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Experimental Details

Materials:

Cobalt (II) nitrate hexahydrate (≥98.0%), Formic acid (≥99.0%) and N, N’-dimethylformamide 

(≥99.0%) were purchased from Sigma Aldrich. Diethyl ether (99%) was purchased from Alfa Aesar.

Synthesis of Cobalt Formate, Co3(HCOO)6 

Cobalt formate (CoFA) was synthesized in gram scale. Cobalt (Ⅱ) nitrate hexahydrate (17.6 mmol, 

5.236 g) and Formic acid (115.7 mmol, 4.5 mL) were dissolved in N, N’-dimethylformamide (15 mL) 

using ultra sonication. The solution was heated at 100 °C overnight to synthesize crystals of Cobalt 

formate.  The resulting purple crystals were collected and washed with DMF (10 mL) and Diethyl 

ether (10 mL) 3 times for each.  The crystals were dried in a vacuum oven at 50° C for 5 hours. The 

yield of CoFA was about 93% (2.847 g).

Structural Characterizations:

The structural characterizations for CoFA have been performed by using Fourier transform infrared 

(FT-IR) spectroscopy, thermal gravimetric analysis (TGA) and powder X-ray diffraction (PXRD). 

FT-IR spectrum was recorded on a Thermo Fisher Scientific Nicolet iS50. Sample data were recorded 

in transmission mode in the range of 4000 to 650 cm-1 using ATR diamond mode with 64 scans at a 

resolution of 4 cm-1. Thermal stability was measured using Perkin-Elmer TGA thermogravimetric 

analyzer in air with a heating rate 10°C/min up to 550°C. PXRD patterns of the CoFA crystals were 

measured using Bruker D8 Advanced (TRIO/TWIN) with scanning rate of 4°/min from 5° to 45° 

with a silicon holder.
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Textural Characterizations and Gas Sorption Analysis:

A Highly sophisticated gas sorption analyzer autosorb-iQ2 (Quantachrome Instruments) was used to 

perform the textural characterizations and gas (D2 and H2) sorption experiments. Prior to adsorption 

experiments the sample cell has been calibrated for temperature, then further based on the temperature 

caliberation the volume caliberation of empty sample cell has been carried out. For sorption 

experiments, about 100 mg of sample was activated at 423 K under dynamic vacuum for 8 hrs in 

order to remove any adsorbed solvent or gas molecules on the sample. Textural analysis has been 

performed by measuring the N2 sorption analysis at 77 K. D2 and H2 sorption isotherms have been 

measured in the temperature range of 20 to 77 K using cryo-cooler which allows us to control the 

temperatures from 20 K to 300 K with an estimated error of < 0.1 K.

Thermal Desorption Spectroscopic (TDS) studies for H2 and D2:

The thermal desorption analysis was measured by using home-built cryogenic thermal desorption 

spectroscopy (TDS) equipped with quadruple mass spectroscopy (QMS), and the details of it has 

been described previously.S1,S2 Prior to experiment, the sample was activated at 423 K for 4 h under 

dynamic vacuum (10-8 torr). In order to quantify the signal of the mass spectrometer, TDS apparatus 

was calibrated by using TiH2 and PdCe alloy. For desorption experiment with pure gas, the sample 

was exposed to pure H2 and D2 of 1 bar at 20 K and 23 K, respectively for 30 min then all the non-

adsorbed gas was evacuated, after that it was cooled down to 18 K. Finally, the sample was heated at 

a rate of 3 K/min to 100 K. The desoprtion experiment of D2/H2 mixture gases was carried out using 

with equimolar D2/H2 composition at specific exposure temperature for specific exposure time. 

Similar to pure gases, here also all the non-adsorbed gases were evacuated before cooling down to 18 

K and then subsequmet heating at a rate of 3 K/min to final temperature of 100 K while the desorbing 

gases were detected simultaneously by quadruple mass spectroscopy (QMS). The selectivity was 

obtained after quantifying the area under the desorption curve using the calibration constant.
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Figure S1. FT-IR spectrum of CoFA.

Figure S2. PXRD patterns of  CoFA with the simulated PXRD patterns of desolvated CoFA. 
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Figure S3. TGA of CoFA measured in air. 
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Figure S4. N2 sorption isotherm of CoFA measured at 77 K. 
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Figure S5. Pure gas (H2 and D2) thermal desorption spectra of CoFA measured with heating rate of 

3 K min-1.
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Figure S6. Equimolar D2/H2 mixture TDS spectra of CoFA measured at 30 K and 10 min exposure 

time with varying pressure loading.
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Figure S7. Equimolar D2/H2 mixture TDS spectra of CoFA measured at 40 K and 10 min exposure 

time with varying (a) pressure loading and (b) exposure time.
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Figure S8. Equimolar D2/H2 mixture TDS spectra of CoFA measured at 60 K and 10 min exposure 

time with varying pressure loading.
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Figure S9. Equimolar D2/H2 mixture, SD2/H2 as a function of (a) pressure loading and (b) exposure 

temperature.
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Figure S10. H2 uptake (dotted line) and D2 uptake (solid line) at strong binding site with increase in 

pressure loading at various temperatures.
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Figure S11. Equimolar D2/H2 mixture, SD2/H2 as a function of exposure time at 25 K/1 bar and 40 

K/100 mbar.
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Figure S12. TDS spectra measured at 30 K and 10 min exposure time with exposure of D2 (1 mbar 

to 30 mbar) and equimolar D2/H2 mixture (20 mbar to 1 bar).
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Figure S13. TDS spectra measured at 40 K and 10 min exposure time with exposure of D2 (20 

mbar) and equimolar D2/H2 mixture (100 and 500 mbar).



11

Table S1. Separation performance comparison with reported literature using 1:1 isotope 

mixture

Compound Experimental 

Temperature (K)

D2 uptake 

(mmol g-1)

SD2/H2 for 1:1 isotope 

mixture

Reference

Cocryst1 30 4.7 8.0 S3

Zeolite 5A 30 4.0 2.7 S4

Py@COF-1 22 0.5 9.7 S1

MIL-53(Al) 40 2.9 13.6 S5

MOF-74-IM-10 77 2.8 26.0 S6

MFU-4l 40 8.3 1.7 S7

IFP-1 30 9.3 2.0 S8

Takeda 3A 40 0.01 6.8 S9

MFU-4(Co,Cl) 30 4.72 4 S9

MS13X 77 0.6 3.1 S10

Ni2Cl2BBTA 77 11 4.5 S11

Cobalt formate 25 7.0 25.8 This work
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Density functional theory calculations 

Vienna Ab Initio Simulation Package (VASP)S12,S13 was employed for DFT+U calculations in this 

study. GGA-PBES14 functional was used for all calculations with the criterion of 1 × 10-4 eV (0.01 

eV/Å) for energy (force) convergence. After optimizing the volume of the formate using an energy 

cutoff of 520 eV, the cutoff was reduced to 400 eV for later calculations. The Monkhorst–Pack k-

meshesS15 of 3 × 2 × 2 were employed for a 1 × 2 × 1 supercell. The spin polarization and the effective 

U value of 5.05 eVS16 for Co were included in all calculationsS17. Using DFT-D3 (Becke-Jonson 

damping) implemented in VASP, van der Waals corrections were applied to our calculationsS18-S21. 

To explore the migration energies of a hydrogen/deuterium molecule in cobalt formate (CoFA), 

climbing image nudged elastic band (NEB)S22 calculations were done. The binding energy ( ) of a Eb

hydrogen molecule to CoFA was determined using eq (1) with zero-point energy correctionsS23.

                                                 (1)Eb = EH2/CoFA ― ECoFA ― EH2

where , , and  are total energies of a hydrogen molecule within the CoFA, the CoFA, EH2/CoFA ECoFA EH2

and the hydrogen molecule, respectively.              

As displayed in Figure S14, the classical barrier for H2 migration inside the formate was found to be 

quite small as 1.09 kJ/mol. On the other hand, the binding energies of H2 and D2 to the formate were 

-5.69 and -7.95 kJ/mol, respectively, indicating that the binding strength of D2 is higher than that of 

H2 by 2.26 kJ/mol.
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Figure S14. (a) Migration of a hydrogen molecule (H2) inside CoFA. Blue, brown, light green, red, 

and white colors were employed to represent cobalt, carbon, migrated hydrogen, oxygen, and 

hydrogen, respectively and (b) classical energy profile for H2 migration inside CoFA.
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