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1. General Information

Materials.

Chemicals were purchased from TCI and GL Biochem (Shanghai) and used as
received. (2,3)Sialyllactose (SL) was purchased from sigma-aldrich. Sialidase S was
purchased from Neobioscience. Phosphate-buffered saline (PBS) and RPMI 1640
medium were purchased from Gibco Invitrogen Corp. Fetal bovine serum (FBS) was
purchased from Biological Industries. CCK-8 kit and BSA were purchased from
Solarbio Life Science company. 75 um nylon cell strainer and 5 pm-sized Transwell
plates were purchased from Corning. B16F10-luc-GFP, D-luciferin and potassium salt
were purchased from Shanghai Sciencelight Biology Science&Technology Co. Ltd.
BV-2 and HepG2 cell line were purchased form ATCC. C57BL/6 mice were
purchased from Shanghai SLAC Laboratory Animal Company.

Characterizations.

'H, ¥C and F NMR spectra was taken by AVANCE Il HD 400 MHz of Bruker
BioSpin International. Chemical shift values of compounds were referenced using the
tetramethylsilane (TMS) with peak at 0 ppm.

Matrix Assisted Laser Desorption lonization-Time of Flight (Maldi-TOF) Mass
Spectrum was taken by a AB SCIEX 5800 instrument.

Circular dichroism (CD) spectra were taken by a JASCO-815 instrument with a 1
mm cuvette.

Ultraviolet-vis (UV-vis) absorption spectra were recorded by Shimadzu UV-2550
spectrophotometer.

Atomic Force Microscope (AFM) was operated in air on a Bruker Multimode VIII
SPM equipped with a J scanner. Experiments were performed in peakforce QNM
mode with SNL-10 tip (k = 0.350 N/m). Sample (3 pL) was firstly dropped on freshly
cleaved mica, and after standing for 2 mins, used a pipette (10 uL) to suck up the
visible liquid. The sample stayed for drying in air for 24 h for AFM test.

Dynamic Light Scattering was performed by 3D modulated laser light scattering
from LS instruments.

Zeta-Potential was performed by Malvern Zeta-sizer Nano ZS90.

Synchrotron small angle X-ray scattering (SAXS) experiment was performed at the
BL19U beamline station of Shanghai Synchrotron Radiation Facility (SSRF). The
wavelength was 0.124 nm. Distance of sample-to-detector was 1.89 m. The exposure
time was 600 s.

Transmission electron microscopy (TEM) was performed using an FEI Tecnai G2
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operated at 200kV, a JEOL JEM-2010 operated at 80kV and a JEOL JEM-2100
operated at 200kV. Negatively stained samples were prepared by applying a 3l drop
of sample solution to carbon-coated copper TEM grids and the excessive solution was
blotted away with filter paper. Samples were subsequently stained with 1 wt% uranyl
acetate and the grids air dried. Tomographic data from negative stained samples were
collected on a JEOL JEM-2100 equipped with a 4 k x 4 k CMOS digital camera
(TVIPS TemCam-F416). Tilt series were collected to + 60° with a 2< angular
increment and a total dose of roughly 300 e /A% Samples for Cryo-EM were prepared
by applying 4 puL drop of sample solution to holey carbon grids (Quantifoil R2/1) and
plunge-frozen into liquid ethane with an FEI vitrobot Mark IV set at 4<C and 95%
humidity. Vitrified grids were either transferred directly to the microscope cryoholder
or stored in liquid nitrogen. All grids were glow-discharged before use. All Cryo-EM
images were acquired on a JEOL JEM-2100 equipped with a 4 k x 4 k CMOS digital
camera (TVIPS TemCam-F416).

Methods

Cell Line and Animal Model.

B16F10 tumor cells were cultured in complete RPMI 1640 culture medium (Gibco)
supplemented with 10% fetal bovine serum (Gibco), 100 1U/mL of penicillin (Gibco),
and 100 pg/ mL of streptomycin (Gibco). Cells were maintained under fully
humidified atmosphere at 37 <C and 5% CO; conditions. All animals were maintained
in specific pathogen-free condition. Animal experiments were performed according to
the Guidelines of Fudan University for the Care and Use of Laboratory Animals.
B16F10 tumor xenograft mice were established by abdominal cavity inoculation with
5 x10° B16F10 tumor cells.

Cell Viability Assay.

Cell viability assay was performed by using Cell Counting Kit-8 (CCK-8) to detect
dehydrogenase activity under both time- and dose-dependent experiments. Briefly,
B16F10 cells were treated with different concentration of various glyco-peptide
models (from 0 pg/ mL to 250 pg/ mL) for a fixed incubation time of 24 h or
containing 250 pug/mL of glyco-peptide models for a range of incubation time from 24
to 72 h. CCK8 reagent was added into cell culture and incubated for 2h. The
absorbance was measured at 450 nm using a microplate reader (BioTek ELx800).
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Transwell Assay.

The transwell chamber was infiltrated with PBS and placed into a 24-well culture
plate. At the same time, B16F10 cells in logarithmic growth phase were adjusted with
0.5% BSA serum-free RPMI 1640 culture medium. 100 pL (1 x 10°) cells with 0.25
mg/mL various glyco-peptide were seeded into the transwell upper chamber with
three replicates in each group. In the lower chamber, 700 uL serum-free RPMI 1640
culture medium (0.5% BSA). Taking 700 pL of RPMI 1640 culture medium of 10%
fetal bovine serum as the positive control and 700 uL serum-free RPMI 1640 culture
medium containing 0.5% SBA as the negative control. Cells were incubated at 37 °C
and 5% CO; condition for 12 h. Cells were washed with pre-chilled PBS at 4 °C for
several times and fixed with 4% paraformaldehyde for 10 min and stained Giemsa for
15 min. The number of migrating cells was recorded under microscope and analyzed
by Prism 6.

In Vivo Therapeutic Experiments.

In vivo tumor metastasis was evaluated in B16F10-Luc-GFP-bearing C57BL/6 mice
as follows. Eighteen 6-week-old female C57BL/6 mice were inoculated
subcutaneously with 200 pL of a BI6F10-Luc-GFP cell suspension (5 x10° cells/mL)
and divided into three groups (six mice per group). After two days inoculation, 50 pL
of the fibrils of SL-FYF and SL-3F were intravenously injected into the mice; a
control group received only PBS. Distribution of the B16F10-Luc-GFP cells in the
mice was observed 3 days after injection. Animal experiments were performed
according to the Guidelines of Fudan University for the Care and Use of Laboratory
Animals.

S5



2. Pre-screen of glyco-peptide models by molecular simulation

Simulation details

The all-atom model for the resulting glyco-peptide models including SL-2F, SL-3F,
SL-4F, SL-FYF and SL-FUF were constructed corresponding to the configurations
in Scheme S6. Gromacs 5.13/2016.6 packagel” was employed for all the MD
simulations. The COOH group on sialyllactose was all deprotonated and the partial
charge of COO™ was set at -0.66, while charge compensation was maintained by
adding sodium ions (atom charge at +0.66) in equal number. The CHARMM36!%*!
force field was used for the molecules and TIP3P model™ for explicit water
molecules. Particle Mesh Ewald method™ was used to calculate the electrostatic
interactions of the system with a grid spacing of 1.75 A, while short-ranged
electrostatic and Van der Waals interactions were truncated at 1.2 nm. The reference
temperature was maintained at 298 K by the stochastic integrator with a relaxation
time at 2 ps. The pressure was maintained at 1.0 bar by the Berendsen algorithm with
a relaxation time of 1 ps. The system composed of the SL-nF molecules, water and
sodium ions was pre-equilibrated in the NVT ensemble for 500 ps and another 500 ps
in the NPT ensemble with position restraints on SL-nF before any production NPT
simulations. An integration time-step at 1 fs was used for all above simulations. The
simulation box size of single-stranded, double-strand and quadra-stranded fibers was
designed as (6.2 nm x6.2 nm x7.8 nm), (7 nm X7 nm x7.8 nm) and (8.5 nm <15
nm %<9 nm). Water molecules were added to the simulation box by using the Gromacs
gmx solvate command and sodium ions by Gromacs gmx genion. A geometrical
criterion was used to determine if hydrogen bonds exist, which included a reference
donor-accepter distance limit of 35 A and a cutoff value of 30" for
hydrogen-donor-acceptor angle. The results of solvent accessible surface area (SASA)
of each phenylalanine residue and sugar component were obtained by using the gmx
sasa code in Gromacs package with default parameters.

Two types of initial configurations, random positions and template structures,
were considered for simulation in this work. For the first tpye, randomly distributed
SL-3F molecules were placed in a cubic box (6 nm >6 nm =<6 nm) with 3D periodic
conditions. However, during the production run at a timescale of 300 ns, the free style
assembly of SL-3F failed to present any ordered fiber structures. Apparantly the
simulations of SL-3F were trapped in numbers of metastable states due to the
complexity of the all-atom model with explicit solvents (Figure S7).

For the second type, template initial configurations were employed in the
exploration of stable fibrous structures. In detail, two fundamental types of strand
formation were proposed depending on the assembly of oligophenylalanines which
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were the antiparallel packing and parallel packing of the phenylalanine blocks. The
spacing was 0.5 nm between neighboring SL-nF molecules which largely facilitated
inter-oligophenylalanine  hydrogen bonding and hydrophobic stacking of
phenylalanine sidechains. However during early tests, the antiparallel packing
structure was found unstable (Scheme 1b), while the parallel packing structure was
still intact after 50 ns examination. This is probably because the alternative locations
of the sugar blocks on two sides of the antiparallel phenylalanine sheet fail to provide
enough sugar interactions which could be important in stabilizing the packing
structure. On the other hand, the sugar blocks packing on the same side of the parallel
phenylalanine sheet were granted with higher possibilities of mutural interactions
(Scheme 1c). In this sense, the single-stranded fibrous structure were proposed by
placing two such parallel phenylalanine sheets together as shown in Figure 3d. With
odd number of phenylalanine residues on the molecules (such as SL-3F, SL-FYF and
SL-FUF), two of the phenyl rings from molecules of each sheets constructed the
hydrophobic strand center responsible for strand-forming, and one phenyl ring of each
molecule decorating the outer strand acting as strand-associating components. With
even number of phenylalanine residues (such as SL-2F and SL-4F) the numbers of
phenyl rings were assigned the same for strand-forming and strand-associating roles.
The double-strand and multi-strand fibers were constructed by placing single-stranded
fibrous structures together where the strand-associating phenylalanines were located
closely as shown in Figure 3e.
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Scheme S4 Schematic illustration for the synergistical stabilization of saccharide H-bonds (red
dashed line) and peptide H-bonds (black dashed line) on the starting structure while the SL-3F

adopting parallel packing mode.
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3. Glyco-peptide Synthesis
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Scheme S6 Five types of glyco-peptide models and FITC-3F used in this work.

We prepared a library of glyco-peptide models with a variable number of
phenylalanine units, such as SL-2F, SL-3F and SL-4F as well as SL-FYF, SL-FUF
via replaced the phenylalanine at some positions with either tyrosine,
fluorophenylalanine. All models were synthesized by simple solution-phase peptide
coupling and then linked the sialyllactose to oligopeptides through forming a
hydrazine bond.
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4. The fibril association behaviors of SL-3F

M2 [S_A_14_00020_00002.dat] |
", I S_A_14_00020_00002.dat |

Figure S1 The a) Negatively stained TEM image b) cryo-EM image ¢) AFM height image
d) small-angle-X ray-scattering result of double-strand fibrils of SL-3F.
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Figure S2 Representative negative stain tomography of double-strand fibrils of SL-3F. a) Central
tomographic XY slice through the tomographic reconstruction of an individual negatively stained
double-stranded fibril of SL-3F. b) Central tomographic XY slice through the tomographic
reconstruction of an individual negatively stained double-stranded fibril of SL-3F showing a 3D
volume rendering of a part of the fibril (yellow). c, d) 3D volume renderings of a double-stranded
fibril of SL-3F (cyan) shown together with their central tomographic slices, but slightly tilted

around the X axis.
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Figure S3 a) The comparison in SAXS results between freshly prepared fibrils and 1-year

incubated fibrils of SL-3F, The q' intensity decay indicates a cylindrical structure. b)

experimental measurements of fibril kinetics at 800 uM SL-3F (Img/mL in water).

The measurement of fibril kinetics was performed as following procedures: 1) Firstly,
the optimal centrifugal speed was determined to be 3000 rpm, because at this
centrifugal speed, only the double-strand fibrils of SL-3F could be centrifuged but
other species such as oligomers, protofilaments could not. 2) Then the samples that
have been incubated for different times were centrifuged.
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ltem Name Molecular Weight (Da) Contour Length (nm)  Diameter (nm) Aspect Ratio Reference

1 FF Nanotube 426 8000 125 64.00 6,7
2 Peptide Amphiphiles 1068 9000 7 1285.71 " 8910
3 PEO;-F4-OEt 1080 1500 4.4 340.91 11

4 SL-3F 1189 500000 6.5 76923.08

5 IAPP 4738 15000 7.9 1898.73 12,13
6 a-synuclein 17920 5000 6.4 781.25 14

7 B-lactoglobulin 18400 5500 4 1375.00 15

8 MUCSEB 30000 10000 5] 2000.00 16, 17
9 Actin Filament 42000 1000 5 200.00 18,19, 20
10 PFS-b-PDMS-b-PFS 64000 1000 7.7 129.87 21,22
" Bovine Serum Albumin 66463 2000 6.5 307.69 23

*Divide the contour length by the diameter to get the aspect ratio directly
Table S1 The comparison of aspect ratio of SL-3F fibrils with those of diverse fibrous species

reported in literatures.
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Figure S4 The track for the formation processes of double stranded fibril of SL-3F by cryo-EM.
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Figure S5 The SAXS results of SL-3F association processes as a function of incubation time.
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Figure S6 The a) circular dichroism (CD) detection b) UV-vis detection for fibril kinetics of
SL-3F.

Both the gradual weaken and a perceptible red-shift of signal at 222 nm
experimentally suggested that a transformation of fibril secondary structure from
hydrophobic PP | helix to relatively hydrophilic PP Il helix was involved in the
double-strand process (Figure S6a). The slight red-shift observed in Uv-vis spectrum
indicated that the arrangement of phenylalanine residue tend to become more regular
accompanied by the growth of fibrils (Figure S6b).
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Direct simulation (no constraints)

(4 x SL-3F)

Model color: sialic acid (purple), Lactose (green), FFF-Boc (red)
Force field type: CHARMM (charmm36.ff, without other force field blending)
Simulation condition: explicit solvent, 4 chains, sialic acid is negatively charged.

Figure S7 a) the optimized structure of SL-3F, the direct all-atom molecular dynamics simulation
results after b) 20 ns ¢) 300 ns relaxation while 4 SL-3F were directly put into the box while no

constraints were imposed.

We initially attempted to perform this study with direct all-atom simulation in which
no constraints were imposed on the starting structure, whereas the atomistic
complexity of this calculation tended to prevent the generation of a converged fiber
structure.
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Initial template
(three single-strand protofibrils)

Figure S8 The all-atom molecular dynamics simulation results while the initial template

comprising three single-strand protofibrils of SL-3F.
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Figure S9 The measured diameter of single-strand protofibril and double-strand fibril of SL-3F

based on all-atom molecular dynamics simulation results.
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Figure S10 a) FT-IR spectrum, b) urea addition assay results and c) varied temperature results
(detected at 205 nm) of double strand fibrils of SL-3F.

A strong absorption band at about 1650 cm™ in solid-phase infrared spectra are
considered to be the typical features of PP Il helix conformation (Figure S10a) 4 in
addition, the observations of a strong increase of the negative band at 208 nm upon
addition 8 M urea and a decrease of this band on increasing temperature further
supported the existence of PP Il helix (Figure S10b,c ) 2.
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Figure S11 a) The zeta-potential results of SL-3F before (6h) and after (3d) partially undergo
double-strand processes, b) the ratio of integral area of aromatic protons to that of internal

reference evolved with incubation time.

Here we selected to dissolve 4 mg of SL-3F into 1 mL D,0, and the ratio of integral area of
aromatic protons to that of D,O as internal reference (Aaromatic proton/Ainternal reference) was
defined as a parameter to quantify the interactions between hydrophobic moieties. As shown
in Figure S11b, in the beginning (< 3 days), the ratio of Aaromatic proton/Ainternal reference
seems nearly constant, suggesting that the hydrophobic interaction is not significantly
enhanced during the early growth of the fibrils. For the middle stage (3 days ~ 9 days), the
ratio of Aaromatic proton/Ainternal reference shows a significant decrease, indicating that the
process of fibril association might be accompanied by an increased hydrophobic interaction.
When the fibril association approaches completion (> 9 days), the interfibril hydrophobic

interaction also tends not to change.
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negative charge

Figure S12 (a-d) The structural evolution of ribbon-like structure of SL-3F with incubation time
in the presence of NaOH. (Detailly, added 1uL 0.5 M NaOH into the 1 mL of ribbon-like structure
of SL-3F)
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Figure S13 The varying of scattered light intensity <ls>/<lg> upon incubation time in neutral

condition and alkaline condition.
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Figure S14 a) HPLC profile b) Maldi-TOF result c) AFM height images of SL-3F before and after

addition of sialidase, d) the evolution of CD with incubation time in the presence of sialidase, €)

the trace for the structural evolution process in the presence of sialidase performed by negatively
stained TEM, f) the variation of <Ig>/<l,> upon incubation time in the presence of sialidase.
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5. The fibril association behaviors of SL-4F
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Figure S15 a, b) cryo-EM images c¢) Central tomographic XY slice through the tomographic
reconstruction of a negatively stained twisted right-handed nanoribbon of SL-4F, the statistical
results of d) width e) pitch of twistedly right-handed nanoribbon of SL-4F.
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Starting structure Single-strand protofibril

b)
- '—’

Strong hydrophobic Radial association
surface

axial growth

v

Figure S16 a) schematic illustration for the formation of SL-4F single-strand protofibril, b)
schematic illustration for the competitive event between axial growth and radial association of

protofibrils of SL-4F.
Detailly, firstly packed 12 of such SL-4F into a single-strand protofibril in parallel

manner, then 8 such single-strand protofibril (8<12) were radially arranged into a
ribbon structure in an antiparallel manner to form the starting structure.
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Figure S17 a, b, ¢) The AFM height images for visualizing the radial association of
SL-4F protofibrils. d) the diameter of single-strand protofibrils of SL-4F measured by
molecular dynamics simulation.
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6. The fibril association behaviors of SL-2F

SL-2F 5l

Scale bar 100 nm

Figure S18 The a-e) negatively stained TEM images f-j) AFM height images for tracing the
association behaviors of SL-2F.
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Figure S19 The a) photograph, b) AFM height image and c) Negatively stained TEM image of
hydrogel formed by SL-2F.
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Figure S20 a) relaxation process of single-strand protofibril of SL-2F, b) the corresponding
RMSD varying with simulation time.

Detailly, the SL-2F models were initially packed into a starting structure in parallel
manner like SL-3F, then two of such starting structure tend to form the initial
template of single-strand protofibril (Figure S20a) in a way that the two hydrophobic
ends of SL-2F close together.
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7. The fibril association behaviors of SL-FYF and SL-FUF
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Figure S21 a) AFM height image b, ¢) corresponding profile d) all-atom simulation result e) the
statistical results of two types of H-bonds involved in protofibrils of SL-FYF, f) the lowest energy
state of a SL-FYF molecule, g) CD result of single-strand protofibril of SL-FYF, h, i) simulation
result of double-strand fibril of SL-FYF. j, k, I) AFM height image m) all-atom simulation result
m) CD result of single-strand protofibril of SL-FUF, n) ) the statistical results of two types of
H-bonds involved in protofibrils of SL-FUF, o) the lowest energy state of a SL-FUF molecule, p)
CD result of single-strand protofibril of SL-FUF ¢, r) simulation result of double-strand fibril of
SL-FUF.
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8. The correlation between fibril association with hydrogelation
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Figure S22 The negatively stained TEM images of ribbon-like structure of SL-3F a) in the
absence b) in the presence of HCI, ¢) the photograph of formed hydrogel after addition of HCI into
ribbon-like structure, d) High performance liquid chromatography (HPLC) profile, e) rheological

behavior of formed hydrogel.

As shown in Figure S22d, the HPLC results indicate that the addition of HCI will not
give new glyco-peptide species, namely, the SL-3F could survive in this acidic
condition. However, the weakened negative charge on the surface of fibrils of SL-3F
will in turn trigger the collapse of these fibrils.
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9. The correlation between fibril association with anticancer activities

Cell line: B16F10
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Figure S23 The cytotoxicity results of B16F10 cell line with a wider range of doses ranging
between 16 and 250 pg/mL of diverse of fibrous species (incubation time: 48 h).
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Figure S24 The trans-well assay results after incubating diverse fibrous species with B16F10 cell
line for 72 h.
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Figure S25 The trans-well assay results after incubating fibrous species of SL-3F with a) BV-2
cell line or b) HepG2 cell line for 72 h.

Positive ctl: RPMI 1640 + 10% FBS (fetal bovine serum)

Negative ctl: RPMI 1640 + 0.5% BSA (Bovine serum albumin)

Data are presented as means +s.e.m. Statistical significance was calculated by Student’s t-test:
“P<0.001, “P< 0.01, "P< 0.05.
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Figure S26 a) The trans-well assay results after incubating B16F10 cell line with different
concentration of SL-3F fibrils, b) directly incubating B16F10 cell line with different concentration
of SL-3F fibrils on 24-well plate, ¢) the schematic illustration for cells adhered on fibrils as well
as adherent cells for counting, d, e) the quantitative analysis for the adhesion ability of fibrils to
B16F10 cell.

B16F10 cells were seeded into 24-well cell culture plates at 2.5 x 10°/mL, different
amounts of SL-3F fibrils were subsequently added, then incubated overnight. Washed
2x with PBS solution, then the cells were fixed with 4% paraformaldehyde for 15
minutes, washed 2x with PBS solution again, the cells were stained with Giemsa stain
for 20 minutes, and washed 2x with PBS solution. Finally, the adherent cells at the
bottom were counted.
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Figure S27 The visualization of interaction between SL-FYF fibrils and B16F10 cells by a)
CLSM and b) FE-SEM, c) the visualization of interaction between FITC-3F and B16F10 cells by
CLSM. All the scale bars are 5 pm.
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Figure S28 a) In vivo inhibition of B16F10 cell migration by fibrous species of SL-FYF as well
as SL-3F. b) The quantified results of relative luminescence intensity of three sets of assays in
Figure a. ¢) The body weight of mouse as a function of incubation time. Data are presented as
means + s.e.m. Statistical significance was calculated by Student’s t-test: ***P< 0.001, **P< 0.01,
*P< 0.05.

Considering that the fibrils used here cannot be injected intravenously like ordinary
drugs, the orthotopic metastasis model seems not to be suitable for the existing fibril
system. Therefore, here we selected to investigate the inhibitory effect of fibrils on
tumor cell migration via injecting B16F10 cells into the abdominal cavity of mice.
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10. Synthesis and Characterization

Synthesis of 1. Dissolved 4 g (15.1 mmol) Boc-protected phenylalanine, 2.44 g (18.0
mmol)  Hydroxybenzotriazole @ (HOBT), and 346 g (180 mmol)
1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) in 200 mL dry
dichloromethane under ice bath conditions, and then added 7.5 mL (45.0 mmol) of
N,N-Diisopropylethylamine (DIPEA) to the above mixed solution, and finally added
3.25 g (15.1 mmol) of phenylalanine methyl ester hydrochloride. The reaction mixture
was stirred at 34 °C for 24 h. Then the solvent was evaporated to 100 mL remaining,
washed with 100 mL of 2 M hydrochloric acid, 2 M sodium hydroxide and saturated
brine successively, separated and dried with anhydrous magnesium sulfate. The
product was purified with 200-300 mesh silica gel column, using petroleum ether:
ethyl acetate=4:1 as the eluent to obtain a white solid product of 1 (5.23 g, 72%).

'H NMR (400 MHz, DMSO-ds, 295 K) 8.33(d, J = 7.6 Hz, 1H, NH)7.21 — 7.29 (2m,
10H, CH-arom), 6.85 (d, J = 8.8 Hz, 1H, NH), 4.58 — 4.46 (m, 1H, 0-CH), 4.25-4.13
(m, 1H, a-CH), 3.59 (s, 3H, CH3), 3.06 (dd, J = 13.8 6.0 Hz, 1H), 2.97 (dd, J = 13.9
8.5 Hz, 1H), 2.89 (dd, J = 13.9 4.4 Hz, 1H), 2.68 (dd, J = 13.8 10.5 Hz, 1H), 1.29 (s,

9H, CH3-Boc).
S0
BocHN N%O/
I

e

Synthesis of 2. Dissolved 1.4 g (3.3 mmol) of compound 1 in 30 mL dichloromethane,
then added 7.35 mL (98.4 mmol) of trifluoroacetic acid, stirred at room temperature
(34 °C) for 3 h, removed the solvent under reduced pressure to obtain a white solid
product of 2 (1.42 g, 98%).

'H NMR (400 MHz, DMSO-ds, 295 K) & 9.01 (d, J = 7.63 Hz, 1H, NH), 8.15 (br s,
3H, NH3), 7.36 — 7.22 (m, 10H, CH-arom), 4.58 (m, 1H, a-CH), 4.05 (br s, 1H, a-CH),
3.61 (s, 3H, CHj3), 3.16-3.04 (m, 2H, CH,-Phe), 3.02 — 2.89 (m, 2H, CH,-Phe).

M
N
“OOCF;C*H3N \;)J\o/
O =

, O

Synthesis of 3. Dissolved 1.1 g of Boc-protected phenylalanine (4.1 mmol), 0.66 g
(4.9 mmol) of HOBT, and 0.94 g of EDC (4.9 mmol) in 50 mL dry dichloromethane
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under ice bath conditions, and then added 2.0 mL (12.3 mmol) of DIPEA to the above
mixed solution, and finally added 1.8 g (4.1 mmol) of compound 2. The reaction
mixture was stirred at 34 °C for 24 h. Then the solvent was evaporated to 30 mL
remaining, washed with 30 mL of 2 M hydrochloric acid, 2 M sodium hydroxide and
saturated brine successively, separated and dried with anhydrous magnesium sulfate.
The product was purified with a 200-300 mesh silica gel column, using
dichloromethane: ethyl acetate = 20:1 as the eluent to obtain a white solid product of
3(1.68 g, 71%).

'H NMR (400 MHz, DMSO-ds, 296 K) & 8.58 (d, J = 7.4 Hz, 1H), 7.94 (d, J = 8.3
Hz, 1H), 7.30 — 7.15 (m, 15H), 6.88 (d, J = 8.9 Hz, 1H), 4.59 (m, 1H, a-CH), 4.50 (m,
1H, a-CH), 4.13 — 4.01 (m, 1H, a-CH), 3.58 (s, 3H, CH3), 3.07 — 2.92 (m, 3H),
2.84-2.73 (m, 2H), 2.59 (d, J = 13.9 Hz, 1H), 1.27 (s, 9H).

0 $ 0
BocHN\é)J\” N\é)J\O/
(@)
0,0
Synthesis of 4. 1.4 g (3.3 mmol) of compound 1 was dissolved in 10 mL of ethyl
acetate, and 30 mL of ethyl acetate hydrochloric acid solution was added dropwise
under ice bath conditions. After about 20 minutes, a large amount of white precipitate
appeared. After suction filtration, acetic acid ethyl ester was used to wash product,
finally obtained white solid of 4 (1.27g, 94%).
'H NMR (400 MHz, DMSO-ds, 295 K) & 12.79 (s, 1H), 8.11 (d, J = 7.9 Hz, 1H),
7.29 — 7.22 (m, 10H), 6.88 (d, J = 8.8 Hz, 1H), 4.48 (td, J = 8.1, 5.2 Hz, 1H), 4.17

(ddd, J = 10.4, 8.7, 4.0 Hz, 1H), 3.09 (dd, J = 13.9, 5.2 Hz, 1H), 2.97 — 2.90 (m, 2H),
2.64 (dd, J = 13.9, 10.6 Hz, 1H), 1.27 (s, 9H).

H
N
BocHN \)J\OH

Synthesis of 5. 1.8 g of compound 4 (4.4 mmol), 0.71 g (5.2 mmol) of HOBT, 1.0 g
of EDC (5.23 mmol) were dissolved in 50 mL dry dichloromethane under ice bath
conditions, and then 2.2 mL ( 13.1 mmol) DIPEA was added to the above mixed
solution, and finally 1.5 g (3.4 mmol) of compound 2 was added. The reaction
mixture was stirred at 34 °C for 24 h. Then the solvent was evaporated to 30 mL
remaining, washed with 30 mL of 2 M hydrochloric acid, 2 M sodium hydroxide and
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saturated brine successively, separated and dried with anhydrous magnesium sulfate.
The product was purified with a 200-300 mesh silica gel column, using
dichloromethane: ethyl acetate = 5:1 as the eluent to obtain a white solid product of 5
(2.15g, 68%).

'H NMR (400 MHz, DMSO-ds, 295 K) & 8.54 (d, J = 7.4 Hz, 1H), 8.22 (d, J = 8.2
Hz, 1H), 7.85 (d, J = 8.3 Hz, 1H), 7.28 — 7.15 (m, 20H), 6.88 (d, J = 8.9 Hz, 1H), 4.55
(m, 3H), 4.07 (m, 1H), 3.58 (s, 3H), 3.04 — 2.93 (m, 4H), 2.81 — 2.73 (m, 3H), 2.67 (m,

1H), 1.24 (s, 9H).
MR oo
BocHN N\:)J\N N\:)J\o/
o = H o z
O U
Synthesis of 6 and 7. The synthesis method of 6 and 7 was very similar to that of 1
and 4. Finally obtained white solid of 6 (0.86 g, 58%) and 7 (0.83 g, 96%).

[ i 0 [ i o
H H
BocHN N\:)J\o/ BocHN N\;)J\OH
O = O =
6 Z 7 Z

OH OH

Synthesis of 8. 1.84 g of compound 7 (4.3 mmol), 0.68 g (5.1 mmol) of HOBT, 0.97 g
of EDC (5.1 mmol) were dissolved in 60 mL of dry dichloromethane under ice bath
conditions, and then 2.2 mL (13.0 mmol) of DIPEA was added to the above mixed
solution, and finally 0.91g (4.3 mmol) of phenylalanine methyl ester hydrochloride
was added. The reaction mixture was stirred at 32 °C for 24 h. Then the solvent was
evaporated to 30 mL remaining, washed with 30 mL of 2 M hydrochloric acid, 2 M
sodium hydroxide and saturated brine successively, separated and dried with
anhydrous magnesium sulfate. The product was purified with 200-300 mesh silica gel
column, using dichloromethane: ethyl acetate = 4:1 as the eluent to obtain a white
solid product of 8 (1.66 g, 64%).

'H NMR (400 MHz, DMSO-ds, 295 K) & 9.14 (s, 1H), 8.49 (d, 1H), 7.84 — 7.81(d,
1H), 7.27 — 7.18 (m, 12H), 7.02 — 7.00 (m, 2H), 6.87 (d, J = 8.8 Hz, 1H), 6.65 — 6.62
(d, 2H), 4.59 — 4.44(m, 2H, o-CH), 4.13 — 4.07 (m, 1H, a-CH), 3.58 (s, 3H, CHs),
3.07 —2.91(m, 4H), 2.88 — 2.58 (m, 2H), 1.28 (s, 9H).
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OH
(0] H (0]
BocHN\.)j\N N\.)J\O/
= H o z

8

Synthesis of 9 and 10. The synthesis method of 9 and 10 was very similar to that of 1
and 2. Finally obtained white solid of 9 (1.07 g, 63%) and 10 (1.01 g, 94%).

E F
. F . F
HF O HF O
BocHN N\:)J\o/ ‘O0CF3C*H3N N\i)J\o/
& i
10 @

Synthesis of 11. Dissolved 0.83 g of Boc-protected phenylalanine (3.1 mmol), 0.49 g
(3.7 mmol) of HOBT, and 0.71 g of EDC (3.7 mmol) in 40 mL dry dichloromethane
under ice bath conditions, and then added 1.5 mL (9.2 mmol) of DIPEA to the above
mixed solution, and finally added 1.6 g (3.1 mmol) of compound 10. The reaction
mixture was stirred at 34 °C for 24 h. Then the solvent was evaporated to 30 mL
remaining, washed with 25 mL of 2 M hydrochloric acid, 2 M sodium hydroxide and
saturated brine successively, separated and dried with anhydrous magnesium sulfate.
The product was purified with a 200-300 mesh silica gel column, using
dichloromethane: ethyl acetate = 30:1 as the eluent to obtain a white solid product of
11 (1.19 g, 58%).

'H NMR (400 MHz, DMSO-dg, 296 K) & 8.69 (d, J = 7.7 Hz, 1H), 8.17 (d, J = 8.7
Hz, 1H), 7.26 — 7.16 (m, 10H), 6.89 (d, J = 8.5 Hz, 1H), 4.71 (m, 1H, a-CH), 4.52 (m,
1H, a-CH), 4.06 — 4.02 (m, 1H, a-CH), 3.58 (s, 3H), 3.04 — 2.98 (m, 2H), 2.97-2.86
(m, 2H), 2.78 (dd, J = 13.8, 3.6 Hz, 1H), 2.64 — 2.58 (m, 1H), 1.25 (s, 9H).

F
F O
_ :Qko/
z H o z
0w O
Synthesis of 12, 13, 14, 15 and 16. The synthesis methods of 12, 13, 14, 15 and 16
are highly similar. The typical synthesis process was as follows: The corresponding

oligopeptide such as 1, 3, 5, 8 or 11 was dissolved in methanol or a mixed solvent of
methanol and dichloromethane to obtain a transparent solution. Then added 20 times
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equivalent of 98% hydrazine hydrate to the above transparent solution. Generally, a
large amount of white precipitate will appear after stirring for 5 minutes. The obtained
white solid was filtered with suction, washed with water, and finally lyophilized to
obtain the corresponding white powder of 12, 13, 14, 15 and 16 (all the yields
approached 98%).

12: 'H NMR (400 MHz, DMSO-dg, 296 K) & 9.17 (s, 1H), 7.99 (d, J = 8.3 Hz, 1H),
7.21—-7.15 (m, 10H), 6.90 (d, J = 8.5 Hz, 1H), 4.51 — 4.47 (m, 1H), 4.22 (s, 2H), 4.14
—4.08 (m, 1H), 2.97 — 2.92 (m, 1H), 2.86 — 2.80 (m, 2H), 2.66 — 2.60 (m, 1H), 1.29 (s,

OH).
S~ 0

BocHN” N NN,
o L H

2

13: *H NMR (400 MHz, DMSO-dg, 295 K) § 9.14 (s, 1H), 8.27 (d, J = 8.3 Hz, 1H),
7.88 (d, J = 8.6 Hz, 1H), 7.25 — 7.18 (m, 15H), 6.90 (d, J = 8.9 Hz, 1H), 4.56 — 4.55
(m, 1H), 4.49 — 4.48 (m, 1H), 4.22 (s, 2H), 4.11 — 4.07(m, 1H), 3.03 — 2.89 (m, 2H),
2.87-2.73 (m, 3H), 2.60 (dd, J = 13.8 10.6 Hz, 1H), 1.27 (s, 9H).

14: 'H NMR (400 MHz, DMSO-ds, 295 K) 5 9.11 (s, 1H), 8.20 (d, J = 8.2 Hz, 1H),
8.14 (d, J = 8.2 Hz, 1H), 7.87 (d, J = 8.3 Hz, 1H), 7.24 — 7.16 (m, 20H), 6.86 (d, J =
8.2 Hz, 1H), 4.63 — 4.44 (m, 3H), 4.21(s, 1H), 4.09 — 4.08 (m, 1H), 3.00 — 2.90 (m,
3H), 2.89 — 2.71 (m, 4H), 2.58 (dd, J = 14.0 10.6 Hz, 1H), 1.27 (s, 9H).

0 > 0
BocHN Ny N N\.)LN—NHZ
o KN o AH
O 0O
15: 'H NMR (400 MHz, DMSO-dg, 295 K) § 9.12 (s, 1H), 8.18 (d, J = 8.5 Hz, 1H),
7.78 (d, J = 8.3 Hz,1H), 7.25-7.17 (m, 12H), 6.98(d, J = 8.5 Hz, 2H), 6.90(d, J = 8.8

Hz, 1H), 6.62(d, J = 8.5 Hz, 2H), 4.50-4.42 (m, 2H), 4.21(s, 2H), 4.11-4.08 (m,1H),
2.94(dd, J = 13.7 5.8 Hz, 1H), 2.89-2.76 (m, 3H), 2.71-2.57 (m, 2H), 1.28 (s, 9H).
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BocHN\)L L;Q\)LN NH,
V%0

16: 'H NMR (400 MHz, DMSO-dg, 295 K) 5 8.88 (s, 1H), 7.94 (s, 1H), 7.76 (s, 1H),
7.33 - 7.16 (M, 10H), 6.01 (s, 1H), 4.58 — 4.40 (m, 2H), 4.09 (s, 1H), 3.22 — 3.02 (m,
4H), 2.80 (d, J = 12.3 Hz, 1H), 1.27 (s, 9H).

FoF

F F

BocHN\)L N\)LN ~NH,

0 0

Synthesis of SL-3F. 0.4 g (0.69 mmol) of compound 13 and 0.45 g (0.68 mmol) of
(2,3) sialyllactose were dissolved in 8 mL of anhydrous methanol, and 0.11 g of
yttrium trifluoromethanesulfonate (0.21 mmol) was added, the reaction mixture was
stirred at 50 °C under nitrogen protection for 48 h. Then the solvent was removed
under reduced pressure, and the product was purified with a 200-300 mesh silica gel
column, using dichloromethane:methanol = 2:3 as the eluent to obtain a white solid
product of SL-3F (0.48 g, 59%).

'H NMR (400 MHz, DMSO-dg, 295 K) & 9.63 (d, 1H), 8.37 (d, J = 8.6 Hz, 1H), 8.17
(s, 1H), 7.87 (d, 1H), 7.26 — 7.16 (m, 15H), 6.90 (d, J = 8.9, 1H), 5.73 — 5.65 (m, 1H),
5.15 (d, J = 3.6 Hz, 1H), 4.89 (d, J = 6.0, 1H), 4.72 (d, J = 5.8, 1H), 4.63 — 4.48 (m,
7H), 4.42 (s, 1H), 4.35(t, J = 5.7, 1H), 4.28 (t, J = 5.4, 1H), 4.18 — 4.11 (m, 1H), 4.11
—4.03 (m, 1H), 4.02 — 3.93 (m, 1H), 3.81 - 3.72(m, 2H), 3.70 (s, 1H), 3.66 — 3.54 (m,
7H), 3.53 — 3.42 (m, 4H), 3.22 — 3.17 (m, 4H), 3.03 — 3.00 (m, 2H), 2.95 — 2.90 (m,
1H), 2.89 — 2.85 (m, 1H), 2.84 — 2.73 (m, 4H), 2.64 — 2.57 (m, 1H), 1.90 (s, 3H), 1.26
(s, 9H).

3C NMR (100 MHz, DMSO-d6) & 172.79, 171.66, 171.06, 170.82, 170.73, 155.44,
138.56, 137.79, 137.58, 129.84, 129.66, 129.56, 128.55, 128.49, 128.40, 126.79,
126.68, 126.54, 104.69, 100.12, 90.97, 81.53, 78.54, 76.56, 76.36, 75.31, 73.71, 71.65,
71.20, 70.24, 68.98, 67.72, 67.12, 63.84, 61.14, 60.74, 56.33, 53.67, 53.42, 52.71,
42.48, 38.46, 38.27, 37.99, 28.56, 28.15, 22.98.

Maldi-tof (THAP, Methanol) (m/z): calculated for [CssH7sNeO23+Na]™ = 1212.23;
found:1212.41

Ho OH

coo >/:
\‘OH 5‘H OH OH o) 7 o
AcHN 97>o o) H H = H /%
ﬁoﬁo Ny N N N__O
HO oH H O H T
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Synthesis of SL-4F. 0.3 g (0.42 mmol) of compound 14 and 0.27 g (0.42 mmol) of
(2,3) sialyllactose were dissolved in 6 mL of anhydrous methanol, and 0.067 g of
yttrium triflate (0.13 mmol) was added, the reaction mixture was stirred at 60 °C
under nitrogen protection for 48 h. Then the solvent was removed under reduced
pressure, and the product was purified with a 200-300 mesh silica gel column, using
dichloromethane:methanol = 2:3 as the eluent to get a white solid product of SL-4F
(0.24 g, 42%).

'H NMR (400 MHz, DMSO-ds, 295 K) & 9.61 (d, 1H), 8.30 (d, J = 8.1 Hz, 1H), 8.16
(d, J =8.0 Hz, 1H), 8.08 (s, 1H), 7.85 (d, J = 8.8 Hz, 1H), 7.35 — 7.09 (m, 20H), 6.86
(d, J = 8.8 Hz, 1H), 5.66 (s, 1H), 5.18 — 5.13 (m, 1H), 4.84 (m, 1H), 4.72 (m, 1H),
4.68 - 4.65 (m, 2H), 4.62 — 4.58 (m, 3H), 4.54 — 4.52 (d, 3H), 4.44 (s, 1H), 4.35 - 4.31
(m, 1H), 4.26 (t, 1H), 4.19 — 4.16 (m, 1H), 4.11 — 4.05(m, 1H), 3.98 — 3.95(d, 1H),
3.85—3.83 (m, 1H), 3.72 (s, 3H), 3.68 — 3.56 (m, 6H), 3.52 — 3.46 (m, 4H), 3.41-3.36
(m, 2H), 3.28 — 3.13 (m, 4H), 3.00 — 2.86 (m, 4H), 2.83 — 2.68 (m, 4H), 2.8 (dd, J =
14.0, 10.9 Hz, 1H), 1.90 (s, 3H), 1.26 (s, 9H).

3C NMR (100 MHz, DMSO-d6) & 174.80, 173.02, 172.83, 172.77, 171.86, 155.90,
138.09, 137.33, 130.34, 130.29, 129.49, 127.73, 105.03, 99.44, 82.13, 79.40, 78.63,
77.00, 76.95, 75.13, 74.75, 74.05, 72.99, 72.23, 72.12, 70.06, 68.80, 67.85, 63.25,
62.80, 61.74, 55.19, 54.68, 53.43, 52.73, 39.93, 38.44, 38.27, 38.06, 28.10, 22.61.
Maldi-tof (THAP, Methanol) (m/z): calculated for [CesHgsN7O24+Na]" = 1359.41;
found:1359.62.

”;%HJK 6& ﬁtﬂ H Q Q” ok
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Synthesis of SL-2F. Dissolved 0.20 g (0.47 mmol) of compound 12 and 0.20 g (0.31
mmol) of (2,3) sialyllactose in 4 mL of anhydrous methanol, and added 0.074 g of
yttrium trifluoromethanesulfonate (0.14 mmol), the reaction mixture was stirred at 32 °C
under nitrogen protection for 48 h. Then the solvent was removed under reduced
pressure, and the product was purified with a 200-300 mesh silica gel column, using
dichloromethane: methanol=2:3 as the eluent to obtain a white solid product of SL-2F
(0.21 g, 63%).

'"H NMR (400 MHz, DMSO-ds, 295 K) & 9.61 (d, J = 4.1 Hz, 1H), 8.13 — 8.02 (m,
2H), 7.26 —7.19 (m, 10H), 6.85(d, J = 4.5 Hz, 1H), 6.25(s, 1H), 5.64 (s, 1H), 5.12 (s,
1H), 4.79 (d, J = 6.0 Hz, 1H), 4.63(s, 1H), 4.59(s, 2H), 4.51(s, 1H), 4.47 (d, J = 5.0
Hz, 1H), 4.43 (s, 1H), 4.32 (t, J = 5.8 Hz, 1H), 4.21 (t, J = 6.1 Hz, 1H), 4.15(d, J =
8.1 Hz, 2H), 3.99 (d, J = 9.8 Hz, 1H), 3.80 — 3.72 (m, 1H), 3.70 (s, 1H), 3.66 — 3.53
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(m, 4H), 3.51 — 3.41 (m, 2H), 3.39 (s, 3H), 3.28 — 3.25 (m, 5H), 3.21 — 3.15 (m, 4H),
2.98 — 2.93 (m, 1H), 2.91 — 2.88 (m, 3H), 2.80 — 2.73 (m, 1H), 2.72 — 2.62 (m, 1H),
1.90 (s, 3H), 1.29 (s, 9H).

B¥C NMR (100 MHz, DMSO-d6) & 172.74, 171.78, 155.51, 138.48, 137.56, 129.79,
129.63, 128.52, 128.45, 126.78, 126.58, 104.70, 100.10, 91.02, 78.53, 76.28, 75.33,
73.68, 71.64, 69.06, 67.76, 60.73, 56.10, 53.38, 38.58, 37.98, 28.58, 28.22, 22.99.
Maldi-tof (THAP, Methanol) (m/z): calculated for [CssHes7NsO2+Na]” = 1065.06;
found:1065.36

OH
HO
\\OH COOHqG OH oH ;::
AcHNOO&\/O My o4 Jo
HO N - /%
N
H

HO OH

SL-2F

Synthesis of SL-FYF. 0.3 g (0.49 mmol) of compound 15 and 0.28 g (0.43 mmol) of
(2,3) sialyllactose were dissolved in 6 mL of anhydrous methanol, and 0.079 g of
yttrium trifluoromethanesulfonate (0.14 mmol) was added. After reacting for 48 h at
50 °C under nitrogen protection, the solvent was removed under reduced pressure, and
the product is purified with a 200-300 mesh silica gel column, using dichloromethane:
methanol = 2:3 as the eluent to obtain a white solid product of SL-FYF (0.29 g, 56%).
'H NMR (400 MHz, DMSO-dg, 295 K) 6 9.54 (d, J = 4.7 Hz, 1H), 9.16 (s, 1H), 8.10
(d, J=8.3 Hz, 1H), 8.08 (d, J = 6.2 Hz, 1H), 7.82 (m, 1H), 7.26 — 7.14 (m, 14H), 7.01
(d, J = 8.2 Hz, 3H), 6.88 (d, J = 8.8 Hz, 1H), 6.68 — 6.62 (m, 2H), 5.66 (s, 1H), 5.11
(d, J = 4.3 Hz, 1H), 4.81 (d, J = 5.9 Hz, 1H), 4.65 (t, J = 5.4 Hz, 1H), 4.62 — 4.56(m,
1H), 4.55 — 4.42(m, 4H), 4.32 (t, J = 5.7 Hz, 1H), 4.23 (t, J = 5.9 Hz, 1H), 4.14 — 4.05
(m, 2H), 3.96 (dd, J = 10.1, 2.9 Hz, 1H), 3.76 (dd, J = 11.1, 6.4 Hz, 1H), 3.69 (s, 1H),
3.65 — 3.53 (m, 6H), 3.52 — 3.24 (m, 5H), 3.24 — 3.14 (m, 4H), 3.01 — 2.96 (m, 1H),
2.95-2.79 (m, 4H), 2.78 — 2.72 (m, 1H), 2.70 — 2.57 (m, 2H), 1.89 (s, 3H), 1.27 (s,
9H).

B¥C NMR (100 MHz, DMSO-dg) 6 172.78, 171.61, 170.90, 156.19, 155.45, 138.57,
137.58, 130.72, 129.65, 129.57, 128.56, 128.41, 127.87, 126.78, 126.54, 115.34,
104.66, 100.09, 91.04, 81.61, 78.58, 76.53, 76.28, 75.34, 73.68, 71.65, 69.02, 67.74,
67.16, 63.77, 61.21, 60.80, 56.31, 54.03, 53.36, 52.67, 42.33, 38.33, 38.01, 29.47,
28.56, 28.16, 22.98.

Maldi-tof (THAP, Methanol) (m/z): calculated for [CssH7sNgO24+Na]" = 1228.23;
found:1228.33

OH

OH
HO
[elele} /©
OH B _on on o . 7%
AcHN /=0 o&&/o/ﬁ ;OH NT(T\ 8 o
HO HO ~N N
OH ou H o H I
SL-FYF
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Synthesis of SL-FUF. Dissolved 0.22 g (0.33 mmol) of compound 16 and 0.20 g
(0.31 mmol) of (2,3) sialyllactose in 4 mL of anhydrous methanol, and added 0.053 g
of yttrium trifluoromethanesulfonate (0.10 mmol), the reaction mixture was stirred at
32 °C under nitrogen protection for 48 h. Then the solvent was removed under
reduced pressure, and the product was purified with a 200-300 mesh silica gel column,
using dichloromethane: methanol=2:3 as the eluent to obtain a white solid product of
SL-FUF (0.19 g, 47%).

'H NMR (400 MHz, DMSO-ds, 295 K) & 9.68 (d, J = 5.0 Hz, 1H), 8.43 (d, J = 8.1
Hz, 1H), 8.11 — 8.04 (m, 2H), 7.25 — 7.21 (m, 10H), 6.89 — 6.86 (d, J = 8.6 Hz, 1H),
6.22 (s, 1H), 5.64 (s, 1H), 5.14 (d, J = 4.2 Hz, 1H), 4.90 — 4.56 (m, 5H), 4.53 — 4.46
(m, 2H), 4.43 (s, 1H), 4.30 (t, J = 5.6 Hz, 1H), 4.23 (t, J = 5.8 Hz, 1H), 4.16 (d, J =
7.9 Hz, 1H), 4.04 — 3.94 (m, 2H), 3.80 — 3.72 (m, 1H), 3.71 — 3.66 (m, 1H), 3.65 —
3.52 (m, 6H), 3.52 — 3.42 (m, 4H), 3.40 — 3.36 (m, 3H), 3.28 — 3.23 (m, 5H), 3.20 -
3.15 (m, 4H), 3.10 — 2.83 (m, 4H), 2.80 — 2.71 (m, 2H), 2.65 — 2.56 (m, 1H), 1.89 (s,
3H), 1.24 (s, 9H).

3C NMR (100 MHz, DMSO-dg) & 172.74, 172.02, 170.56, 169.76, 155.59, 138.71,
137.51, 129.64, 129.56, 128.50, 128.43, 126.59, 104.75, 100.16, 91.13, 81.59, 78.37,
76.37, 76.25, 75.35, 73.65, 71.63, 71.38, 68.97, 67.82, 67.13, 60.74, 56.37, 53.39,
4253, 37.42, 28.41, 26.30, 22.98.

YF NMR (400 MHz, DMSO-d6) & -82.34 — -260.97 (m).

Maldi-tof (THAP, Methanol) (m/z): calculated for [CsgH74FsNeO23+Na]* = 1317.22;

found:1317.35

F F

Ho QM

A H:SZO;\;\OOSH 2 /5 EOH H
O N- ” Y\N
SL-FUF

Synthesis of FITC-3F. Ethylenediamine was used as a Spacer to facilitate the
synthesis of FITC-3F. Under basic conditions, the isothiocyanate group of FITC can
readily interact with the amine group of triphenylalanine. Finally obtained a slight
yellow solid of FITC-3F of (0.21 g, 53%).

'H NMR (400 MHz, DMSO-dg, 295 K) § 10.12 — 10.03 (m, 3H), 8.19 (d, J = 1.8 Hz,
1H), 8.09 — 8.07 (m, 2H), 7.90 (d, J = 8.1 Hz, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.23 -
7.16 (m, 15H), 6.89 (d, J = 8.8 Hz, 4H), 6.68 (d, J = 2.1 Hz, 2H), 6.62 — 6.54 (m, 4H),
4.60 — 4.53 (m, 1H), 4.52 — 4.45 (m, 1H), 4.15 — 4.06 (m, 1H), 3.51 — 3.21 (m, 4H),
3.06 —2.95 (m, 2H), 2.89 — 2.76 (m, 3H), 1.26 (s, 9H).

Maldi-tof (DHB, Methanol) (m/z): calculated for [CssHs54NgO10S]= 991.13;

found:991.21
"""“T // \;N HN\/\ N O
N N \E jﬁN (( S51
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