKCG	0.09239	50.62	0.1
IGF1R 0.1009 50.66 0.1 LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	RPS6KA1	0.09691	50.32	0.1
LYNB 0.1055 48.67 0.1 JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	JAK1	0.09834	50.44	0.1
JAK2 JH1 JH2 0.1105 48.03 0.1 (V617F) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	IGF1R	0.1009	50.66	0.1
(V617F) 0.1208 45.6 0.1 FLT3(D835Y) 0.1208 45.6 0.1 PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	LYNB	0.1055	48.67	0.1
PDGFRA(V561D) 0.1326 43.1 0.1 NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1		0.1105	48.03	0.1
NEK4 0.1421 42.7 0.1 FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	FLT3(D835Y)	0.1208	45.6	0.1
FRK 0.1476 42.14 0.1 CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	PDGFRA(V561D)	0.1326	43.1	0.1
CLK2 0.1638 40.55 0.1 HCK 0.1646 40.01 0.1	NEK4	0.1421	42.7	0.1
HCK 0.1646 40.01 0.1	FRK	0.1476	42.14	0.1
	CLK2	0.1638	40.55	0.1
INSR 0.1649 37.83 0.1	HCK	0.1646	40.01	0.1
	INSR	0.1649	37.83	0.1

DCAMKL2	0.1764	39.34	0.1
LCK	0.1911	34.89	0.1
DAPK3	0.1912	36.16	0.1
LYN	0.1916	35.64	0.1
MAPK8	0.2076	30.88	0.1
PRKCD	0.2128	32.5	0.1
NEK6	0.2161	37.08	0.1
IRAK1	0.2206	34.19	0.1
BLK	0.2257	30.33	0.1
FGFR1	0.2346	33.17	0.1
MARK3	0.2441	32.43	0.1
RET(V804L)	0.2521	28.49	0.1
MELK	0.2585	32.21	0.1
PRKCA	0.2656	29.41	0.1
MARK4	0.2696	26.78	0.1
AXL	0.2836	28.57	0.1
PAK2	0.2888	25.34	0.1
CSNK1E	0.3035	28.55	0.1
SNF1LK2	0.3037	28.16	0.1
PRKCB2	0.3051	73.44	1
PAK2	0.312	73.81	1
FLT3	0.3128	69.47	1
DAPK1	0.3423	27.96	0.1
NEK2	0.3566	72.46	1
FGFR3(K650E)	0.379	70.94	1
MAPK9	0.3795	69.82	1
CAMK I ALPHA	0.3863	72.15	1
SRC N1	0.3866	70.5	1

ABL1(G250E)	0.3923	71.34	1
AMPK ALPHA2	0.3938	69.05	1
BETA1 GAMMA1			
PAK1	0.3996	62.73	1
MUSK	0.4068	73.79	1
NEK9	0.4176	69.51	1
IRAK4	0.4170	66.66	1
CSNK1D	0.4751	66.21	1
FGFR2	0.4835	65.03	1
RET(Y791F)	0.4942	64.41	1
AMPK ALPHA1	0.5291	67.14	1
BETA1 GAMMA1			
MAPK10	0.5354	58.06	1
PDGFRB	0.5363	57.25	1
PDGFRA	0.5467	66.57	1
RET	0.5546	58.35	1
ROS1	0.5674	61.29	1
SRC	0.5829	60.03	1
KIT	0.6137	55	1
PRKCH	0.6437	56.62	1
TBK1	0.6439	55.82	1
PDGFRA(D842V)	0.6459	59.77	1
ABL1(Y253F)	0.6546	57.31	1
MARK1	0.6844	54.56	1
LTK	0.7112	52.95	1

CDC42BPA	0.7315	54.54	1
CHEK1	0.7775	54.04	1
CHEK2	0.7838	53.35	1
NEK1	0.7841	55.71	1
FYN	0.8016	54.77	1
RPS6KA6	0.8019	53.67	1
ERBB4	0.8052	53.42	1
MAP3K9	0.8193	52.51	1
CLK1	0.8422	53.29	1
PLK1	0.8973	50.66	1
PRKCB1	0.9111	51.26	1
BTK	0.9286	51.28	1
ABL1(E255K)	0.9623	47.96	1
MARK2	0.9904	49.32	1
CDK7	1	50.04	1
PTK6	1.021	50.01	1
PAK3	1.057	51.3	1
CAMK I DELTA	1.079	48.48	1
ABL1	1.144	47.79	1
GRK7	1.17	45.59	1
ITK	1.223	44.06	1
CDC42BPB	1.252	44.91	1
ABL2(ARG)	1.402	42.17	1
PRKCQ	1.458	45.37	1
PHK GAMMA1	1.516	39.73	1
CSNK1G2	1.617	38.15	1
SYK	1.677	38.55	1

BRAF(V599E)	1.7	34.88	1
NTRK3	1.719	36.54	1
CSNK1A1	1.812	34.8	1
PKN1	1.886	34.93	1
EGFR(L861Q)	1.911	35.92	1
ROCK1	1.913	35.03	1
ABL1(T315I)	1.927	34.22	1
TXK	1.972	37.13	1
CAMK II DELTA	2.005	33.42	1
DYRK1A	2.141	33	1
AURKB	2.155	34.28	1
EGFR(L858R)	2.27	31.36	1
PRKCE	2.308	29.39	1
ROCK2	2.325	29.93	1
NTRK1	2.471	30.76	1
EGFR	2.489	30.6	1
SRMS	2.535	28.8	1
MAP2K2	2.71	25.25	1
TYRO3	2.756	27.05	1
FGFR3	2.825	30.47	1
IKK_EPSILON	2.883	25.44	1
PDK1	2.939	29.88	1
CSK	2.952	24.65	1
MAP2K6	3.071	26.31	1
NTRK2	3.1	24.91	1
IKKA	3.185	30.62	1
DYRK1B	3.199	24.12	1

FGFR4	3.428	22.85	1
SGK	3.509	22.09	1
BRAF	3.62	20.98	1
GRK6	3.659	21.56	1
RAF1(Y340D	3.724	21.48	1
Y341D)			
KIT(T670I)	3.745	24.12	1
CSNK1G3	3.8	20.33	1
EEF2K	3.887	21.42	1
ERBB2	3.954	21.17	1
PRKX	4.341	24.75	1
ADRBK1	10	17.13	1
ADRBK2	10	7.147	1
AKT1 ALPHA	10	4.369	0.01
AKT2 BETA	10	8.911	1
AKT2 GAMMA	10	8.007	1
ALK4	10	-0.772	0.1
AURKA	10	6.016	1
AURKC	10	12.66	1
BMX	10	17.2	1
BRSK1	10	7.57	1
CAMK II ALPHA	10	7.969	1
CAMK II BETA	10	12.11	1
CAMK4	10	-0.4773	1
CDK1	10	10.11	1
CDK2	10	13.5	1
CDK5/P25	10	8.675	1

CDK5/P35	10	10.48	1
CDK9(CYCLIN T1)	10	22.6	1
CLK3	10	6.37	0.01
CSNK1G1	10	12.25	1
CSNK2A1	10	5.967	1
CSNK2A2	10	13.18	1
DNA-PK	10	13.81	1
DYRK3	10	7.455	0.1
DYRK4	10	1.355	0.01
EPHA1	10	6.453	0.1
EPHA2	10	18.51	1
ЕРНА3	10	2.96	0.01
EPHA4	10	4.167	0.01
EPHA5	10	16.58	1
EPHA8	10	17.26	0.01
EPHB1	10	8.069	1
EPHB2	10	13.06	1
EPHB3	10		
EPHB4	10	15.39	1
FLT1	10	5.15	0.01
FLT4	10	18.17	1
FRAP1(MTOR)	10	1.562	0.1
GRK4	10	15.27	1
GRK5	10	11.04	1
GSG2	10		
GSK3A	10	14.5	1
GSK3B	10	17.78	0.1
HIPK1	10	11.06	1
HIPK2	10	16.57	1

HIPK3 (YAK1)	10	13.51	1
HIPK4	10	19.05	1
IKK_BETA	10	11.91	1
KDR	10	16.21	1
MAP2K1	10	16.1	1
MAP3K8	10	1.935	1
MAPK1	10	6.05	0.1
MAPK11	10	10.1	1
MAPK12	10	18.47	1
MAPK13	10	15.28	1
MAPK14 (P38	10	12.93	1
ALPHA/INACTIVE			
MAPKAPK2)			
MAPK14 ALPHA	10	2.829	0.01
MAPK3(ERK1)	10	16.69	1
MAPKAPK2	10	2.015	1
MAPKAPK3	10	5.359	1
MAPKAPK5	10	6.519	1
MATK	10	5.354	0.01
MERTK	10	10.28	1
MET	10	14.77	1
MET(M1250T)	10	10.1	1
MKNK1	10	13.52	1
MST1R	10	11.48	0.01
MYLK2	10	11.49	1

PASK	10	19.8	1
PDGFRA(T674I)	10	4.972	0.1
PHKG2	10	24.48	1
PI4KA	10	3.501	0.1
PI4KB	10	12.08	1
PIK3C2 ALPHA	10	2.361	1
PIK3C2 BETA	10	11.88	0.1
PIK3C3	10	8.011	1
PIK3CG	10	5.852	1
PIK3P110(P85)	10	9.959	0.1
PIK3P110D/P85A	10	9.654	0.01
PIM1	10	8.477	0.1
PIM2	10	10.73	1
PKG2	10	6.099	1
PLK2	10	14.74	1
PLK3	10	14.49	0.1
PRKACA	10	17.68	1
PRKCI	10	7.44	1
PRKCZ	10	7.093	0.01
PRKG1	10	16.73	1
RPS6KA4	10	8.054	1
RPS6KA5	10	8.323	1
RPS6KB1	10	11.21	1
SGK2	10	15.19	1
SGKL	10	11.41	1
SPHK1	10	0.0036	1
SPHK2	10	0.2078	0.01
SRPK1	10	8.011	0.01

SRPK2	10	2.884	0.1
STK23	10	4.376	0.01
TEK	10	7.407	0.01
ZAP70	10	7.443	1
ЕРНВ3		2.645	0.01
GSG2		11.94	1
TNIK		45.5	0.01

Full Kinone panel for Compound 7, in ascending order of off-target potencies

Enzyme	Efficient	Percent	Median Result
	IC ₅₀ (μM)	Inhibition	Dose
LRRK2	0.004705		
TAOK2	0.004984	59.13	0.01
LRRK2 (G2019S)	0.005409	64.26	0.01
MST4	0.005839	54.05	0.01
STK4	0.006247	54.28	0.01
STK25	0.008539	52.83	0.01
STK3	0.009	48.92	0.01
STK24	0.01078	45.97	0.01
TYK2	0.01101	47.83	0.01
NUAK1	0.01137	48.45	0.01
STK22D	0.02095	36.36	0.01
CSF1R	0.02315	34.1	0.01
PTK2	0.04429	69.75	0.1
JAK3	0.05794	62.53	0.1
PRKCN	0.0843	44.7	0.1
EGFR(T790M	0.09405	52.11	0.1
L858R)			
JAK2	0.09858	48.42	0.1
PRKD1	0.1035	50.07	0.1
LYNB	0.1159	46.18	0.1
TNIK	0.1216	44.91	0.1
JAK1	0.1218	50.05	0.1
PRKD2	0.1342	43.43	0.1
FGR	0.1353	42.32	0.1
DCAMKL2	0.1583	40.16	0.1

MARK3	0.1677	38.91	0.1
RPS6KA2	0.1809	38.82	0.1
RPS6KA3	0.1823	38.94	0.1
EGFR(T790M)	0.1896	34.72	0.1
JAK2 JH1 JH2	0.2012	34.06	0.1
(V617F)			
MARK4	0.215	31.34	0.1
JAK2 JH1 JH2 MT	0.2253	29.88	0.1
HCK	0.2638	72.17	1
FER	0.2661	30.13	0.1
LYN	0.2682	31.21	0.1
RPS6KA1	0.281	28.31	0.1
PRKCD	0.2913	27.3	0.1
FES	0.2993	29.12	0.1
LCK	0.3255	71.45	1
BLK	0.3499	69.63	1
LCK	0.3531	68.87	1
PRKCG	0.36	77.11	1
AMPK ALPHA1	0.3903	71.46	1
BETA1 GAMMA1			
SNF1LK2	0.4011	66.54	1
PAK7	0.4062	69.04	1
FGFR1	0.427	58.18	1
YES1	0.4329	65.59	1
PRKCA	0.4857		
PRKCB2	0.4868	65.17	1
PTK2B	0.4923	63.75	1

AMPK ALPHA2	0.5584	62.1	1
BETA1 GAMMA1			
CD C (ADD) A	0.5662	(1.72	1
CDC42BPA	0.5662	61.73	1
MARK2	0.5763	59.81	1
FRK	0.6	60.39	1
PDGFRA(V561D)	0.6442	58.54	1
PAK4	0.6611	56.62	1
STK22B	0.6692	59.63	1
MARK1	0.6835	56.73	1
ROCK1	0.7321	53.66	1
PAK2	0.8384	53.02	1
FLT3(D835Y)	0.8849	50.66	1
PRKCQ	0.9139	54.61	1
CLK2	0.9189	50.29	1
CDC42BPB	1.022	50.76	1
ABL1(G250E)	1.261	45.73	1
AURKB	1.52	42.07	1
MAPK12	1.527	39.38	1
ABL1(Y253F)	1.549	39.58	1
CAMK II DELTA	1.555	38.75	1
ABL1(E255K)	1.618	38.28	1
CAMK I ALPHA	1.736	37.71	1
FYN	1.758	37.38	1
FLT3	1.799	41.03	1
ROCK2	1.817	35.91	1

MELK	1.866	33.65	1
MAP3K9	1.976	36.87	1
PAK2	2	33.19	1
SRC N1	2.001	33.71	1
CHEK2	2.03	34.89	1
CAMK I DELTA	2.077	32.76	1
PRKCB1	2.099	35.05	1
KIT	2.111	35.94	1
IGF1R	2.178	32.31	1
ABL1	2.198	31.64	1
CDK7	2.229		
IRAK4	2.31	36.55	1
FGFR3(K650E)	2.367	29.85	1
RPS6KA6	2.372	29.91	1
SRC	2.425	32.18	1
INSRR	2.463	28.94	1
PAK3	2.469	30.79	1
ABL2(ARG)	2.533	29.34	1
FGFR2	2.602	29.16	1
MAP2K2	2.664	24.35	1
PDGFRB	2.752	26.76	1
PKN1	2.828	33.68	1
MAP3K8	2.835	24.02	1
ERBB4	2.864	27.35	1
PAK1	2.864	31.86	1
PDGFRA	2.903	26.57	1
LTK	3.003	28.49	1
PRKCH	3.015	26.09	1
EEF2K	3.026	24.92	1

IRAK1	3.054	29.12	1
ROS1	3.068	26.37	1
GRK7	3.069	24.02	1
MAPK8	3.215	22.72	1
INSR	3.216	26.81	1
PRKCE	3.594	24.19	1
SGK	3.708	23.08	1
TBK1	3.71	21.08	1
RAF1(Y340D	5.885	20.25	0.01
Y341D)			
ABL1(T315I)	10	18.28	1
ADRBK1	10	11.72	1
ADRBK2	10	12.47	1
AKT1 ALPHA	10	9.159	0.01
AKT2 BETA	10	3.192	0.01
AKT2 GAMMA	10	4.871	1
ALK4	10	6.857	0.1
AURKA	10	10.04	1
AURKC	10	20.33	0.01
AXL	10	9.397	1
BMX	10	13	1
BRAF	10	11.17	1
BRAF(V599E)	10	10.13	1
BRSK1	10	13.13	1
BTK	10	4.631	1
CAMK II ALPHA	10	2.566	1
CAMK II BETA	10	14.9	1

CAMK4	10	-2.03	1
CDK1	10	3.17	1
CDK2	10	11.26	1
CDK5/P25	10	9.369	1
CDK5/P35	10	9.196	1
CDK9(CYCLIN T1)	10	13.82	1
CHEK1	10	19.45	1
CLK1	10	7.395	1
CLK3	10	3.627	1
CSK	10	7.274	0.01
CSNK1A1	10	5.407	1
CSNK1D	10	8.093	0.1
CSNK1E	10	15.22	1
CSNK1G1	10	8.139	1
CSNK1G2	10	12.76	1
CSNK1G3	10	9.813	1
CSNK2A1	10	3.593	0.01
CSNK2A2	10	6.202	0.1
DAPK1	10	15.29	1
DAPK3	10	10.09	1
DNA-PK	10	11.69	1
DYRK1A	10	7.226	0.01
DYRK1B	10	7.242	1
DYRK3	10	4.611	0.1
DYRK4	10	4.609	1
EGFR	10	14.4	1
EGFR(L858R)	10	8.544	1
EGFR(L861Q)	10	16.9	1

EPHA1	10	5.441	1
EPHA2	10	1.743	1
ЕРНА3	10	5.1	0.01
EPHA4	10	7.278	1
EPHA5	10	14.63	1
EPHA8	10	7.47	1
EPHB1	10	7.728	1
EPHB2	10	7.3	1
EPHB3	10	3.642	1
EPHB4	10	9.038	1
ERBB2	10	2.58	1
FGFR3	10	13.35	1
FGFR4	10	15.9	1
FLT1	10	6.804	0.01
FLT4	10	11.1	1
FRAP1(MTOR)	10	3.892	1
GRK4	10	7.572	1
GRK5	10	9.327	1
GRK6	10	9.943	1
GSG2	10	9.424	1
GSK3A	10	8.71	1
GSK3B	10	4.729	1
HIPK1	10	3.352	0.1
HIPK2	10	4.021	1
HIPK3 (YAK1)	10	1.95	0.01
HIPK4	10	4.462	1
IKKA	10	13.5	0.1
IKK_BETA	10	9.556	1

IKK_EPSILON	10	10.44	1
ITK	10	13.01	0.1
KDR	10	12.2	1
KIT(T670I)	10	15.27	1
MAP2K1	10	14.07	1
MAP2K6	10		
MAPK1	10	7.213	1
MAPK10	10	14.03	1
MAPK11	10	16.5	1
MAPK13	10	13.79	1
MAPK14 (P38	10	14.57	1
ALPHA/INACTIVE			
MAPKAPK2)			
MAPK14 ALPHA	10	17.22	1
MAPK3(ERK1)	10	8.104	1
MAPK9	10	15.04	1
MAPKAPK2	10		
MAPKAPK3	10	13.86	1
MAPKAPK5	10	4.079	0.01
MATK	10	10.4	1
MERTK	10	7.209	0.01
MET	10	5.091	1
MET(M1250T)	10	3.956	1
MKNK1	10	7.436	0.1
MST1R	10	5.839	1

MUSK	10	16.38	0.01
MYLK2	10	0.919	0.1
NEK1	10	4.563	1
NEK2	10	9.466	1
NEK4	10	19.81	1
NEK6	10	6.174	1
NEK9	10	1.477	0.01
NTRK1	10	18.05	0.01
NTRK2	10	14.4	1
NTRK3	10	13.53	1
PASK	10	13.48	1
PDGFRA(D842V)	10	17.43	1
PDGFRA(T674I)	10	10.85	1
PDK1	10	15.93	1
PHK GAMMA1	10	17.6	1
PHKG2	10	5.673	1
PI4KA	10	9.135	0.1
PI4KB	10	10.26	0.01
PIK3C2 ALPHA	10	5.144	0.01
PIK3C2 BETA	10	3.279	1
PIK3C3	10	2.268	1
PIK3CG	10		
PIK3P110(P85)	10	15.35	0.1
PIK3P110D/P85A	10	1.412	0.1
PIM1	10	4.319	0.01
PIM2	10	4.013	0.01

PKG2	10	7.845	1
PLK1	10	9.274	1
PLK2	10	5.493	0.01
PLK3	10	10.81	1
PRKACA	10	9.776	1
PRKCI	10	5.291	0.01
PRKCZ	10	17.11	0.01
PRKG1	10	11.42	1
PRKX	10	13.5	1
PTK6	10	13.56	1
RET	10	10.91	1
RET(V804L)	10	14.7	1
RET(Y791F)	10	9.197	1
RPS6KA4	10	21.67	1
RPS6KA5	10	13.7	1
RPS6KB1	10	5.622	1
SGK2	10	10.96	1
SGKL	10	8.493	1
SPHK1	10	12.98	0.1
SPHK2	10	2.438	0.1
SRMS	10	19.81	1
SRPK1	10	2.643	0.01
SRPK2	10	4.576	0.1
STK23	10	1.513	0.1
SYK	10	5.621	0.01
TEK	10	16.17	1
TXK	10	8.81	0.1
TYRO3	10	20.82	1
ZAP70	10	9.519	0.01

CDK7	38.83	1
LRRK2	61.02	0.01
MAP2K6	21.01	1
MAPKAPK2	4.577	1
PIK3CG	1.403	0.1
PRKCA	65.73	1

Full Kinone panel for Compound 22, in ascending order of off-target potencies

Enzyme	Efficient	Percent	Median
	IC ₅₀ (μM)	Inhibition	Result Dose
STK22D	0.002509	73.59	0.01
LRRK2	0.003584	69.13	0.01
LRRK2 (G2019S)	0.003644	68.88	0.01
STK3	0.00702	46.44	0.01
STK4	0.008045	50.63	0.01
STK25	0.01112	55.91	0.01
STK24	0.01154		
NUAK1	0.01237	49.02	0.01
MST4	0.014	39.58	0.01
TAOK2	0.01408	50.32	0.01
PRKD1	0.01924	40.16	0.01
PRKCN	0.01949	40.32	0.01
JAK3	0.01994	34.05	0.01
FES	0.02022	45.73	0.01
EGFR(T790M	0.02433	38.14	0.01
L858R)			
FER	0.02565	28.49	0.01
JAK3	0.02587		
JAK2	0.02816	31.58	0.01
FGR	0.02977	30.52	0.01
FER	0.03467	75.33	0.1
RPS6KA2	0.0349	35.25	0.01
EGFR(T790M)	0.03564	68.03	0.1
PRKD2	0.03692	71.14	0.1
PAK7	0.03808	63.55	0.1

PTK2	0.04282	70.15	0.1
TYK2	0.04294	64.76	0.1
RPS6KA1	0.04695	58.05	0.1
RPS6KA3	0.05216	64.91	0.1
STK22B	0.05565	57.5	0.1
LCK	0.05627	58.02	0.1
JAK2 JH1 JH2	0.05722	60.31	0.1
(V617F)			
JAK2 JH1 JH2 MT	0.06128	54.68	0.1
PRKCG	0.06269	49.09	0.1
JAK2 JH1 JH2	0.06407		
(V617F)			
LYNB	0.07004	50.27	0.1
PAK4	0.07189	49.66	0.1
FGR	0.0763	56.13	0.1
CSF1R	0.07716	50.07	0.1
YES1	0.07934	47.41	0.1
PTK2B	0.09148	51.3	0.1
BLK	0.09999	50.39	0.1
JAK1	0.11	53.98	0.1
HCK	0.1211	52.17	0.1
LCK	0.1259	44.14	0.1
CLK2	0.1354	46.52	0.1
FLT3(D835Y)	0.1531	51.32	0.1
LYN	0.1548	50.12	0.1
FGFR1	0.1554	52.17	0.1
FRK	0.1562	49.85	0.1
TBK1	0.1601	38.18	0.1
INSR	0.1623	43.07	0.1

MARK3	0.1645		
IGF1R	0.1668	44.42	0.1
PAK2	0.1758	41.13	0.1
PDGFRA(V561D)	0.1884	41.05	0.1
MARK4	0.1983		
IRAK1	0.2492	42.8	0.1
DCAMKL2	0.268		
SNF1LK2	0.2824		
TBK1	0.2932	28.07	0.1
AMPK ALPHA1	0.3137	33.69	0.1
BETA1 GAMMA1			
PAK2	0.3314	63.28	1
PRKCD	0.3573	68.25	1
ABL1(G250E)	0.3639	67.64	1
PAK1	0.3826	62.96	1
PRKCB2	0.3868	61.07	1
NEK4	0.3913	68.98	1
SRC N1	0.4048	63.22	1
AMPK ALPHA2	0.4075	66.42	1
BETA1 GAMMA1			
CDC42BPA	0.412	62.44	1
IRAK4	0.4209		
FGFR3(K650E)	0.4242	62.6	1
DAPK3	0.442		
SRC	0.4495	58.08	1

INSRR	0.466		
FGFR2	0.4685		
PRKCA	0.4762		
MARK1	0.5366	57.05	1
CHEK2	0.5595	59.44	1
FLT3	0.6232	54.25	1
PTK6	0.6263	54.24	1
MARK2	0.6528	56.39	1
FYN	0.6973	51.74	1
CDC42BPB	0.7328		
ERBB4	0.7418		
RET(V804L)	0.7434	55.03	1
MELK	0.773	51.23	1
AXL	0.7759	51.81	1
CAMK I ALPHA	0.7848	49.85	1
RPS6KA6	0.818	47.11	1
SYK	0.8184	41.41	1
ABL1(Y253F)	0.8466	47.18	1
NEK2	0.8613	50.2	1
PRKCQ	0.8763	47.12	1
ROCK1	0.8773	47.25	1
PDGFRB	0.9419		
PDGFRA	0.9675	46.39	1
LTK	1.056	47.97	1
DAPK1	1.105	50.13	1
MAP3K9	1.105	38.16	1
RET	1.161	49.3	1
ABL1(E255K)	1.17	52.06	1

ABL1	1.19	52.31	1
PKN1	1.221	46.28	1
PRKCB1	1.241		
CHEK1	1.255		
RET(Y791F)	1.261	45.93	1
NEK9	1.281	47.71	1
ITK	1.337	42.75	1
CLK1	1.34	59.19	1
ABL2(ARG)	1.36	48.86	1
BTK	1.387	42.69	1
GRK7	1.438	42.34	1
CAMK I DELTA	1.499		
NEK1	1.513	39.73	1
PAK3	1.525	43.28	1
PHK GAMMA1	1.578	48.99	1
ROS1	1.613	44.12	1
AURKB	1.65	45.16	1
PDGFRA(D842V)	1.712	40.74	1
SRMS	1.783	36.02	1
PRKCH	1.787	40.48	1
DYRK1A	1.809	40.01	1
ABL1(T315I)	1.811	38.82	1
MAPK8	1.877	32.94	1
MUSK	1.976	37.93	1
DNA-PK	1.996	32.27	1
FGFR3	2.012		
KIT	2.081	34.01	1

FGFR4	2.098	37.27	1
EGFR(L861Q)	2.109	36.89	1
IKK_EPSILON	2.289		
PRKX	2.462	31.65	1
CAMK II DELTA	2.484		
PRKCE	2.598		
ERBB2	2.639	33.39	1
MAPK9	2.722	27.63	1
PDK1	2.724	27.27	1
ROCK2	2.866	34.35	1
MAP2K2	2.867	25	1
PI4KB	3.008	25.68	1
MAPK10	3.057	23.52	1
PLK1	3.088	27.94	1
EGFR	3.095	30.04	1
EGFR(L858R)	3.226	24.55	1
MAP3K8	3.276		
GRK4	3.352		
NTRK1	3.355	25.24	1
MAP3K8	3.413	20.9	1
RPS6KB1	3.59	26.83	1
NTRK3	3.629	23.53	1
EEF2K	3.652	22.64	1
CDK7	3.753	21.6	1
GRK6	3.792	20.49	1
RPS6KA5	3.826	22.04	1
IKKA	3.917	20.44	1
BRAF(V599E)	5.477	21.92	0.1

ADRBK1	10		
ADRBK2	10		
AKT1 ALPHA	10		
AKT2 BETA	10		
AKT2 GAMMA	10	6.959	0.01
ALK4	10	5.726	0.1
AURKA	10	15.7	1
AURKC	10		
BMX	10	18.88	1
BRAF	10		
BRSK1	10		
CAMK II ALPHA	10	9.085	1
CAMK II BETA	10		
CAMK4	10	-4.489	1
CDK1	10	3.838	1
CDK1	10	11.59	1
CDK2	10	12.24	1
CDK5/P25	10	5.946	1
CDK5/P35	10	13.95	1
CDK9(CYCLIN	10	7.86	1
T1)			
CLK3	10	7.829	1
CSK	10	15.77	1
CSNK1A1	10		
CSNK1D	10	13.25	1
CSNK1E	10		
CSNK1G1	10		

CSNK1G2	10	6.46	1
CSNK1G3	10	4.962	1
CSNK2A1	10		
CSNK2A2	10	10.79	0.1
DYRK1B	10	20.32	1
DYRK3	10		
DYRK4	10		
EPHA1	10		
EPHA2	10	21.8	1
ЕРНА3	10	11.63	1
EPHA4	10	5.145	0.01
EPHA5	10	13.21	1
EPHA8	10		
EPHB1	10		
EPHB2	10		
ЕРНВ3	10		
EPHB4	10	10.71	1
FGFR4	10		
FLT1	10		
FLT4	10	17.67	1
FRAP1(MTOR)	10	5.797	0.1
GRK5	10	12.41	1
GSG2	10	15.21	1
GSK3A	10	7.159	1
GSK3B	10	1.651	0.01
GSK3B	10	4.056	1
HIPK1	10	4.387	1
HIPK2	10		
HIPK3 (YAK1)	10	3.28	0.01

HIPK4	10	16.8	1
IKK_BETA	10	14.07	1
KDR	10	20.43	1
KIT(T670I)	10	5.024	1
MAP2K1	10	12.62	1
MAP2K2	10	15.44	1
MAP2K6	10		
MAPK1	10	11.09	1
MAPK11	10	8.79	0.1
MAPK12	10	8.013	1
MAPK13	10	4.596	1
MAPK13	10	5.207	0.01
MAPK14 (P38	10		
ALPHA/INACTIVE			
MAPKAPK2)			
MAPK14 ALPHA	10	11.02	1
MAPK3(ERK1)	10	13.01	1
MAPKAPK2	10	9.962	0.01
MAPKAPK3	10	7.843	1
MAPKAPK5	10	12.25	1
MATK	10	11.36	1
MERTK	10	9.579	1
MET	10	8.067	0.1
MET(M1250T)	10	6.332	1
MKNK1	10		

MST1R	10	8.491	0.1
MYLK2	10	7.81	1
NEK6	10	18.07	1
NTRK2	10	18.96	1
PASK	10	9.075	1
PDGFRA(T674I)	10	8.402	0.01
PHKG2	10	9.706	0.1
PI4KA	10	9.77	0.1
PIK3C2 ALPHA	10	3.874	0.1
PIK3C2 BETA	10	7.826	0.1
PIK3C3	10	7.85	0.1
PIK3CG	10	7.665	1
PIK3P110(P85)	10	7.23	0.01
PIK3P110D/P85A	10	25.43	1
PIM1	10	5.296	0.1
PIM2	10	6.64	0.01
PKG2	10	3.06	1
PLK2	10	14.08	1
PLK3	10	0.9867	0.01
PLK3	10	9.605	0.01
PRKACA	10	11.88	1
PRKCI	10	11.6	1
PRKCZ	10	22.25	0.1
PRKG1	10	11.88	1
RAF1(Y340D	10	13.37	1
Y341D)			
RPS6KA4	10	14.49	1
SGK	10	8.381	1

SGK2	10	14.02	1
SGKL	10	8.611	0.1
SPHK1	10	10.71	1
SPHK2	10		
SRPK1	10	2.527	0.1
SRPK2	10	3.239	1
STK23	10		
TEK	10	11.92	0.01
TXK	10		
TXK	10	9.787	1
TYRO3	10	13.72	1
ZAP70	10	9.402	0.1
ADRBK1		5.088	1
ADRBK2		4.989	0.01
AKT1 ALPHA		4.871	1
AKT2 BETA		14.06	1
AURKC		14.77	0.01
BRAF		16.72	0.1
BRSK1		9.542	1
CAMK I DELTA		42.45	1
CAMK II BETA		18.05	0.1
CAMK II DELTA		44.84	1
CDC42BPB		49.03	1
CHEK1		49.02	1
CSNK1A1		16	1
CSNK1E		13.98	1
CSNK1G1		8.14	0.1

CSNK2A1	7.848	0.01
DAPK3	63.13	1
DCAMKL2	37.44	0.1
DYRK3	3.869	1
DYRK4	4.872	0.1
EPHA1	6.68	0.1
EPHA8	21.82	0.01
EPHB1	4.508	1
EPHB2	9.76	1
ЕРНВ3	8.082	0.01
ERBB4	46.44	1
FGFR2	57.5	1
FGFR3	51.89	1
FGFR4	17.87	1
FLT1	7.561	0.1
GRK4	22.96	1
HIPK2	6.436	1
IKK_EPSILON	32.78	1
INSRR	58.81	1
IRAK4	69.54	1
JAK2 JH1 JH2	62.51	0.1
(V617F)		
JAK3	37.05	0.01
MAP2K6	17.2	1
MAP3K8	23.27	0.1
MAPK14 (P38	11.86	1
ALPHA/INACTIVE		
MAPKAPK2)		

MARK3	42.04	0.1
MARK4	37.05	0.1
MKNK1	5.007	0.01
PDGFRB	52.78	1
PLK3	3.881	0.1
PRKCA	58.12	1
PRKCB1	53.5	1
PRKCE	26.81	1
SNF1LK2	30.9	0.1
SPHK2	8.384	1
STK23	4.248	0.01
STK24	57.1	0.01
TXK	14.12	1

Full Kinone panel for Compound 27, in ascending order of off-target potencies

Enzyme	Efficient	Percent	Median Result
	IC ₅₀ (μM)	Inhibition	Dose
TAOK2	0.003478	71.57	0.01
NUAK1	0.003898	71.83	0.01
MST4	0.004261	69.57	0.01
LRRK2	0.005302	63.36	0.01
STK4	0.00569	48.22	0.01
LRRK2 (G2019S)	0.00574	62.34	0.01
STK3	0.005948	61.3	0.01
TYK2	0.01033	48.48	0.01
STK25	0.01043	50.27	0.01
STK24	0.01123	48.6	0.01
STK22D	0.02085	34.88	0.01
PTK2	0.02529	20.4	0.01
JAK3	0.03446	68.6	0.1
PRKCN	0.04782	65.7	0.1
JAK2	0.06616	59.81	0.1
DCAMKL2	0.07823	54.66	0.1
CSF1R	0.1029	50.46	0.1
MARK3	0.1153	49.78	0.1
LYNB	0.1209	47.1	0.1
FGR	0.1304	46.12	0.1
JAK2 JH1 JH2 MT	0.1378	42.56	0.1
PRKD2	0.1403	40.13	0.1
PRKD1	0.148	40.85	0.1

JAK2 JH1 JH2	0.16	41.11	0.1
(V617F)			
TNIK	0.1609	40.2	0.1
MARK4	0.1626	39.5	0.1
FGFR1	0.166	39.58	0.1
RPS6KA2	0.1747	38.08	0.1
LYN	0.1782	37.02	0.1
EGFR(T790M	0.1871	37.97	0.1
L858R)			
MARK2	0.2634	28.96	0.1
JAK1	0.2702	35.69	0.1
PRKCD	0.2718	28.94	0.1
AMPK ALPHA1	0.2787	28.68	0.1
BETA1 GAMMA1			
НСК	0.2798	29.25	0.1
RPS6KA3	0.288	28.93	0.1
BLK	0.2958	71.64	1
BLK FER	0.2958 0.3005	71.64 23.25	0.1
FER	0.3005	23.25	0.1
FER YES1	0.3005	23.25 71.22	0.1
FER YES1 RPS6KA1	0.3005 0.336 0.3559	23.25 71.22 71.97	0.1
FER YES1 RPS6KA1 LCK	0.3005 0.336 0.3559 0.3678	23.25 71.22 71.97 71.66	0.1 1 1
FER YES1 RPS6KA1 LCK MARK1	0.3005 0.336 0.3559 0.3678 0.371	23.25 71.22 71.97 71.66 70.79	0.1 1 1 1
FER YES1 RPS6KA1 LCK MARK1 LCK	0.3005 0.336 0.3559 0.3678 0.371 0.3817	23.25 71.22 71.97 71.66 70.79 71.07	0.1 1 1 1 1
FER YES1 RPS6KA1 LCK MARK1 LCK FES	0.3005 0.336 0.3559 0.3678 0.371 0.3817 0.3926	23.25 71.22 71.97 71.66 70.79 71.07 66.65	0.1 1 1 1 1 1

AMPK ALPHA2	0.488	66.26	1
BETA1 GAMMA1			
SNF1LK2	0.5203	65.32	1
PAK7	0.5491	63.01	1
CDC42BPA	0.5874	60.97	1
PTK2B	0.6686	57.9	1
STK22B	0.7121	55.51	1
CLK2	0.7412	52.64	1
PRKCB2	0.8104	54.29	1
PAK2	0.8146	54.55	1
CAMK I ALPHA	0.8214	55.11	1
PRKCA	0.8585	48.93	1
PRKCQ	0.8914	47.4	1
PAK4	0.9486	50.43	1
ABL1(G250E)	1.03	48.47	1
CDC42BPB	1.089	50.06	1
PRKCG	1.097		
PRKCB1	1.45	44.18	1
CAMK I DELTA	1.608		
FLT3(D835Y)	1.653	38.52	1
ROCK2	1.657	37.64	1
SRC N1	1.691	38.14	1
FYN	1.843	37.79	1
FGFR3(K650E)	1.871	34.39	1
SRC	1.894	33.9	1

FGFR2	1.93	37.12	1
IRAK4	1.973	35.47	1
CAMK II DELTA	2.044	32.77	1
PKN1	2.103	35.55	1
AURKB	2.136	32.62	1
ABL1(Y253F)	2.186	32.24	1
PRKCH	2.414	29.14	1
PRKCE	2.607	29.74	1
PI4KB	2.748	35.53	1
INSR	2.749	30.05	1
CHEK1	2.87	29.82	1
MELK	3.068	23.63	1
LTK	3.072	26.07	1
ABL1	3.166	24.7	1
ABL2(ARG)	3.19	25.36	1
KIT	3.228	23.49	1
FGFR3	3.487	21.19	1
ABL1(E255K)	3.521	21.66	1
PDGFRA(V561D)	3.533	25.04	1
FLT3	3.647	23.28	1
PDGFRB	3.692	24.23	1
MAP3K9	3.854	23.32	1
RPS6KA6	3.875	22.18	1
ABL1(T315I)	10	13.05	1
ADRBK1	10	3.07	0.01
ADRBK2	10		
AKT1 ALPHA	10	9.298	0.1

AKT2 BETA	10	4.089	1
AKT2 GAMMA	10	5.636	0.1
ALK4	10	5.468	0.01
AURKA	10	6.995	1
AURKC	10	4.416	1
AXL	10	7.215	1
BMX	10	8.5	1
BRAF	10	18.04	1
BRAF(V599E)	10	16.23	0.01
BRSK1	10	4.96	1
BTK	10	8.787	1
CAMK II ALPHA	10	7.796	1
CAMK II BETA	10	5.526	1
CAMK4	10		
CDK1	10	6.213	0.01
CDK2	10	7.783	1
CDK5/P25	10	4.281	1
CDK5/P35	10	9.887	0.1
CDK7	10	4.064	0.1
CDK9(CYCLIN	10	17.69	1
T1)			
CHEK2	10	22.18	1
CLK1	10	7.252	1
CLK3	10	4.659	0.1
CSK	10	5.1	1
CSNK1A1	10	5.734	1
CSNK1D	10	2.252	0.1

CSNK1E	10	5.137	0.01
CSNK1G1	10	4.067	1
CSNK1G2	10	5.014	1
CSNK1G3	10	1.4	1
CSNK2A1	10	5.995	0.1
CSNK2A2	10	7.945	0.1
DAPK1	10	14.6	1
DAPK3	10	5.991	1
DNA-PK	10	10.94	1
DYRK1A	10	9.755	1
DYRK1B	10	4.929	1
DYRK3	10	5.318	1
DYRK4	10	1.893	1
EEF2K	10	7.244	1
EGFR	10	11.22	1
EGFR(L858R)	10	6.849	1
EGFR(L861Q)	10	8.978	1
EPHA1	10	4.933	0.1
ЕРНА2	10	4.067	0.01
ЕРНА3	10	3.703	1
EPHA4	10	2.109	0.01
EPHA5	10	8.926	0.01
EPHA8	10	0.4462	0.1
EPHB1	10	2.901	1
EPHB2	10	15.8	1
ЕРНВ3	10	1.161	1
EPHB4	10	0.9491	0.01
ERBB2	10	-1.94	1
ERBB4	10	5.211	1

FGFR4	10	11.85	1
FLT1	10	5.75	0.01
FLT4	10	5.091	1
FRAP1(MTOR)	10	5.73	0.1
GRK4	10	12.39	1
GRK5	10	12.37	
GRK6	10	3.829	1
GRK7	10	17.19	1
GSG2	10	7.779	1
GSK3A	10	1.722	1
GSK3B	10	4.979	0.1
HIPK1	10	2.885	1
HIPK2	10	6.494	1
HIPK3 (YAK1)	10	3.505	1
HIPK4	10	1.375	1
IGF1R	10	18.9	1
IKKA	10	1.305	0.01
IKK_BETA	10	5.939	0.1
IKK_EPSILON	10	5.38	0.1
INSRR	10		
IRAK1	10	9.421	0.01
ITK	10	8.521	1
KDR	10	1.994	0.1
KIT(T670I)	10	6.502	0.01
MAP2K1	10	14.42	0.1
MAP2K2	10	6.673	0.01
MAP2K6	10	11.05	1
MAP3K8	10	16.51	1

MAPK1	10	3.438	1
MAPK10	10	6.078	1
MAPK11	10	13.82	1
MAPK12	10	20.23	1
MAPK13	10	6.305	1
MAPK14 (P38	10	1.682	0.1
ALPHA/INACTIVE			
MAPKAPK2)			
MAPK14 ALPHA	10	8.633	1
MAPK3(ERK1)	10	4.863	0.1
MAPK8	10	10.67	1
MAPK9	10	8.2	1
MAPKAPK2	10	24.16	0.01
MAPKAPK3	10	-1.14	0.01
MAPKAPK5	10	7.075	1
MATK	10	7.834	1
MERTK	10	2.309	1
MET	10	3.512	0.1
MET(M1250T)	10	4.833	0.1
MKNK1	10	0.0568	0.01
MST1R	10	1.963	0.1
MUSK	10	14.28	1
MYLK2	10	4.206	1
NEK1	10	-0.2089	1
NEK2	10	2.778	1
NEK4	10	12.06	1

NEK6	10	7.435	1
NEK9	10	7.566	0.01
NTRK1	10	16.6	1
NTRK2	10	2.632	1
NTRK3	10	8.438	1
PAK1	10	15.78	1
PAK2	10	19.91	1
PAK3	10	5.175	1
PASK	10	8.695	1
PDGFRA	10	9.918	1
PDGFRA(D842V)	10	4.73	1
PDGFRA(T674I)	10	5.647	1
PDK1	10	11.73	1
PHK GAMMA1	10	7.466	1
PHKG2	10	-1.692	1
PI4KA	10	10.33	0.01
PIK3C2 ALPHA	10	4.343	1
PIK3C2 BETA	10	5.348	0.01
PIK3C3	10	11.23	0.1
PIK3CG	10	0.9554	0.1
PIK3P110(P85)	10	12.44	1
PIK3P110D/P85A	10	4.822	0.01
PIM1	10	17.31	0.1
PIM2	10	4.389	0.1
PKG2	10	12.92	1
PLK1	10	10.94	1

PLK2	10	3.122	1
PLK3	10	1.454	0.1
PRKACA	10	7.582	0.01
PRKCI	10	-1.581	0.1
PRKCZ	10	21.43	1
PRKG1	10	8.81	1
PRKX	10	12.68	1
PTK6	10	2.389	1
RAF1(Y340D	10	8.187	1
Y341D)			
RET	10	9.473	1
RET(V804L)	10	10.11	1
RET(Y791F)	10	6.911	1
KET(T7)II)	10	0.711	1
ROS1	10	22.02	1
RPS6KA4	10	11.51	0.1
RPS6KA5	10	11.8	1
RPS6KB1	10	3.865	0.1
SGK	10	9.91	0.1
SGK2	10	4.737	0.1
SGKL	10	3.815	1
SPHK1	10	6.516	0.01
SPHK2	10	2.096	1
SRMS	10	-1.448	0.1
SRPK1	10	2.838	1
SRPK2	10	1.496	1
STK23	10	5.42	1
SYK	10	8.429	1
TBK1	10	9.662	1
TEK	10	10.51	1

TXK	10	4.661	1
TYRO3	10	19.85	1
ZAP70	10	5.726	1
ADRBK2		1.491	1
CAMK I DELTA		39.11	1
CAMK4		7.621	0.01
GRK5		9.00E-04	1
INSRR		18.81	1
PRKCG		47.4	1

-

¹ ACS Catal. **2016**, *6*, 8004. For additional examples: Mennie, K.M.; Vara, B.A.; Levi, S.M. Reductive sp3-sp2 Coupling Reactions Enable Late-Stage Modification of Pharmaceuticals. *Org. Lett.* **2020**, *22*, 556-559.

² Further details regarding related biochemical, target engagement, and IL-2 assay details: Lacey, B. M.; Xu, Z.; Chai, X.; Laskey, J.; Fradera, X.; Mittal, P.; Mishra, S.; Piesvaux, J.; Saradjian, P.; Shaffer, L.; Vassileva, G.; Gerdt, C.; Wang, Y.; Ferguson, H.; Smith, D. M.; Ballard, J.; Wells, S.; Jain, R.; Mueller, U.; Addona, G.; Kariv, I.; Methot, J. L.; Bittinger, M.; Ranganath, S.; Mcleod, R.; Pasternak, A.; Miller, J. R.; Xu, H. Development of High-Throughput Assays for Evaluation of Hematopoietic Progenitor Kinase 1 Inhibitors. *SLAS Discov. Adv. Sci. Drug Discov.* August 2020. https://doi.org/10.1177/2472555220952071.