Supporting Information

Reduced Graphene Oxide-Coated Silica Nanospheres as Flexible Enzymatic Biosensors for Detection of Glucose in Sweat

Mengyi Xua, Ye Zhua*, Shanhui Gaoa, Zhixing Zhanga, Yuxuan Gua, Xiaoya Liua*

aKey Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China.

*To whom correspondence should be addressed.

E-mail: lxy@jiangnan.edu.cn, zhuye@jiangnan.edu.cn
Figure S1. (A) Raman spectra of Gr and GO. (B) FT-IR spectrum of GO. (C-D) AFM images and (E-F) TEM images of GO aqueous dispersion after sonication at low power (120 W, 2 h) and high power (360 W, 12 h).
Figure S2. SEM images of (A) SiO$_2$, (B) GO/SiO$_2$ and (C) rGO/SiO$_2$ marked with dimensions.
Figure S3. EDX spectra and element content tables of (A) GO/SiO$_2$ and (B) rGO/SiO$_2$.
Figure S4. CV curves of activating C-PDMS. Voltage: -0.6 - 1.2 V, scan rate: 100 mV·s$^{-1}$, cycles: 40.
Figure S5. (A) CV curves and (B) Nyquist plots of C-PDMS before/after activation.
Figure S6. CV curves of SiO$_2$/C-PDMS, rGO/SiO$_2$/C-PDMS and NF/GOx/rGO/SiO$_2$/C-PDMS in 0.01 M PBS (pH=5.0) with 1 mM glucose at a scan rate of 100 mV·s$^{-1}$.
Figure S7. CV curves of NF/GOx/rGO/SiO$_2$/C-PDMS biosensor in 0.01 M PBS (pH=5.0) with/without 1 mM glucose at a scan rate of 100 mV·s$^{-1}$.
Figure S8. Current responses of NF/GOx/rGO/SiO\textsubscript{2}/C-PDMS biosensor to 1 mM glucose under different (A) working potential and (B) pH.
Figure S9. (A) Amperometric $I-t$ curves of NF/GOx/TA/C-PDMS biosensor for different concentration of glucose solution at 0.4 V. (B) Calibration curve of response current value against glucose concentration.
Figure S10. Lineweaver-Burk plot of NF/GOx/rGO/SiO$_2$/C-PDMS.