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1. Characterization of Catalyst
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Figure S1. Nitrogen adsorption/desorption isotherm and corresponding pore size distribution 
curve (inset) of fresh PtFeNPore

Figure S2. (a) Pt L3-edge k2-weighted EXAFS oscillation k2χ(k) and (b) Fe K-edge k3-weighted 
EXAFS oscillations k3χ(k) of PtFeNPore. The data of Pt foil and PtO2, Fe foil, FeO, Fe2O3 and 
FeOOH are shown for references, respectively.
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Figure S3. (a) The fitting curve of k2-weighted EXAFS spectra and (b) k2χ(k) oscillations of 
PtFeNPore at the Pt L3-edge using the ARTEMIS module of IFEFFIT.

Figure S4. (a) The fitting curve of k3-weighted EXAFS spectra and (b) k3χ(k) oscillations of 
PtFeNPore at the Fe K-edge using the ARTEMIS module of IFEFFIT.

Table S1. Summary of EXAFS fitting results of PtFeNPore at Pt L3-edge.

Sample Path C.N, R (Å) 2 (10-3Å2) ΔE (eV) R factor

PtFeNPore Pt-Fe 2.2 2.66 8.8 6.3 0.0013

Pt-Pt 5.9 2.72 7.2 5.0

Table S2. Summary of EXAFS fitting results of PtFeNPore at Fe K-edge.

Sample Path C.N, R (Å) 2 (10-3Å2) ΔE (eV) R factor

Fe-O 2.3 1.93 6.9 -3.1

PtFeNPore Fe-Pt 4.9 2.66 10.5 -7.3 0.0004

Fe-Fe1 0.9 2.66 10.5 -7.3

Fe-Fe2 0.8 2.99 13.7 -7.3
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2. Comparative Experiments on the Activity and Selectivity of Several Catalysts

Table S3. Results of comparative experiments.a

X

NO2

X

NH2cat. H2 (balloon)

rt, MeOH (3 mL), 24 h

1 2

+
NH2

3
X = Cl, Br, I X = Cl, Br, I

Yield (%)b
Entry Cat. X of 

substrate 1 2 3
1 PtFeNPore Cl 90 0
2 Br 88 0
3c I 86 0
4 Pt/C Cl 82 11
5 Br 66 25
6 I 0 94
7 PdNPored Cl 35 55
8 Br 15 80
9 I 70 trace
10 FeNPore Cl NRe

11 Br NRe

12 I NRe

aReaction conditions: halonitrobenzene (1, 0.5 mmol), H2 (balloon), and catalyst (4 mol%) in 
MeOH (3 mL) for 24 h. b Isolated yield. cThe reaction was conducted in MeOH at 35 °C under H2 
(balloon) atmosphere. dThe hydrogenaion was catalyzed by PdNPore reported before. eNo 
reaction.

3. Procedure for Experiment of Recycle Use of PtFeNPore Catalyst 

4-Chloronitrobenzene (1b, 0.5 mmol, 78.7 mg), PtFeNPore (4.1 mg, Pt: 4 mol%, 

0.025 mmol), and MeOH (3.0 mL) were successively placed in a autoclave (20 mL) 

with a magnetic stir bar in a N2 atmosphere. The autoclave was purged thrice with H2. 

Then the autoclave was filled with H2 (balloon). The reaction mixture was stirred at 

room temperature for 24 h. Then, the remaining H2 was vented. The mixture was 

evaporated to afford crude product, which was purified via alumina column 

chromatography (eluent: ethyl acetate/petroleum ether = 1/5) to afford product 2b. 

The PtFeNPore catalyst was recovered by a magnet and purified by washing with 



5

acetone (4.1 mg). Then the recovered catalyst was used in the next recycle under the 

same conditions. 
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4. 1H NMR Spectrum of Deuterium-Hydrogen Exchange Reaction

Figure S5 1H NMR Spectrum of Deuterium-hydrogen exchange reaction.

5. The Characterization of Products

The spectroscopic data of all the products are presented. All the known compounds 

were in accordance with the data reported in the literatures.

4-Fluoroaniline (2a)1

NH2

F

Red-brown oil (63.5 mg, 90%). 1H NMR (400 MHz, CDCl3): δ 6.86 (t, J = 8.6 Hz, 

2H), 6.74–6.48 (m, 2H), 3.49 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 157.61, 155.27, 

142.44, 116.11, 116.03, 115.79, 115.57, 77.39, 77.08, 76.76.

4-Chloroaniline (2b)2 

NH2

Cl

Light yellow solid (57.4 mg, 90%), mp 69–71 °C (lit.3 mp 69–71 °C). 1H NMR (400 

MHz, CDCl3): δ 7.10 (d, J = 8.7 Hz, 2H), 6.60 (d, J = 8.7 Hz, 2H), 3.62 (s, 2H); 13C 

NMR (100 MHz, CDCl3): δ 145.01, 129.13, 123.11, 116.26, 77.43, 77.11, 76.79.

4-Bromoaniline (2c)2
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NH2

Br

Light yellow solid (86.9 mg, 86%), mp 58–60 °C (lit.4 mp 58–60 °C). 1H NMR (400 

MHz, CDCl3): δ 7.10 (d, J = 8.7 Hz, 2H), 6.60 (d, J = 8.7 Hz, 2H), 3.62 (s, 2H); 13C 

NMR (100 MHz, CDCl3): δ 145.42, 132.02, 116.71, 110.22, 77.34, 77.03, 76.71.

4-Iodoaniline (2d)5 

NH2

I

White solid (94.2 mg, 86%), mp 61‒63 °C (lit.6 mp 61 °C). 1H NMR (400 MHz, 

CDCl3): δ 7.41 (d, J = 8.4 Hz, 2H), 6.47 (d, J = 8.4 Hz, 2H), 3.66 (s, 2H); 13C NMR 

(100 MHz, CDCl3): δ 146.08, 137.92, 117.32, 79.39, 77.39, 77.08, 76.76.

4-Bromo-3-methylaniline (2e)7 

NH2

Br

Me

Gray solid (80.9 mg, 87%), mp 81°C (lit.8 mp 80.7–81.2 °C) 1H NMR (400 MHz, 

CDCl3): δ 7.25 (d, J = 8.4 Hz, 1H), 6.57 (d, J = 2.6 Hz, 1H), 6.39 (dd, J = 8.4, 2.7 Hz, 

1H), 3.59 (s, 2H), 2.29 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 145.66, 138.42, 

132.75, 117.47, 114.29, 112.94, 77.35, 77.03, 76.71, 22.88.

3-Bromoaniline (2f)9 

NH2Br

Light yellow oil (81.7 mg, 95%). 1H NMR (400 MHz, CDCl3): δ 7.01 (t, J = 8.0 Hz, 

1H), 6.91–6.85 (m, 1H), 6.83 (t, J = 2.2 Hz, 1H), 6.58 (dd, J = 8.0, 2.4 Hz, 1H), 3.71 

(s, 2H); 13C NMR (100 MHz, CDCl3): δ 148.33, 131.00, 123.17, 121.29, 117.93, 

114.06, 78.10, 77.78, 77.46.

3-Iodoaniline (2g)10 
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NH2I

Light yellow oil (101.8 mg, 93%). 1H NMR (400 MHz, CDCl3): 1H NMR (400 MHz, 

CDCl3): δ 7.13–6.97 (m, 2H), 6.86 (t, J = 7.9 Hz, 1H), 6.62 (d, J = 7.9 Hz, 1H), 3.65 

(s, 2H); 13C NMR (100 MHz, CDCl3): δ 147.76, 130.79, 123.75, 114.32, 94.98, 77.41, 

77.10, 76.78.

2-Bromoaniline (2h)11 

NH2

Br

Light yellow solid (77.4 mg, 90%), mp 31 ºC (lit.12 mp 31 °C). 1H NMR (400 MHz, 

CDCl3): δ 7.44 (d, J = 8.0 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 6.77 (dd, J = 8.0, 1.4 Hz, 

1H), 6.65 (t, J = 7.6 Hz, 1H), 4.09 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 144.19, 

132.65, 128.44, 119.48, 115.88, 109.39, 77.56, 77.24, 76.92.

2-Iodoaniline (2i)13 

NH2

I

Light yellow solid (97.5 mg, 89%), mp 57–59 ºC (lit.14 mp 57–59 ºC) 1H NMR (400 

MHz, CDCl3): δ 7.64 (dd, J = 7.9, 1.1 Hz, 1H), 7.17–7.07 (m, 1H), 6.75 (dd, J = 8.0, 

1.2 Hz, 1H), 6.53–6.43 (m, 1H), 4.08 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 146.77, 

139.01, 129.35, 119.99, 114.74, 84.18, 77.37, 77.05, 76.74.

3-Bromo-4-Iodoaniline (2j)15 

NH2Br

I

Pale yellow oil (134 mg, 90%). 1H NMR (400 MHz, CDCl3): δ 7.52 (d, J = 8.5 Hz, 

1H), 6.98 (d, J = 2.7 Hz, 1H), 6.35 (dd, J = 8.5, 2.7 Hz, 1H), 3.74 (s, 2H); 13C NMR 

(101 MHz, CDCl3): δ 147.61, 140.26, 129.92, 119.00, 115.89, 85.59.
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2-Chloro-1,4-phenylenediamine (2k)16 

NH2

H2N
Cl

Dark brown solid (65.6 mg, 92%), mp 61–62 ºC (lit.17 61–62 ºC). 1H NMR (400 MHz, 

CDCl3): δ 6.66 (d, J = 2.5 Hz, 1H), 6.63 (s, 1H), 6.49 (d, J = 2.5 Hz, 1H), 3.46 (s, 4H); 

13C NMR (100 MHz, CDCl3): δ 139.16, 135.19, 120.37, 117.39, 116.43, 115.58, 

77.45, 77.14, 76.82.

5-amino-1-bromonaphthalene (2l)18

Br

NH2

Brown oil (92.2 mg, 83%). 1H NMR (400 MHz, CDCl3): δ 7.80 (dd, J = 8.0, 4.7 Hz, 

2H), 7.75 (dd, J = 8.5, 2.4 Hz, 1H), 7.42 (dd, J = 8.0, 8.0 Hz, 1H), 7.31–7.26 (m, 1H), 

6.85 (dd, J = 7.6, 2.3 Hz, 1H), 4.19 (s, 2H). 13C NMR (100 MHz, CDCl3) δ 142.48, 

132.96, 130.17, 127.81, 124.93, 124.79, 123.70, 120.79, 118.18, 110.73, 77.41, 77.10, 

76.78.

6-chloro-pyridin-3-ylamine (2m)19

NCl

NH2

Light yellow solid (61.7 mg, 96%), mp 61–62 ºC (lit.19 60–62 ºC). 1H NMR (400 

MHz, CDCl3) δ 7.80 (d, J = 3.0 Hz, 1H), 7.04 (d, J = 8.5 Hz, 1H), 6.93 (dd, J = 8.5, 

3.0 Hz, 1H), 3.74 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 141.90, 140.00, 136.28, 

124.87, 124.14, 77.44, 77.12, 76.81.
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7. Copies of 1H and 13C NMR Spectra of Products 

1H NMR, 400 MHz, CDCl3
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1H NMR, 400 MHz, CDCl3
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1H NMR, 400 MHz, CDCl3
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1H NMR, 400 MHz, CDCl3
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1H NMR, 400 MHz, CDCl3
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1H NMR, 400 MHz, CDCl3
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1H NMR, 400 MHz, CDCl3
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1H NMR, 400 MHz, CDCl3
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1H NMR, 400 MHz, CDCl3
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1H NMR, 400 MHz, CDCl3
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1H NMR, 400 MHz, CDCl3
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1H NMR, 400 MHz, CDCl3
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1H NMR, 400 MHz, CDCl3
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