Supporting Information

Highly Efficient Bifunctional Electrode Fashioned with \textit{in situ} Exsolved NiFe Alloy for Reversible Solid Oxide Cells

\begin{align*}
\text{Junil Choi}^\dagger, \text{Minho Kim}^\dagger, \text{Song Kyu Kang}^\dagger, \text{Jihoon Kim}^\dagger, \text{Jungseub Ha}^\dagger, \text{Hyun Ho Shin}^\ddagger, \\
\text{Taiho Park}^\dagger \text{and Won Bae Kim}^\ddagger
\end{align*}

\footnotesize{† Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea}

\footnotesize{‡ Corresponding Author Footnote}

Dr. Hyun Ho Shin

E-mail: hyunhoshin@postech.ac.kr

Prof. Won Bae Kim

Tel.: +82-54-279-2397 / Fax: +82-54-279-5528

E-Mail: kimwb@postech.ac.kr

Twelve pages (page S1~page S17), one table (Table S1), eleven figures (Figure S1~S11), and references (page S15~S17) are contained in the Supporting Information.
Table S1. Performance comparison table of CO₂ electrolysis over ceramic-based cathodes with exsolved metal or alloy nanoparticles.

<table>
<thead>
<tr>
<th>Parent oxide catalyst</th>
<th>Exsolved element</th>
<th>Gas condition</th>
<th>Current density at 1.5 V (A·cm⁻²)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr₀.₈Sr₁.₂(Fe,Ni)₀.₄Nb₀.₂O₄₋₀</td>
<td>NiFe</td>
<td>30% CO/CO₂</td>
<td>1.59 (850°C)</td>
<td>This work</td>
</tr>
<tr>
<td>Sr₁.₅Fe₁.₅Mo₀.₄Ni₀.₄O₆₋₀</td>
<td>NiFe</td>
<td>100% CO₂</td>
<td>c.a. 2.16 (800°C)</td>
<td>S1</td>
</tr>
<tr>
<td>La₁.₂Sr₀.₈Mn₀.₄Fe₀.₄O₄₋₀</td>
<td>Fe</td>
<td>30% CO/CO₂</td>
<td>2.04 (850°C)</td>
<td>S2</td>
</tr>
<tr>
<td>PrBaMn₁₄Co₂₂O₅</td>
<td>Co</td>
<td>30% CO/CO₂</td>
<td>1.6 (850°C)</td>
<td>S3</td>
</tr>
<tr>
<td>La₆.₆Sr₆.₄Fe₆.₄Ni₃.₄O₃₋₀</td>
<td>NiFe</td>
<td>30% CO/CO₂</td>
<td>c.a. 1.49 (850°C)</td>
<td>S4</td>
</tr>
<tr>
<td>(La₀.₆₅Sr₀.₃Ce₀.₀₅)₀.₉(Cr₀.₅Fe₀.₅)₀.₈₅Ni₀.₁₅O₃₋₀</td>
<td>NiFe</td>
<td>30% CO/CO₂</td>
<td>c.a. 1.43 (850°C)</td>
<td>S5</td>
</tr>
<tr>
<td>La₁.₂Sr₀.₈Co₄₂Mn₀.₄O₄₋₀</td>
<td>CoNi</td>
<td>30% CO/CO₂</td>
<td>c.a. 1.08 (850°C)</td>
<td>S6</td>
</tr>
<tr>
<td>La₁.₂Sr₀.₈Co₄₂Mn₀.₄O₄₋₀</td>
<td>Co</td>
<td>30% CO/CO₂</td>
<td>c.a. 1.03 (850°C)</td>
<td>S7</td>
</tr>
<tr>
<td>Sr₂Fe₁.₃₅Mo₀.₄₅Ni₀.₅O₄₋₀</td>
<td>FeNi₃</td>
<td>5% N₂/CO₂</td>
<td>c.a. 0.89 (850°C)</td>
<td>S8</td>
</tr>
<tr>
<td>Sr₂Fe₁.₃₅Mo₀.₄₅O₆₋₀</td>
<td>Fe</td>
<td>100% CO₂</td>
<td>c.a. 0.86 (850°C)</td>
<td>S9</td>
</tr>
</tbody>
</table>
Figure S1. The SEM images of (a) cross-section of button cell (PSFNNb-GDC|LSGM|LSCF-GDC) and (b) porous structure of PSFNNb-GDC electrode.
Figure S2. XRD patterns of reduced PSFNNb after treated in ambient air condition at the temperature range from 500 °C to 800 °C.
Figure S3. XPS survey of (a) as-prepared and (b) reduced PSFNNb.
Figure S4. XRD patterns of PSFNNb after treated in 20% H$_2$/Ar atmosphere at the temperature range from 200℃ to 800 ℃.
Figure S5. The CO$_2$ TPD profiles of as prepared PSFNNb and reduced PSFNNb.
Figure S6. (a) Electrical conductivities of PSFNNb under air atmosphere and (b) NiFe-R.P.PSFNNb under 20% H\textsubscript{2}/Ar and 30% CO/CO\textsubscript{2} over the temperature range from 850 °C to 450 °C.

Figure S4 showed the electrical conductivities of as-prepared PSFNNb and NiFe-R.P.PSFNNb measured under various gas conditions in the temperature range between 850 °C and 450 °C. Under the ambient air condition, the as-prepared PSFNNb exhibited metal-like behavior with a decreased conductivity with increasing temperature (72.2 S·cm-1 at 850 °C). In most perovskite oxides, it is well known that the liberation rate of lattice oxygen increases rapidly above 450 °C, producing more oxygen vacancies in lattice10–12. The defect formation reaction can be represented by the equation (7). In PSFNNb, electrical conduction is mainly governed by small polaron hopping via Fe3+-O2−-Fe4+, where Fe 3d and O 2p orbitals are overlapped13–15. Therefore, created oxygen vacancies could interfere with the B-O-B periodicity, which is main conduction pathway, thus inducing the decrease in overall electrical conductivities of oxide as the temperature increases16,17.

\[2B \cdot B + O^X_{0} \leftrightarrow 2B^X_{B} + V \cdot O + \frac{1}{2}O_2 \] (S1)

The electrical conductivities of reduced PSFNNb (i.e., NiFe-R.P.PSFNNb) were also measured under 20% H\textsubscript{2}/N\textsubscript{2} and 30%
CO/CO₂ atmospheres, resulting in 0.44 S·cm⁻¹ and 0.065 S·cm⁻¹ at 850 °C, respectively, which are slightly lower than the ones of niobium-doped perovskite oxides such as La₀.₉Ca₀.₁Fe₀.₉Nb₀.₁O₃₋δ,¹⁸ La₀.₈Sr₀.₂Fe₀.₉Nb₀.₁O₃₋δ,¹⁷ and Ba₀.₉₅La₀.₀₅Fe₀.₉Nb₀.₁O₃₋δ,¹³ etc. This is presumably because R.P. oxides have intrinsically fewer conduction pathway with B-O-B bonds due to the intercalated AO rock-salt planes between ABO₃ structures.
Figure S7. IV curves of NiFe-R.P.PSFNNb electrode under 100% CO and 3% H\textsubscript{2}O/CO gas conditions at 850 °C.
Figure S8. The EIS profiles of NiFe-R.P.PSFNNb-GDC symmetric cell under (a) humidified syngas (H$_2$/CO=3) and (b) 30% CO/CO$_2$ at the temperature of 850, 800, and 750 °C, respectively.
Figure S9. Production rate of CO and faraday efficiency for CO$_2$ electrolysis at 850 °C in 30% CO/CO$_2$ at 850 °C.
Figure S10. The SEM images of fuel electrode after being (a) reduced in dry H₂ for 30 min, (b) tested in humidified syngas (H₂/CO=3) under constant current density of 180 mA·cm⁻² for 10 h, and (c) tested in 30% CO/CO₂ under constant current density of -1.8 A·cm⁻² for 10 h at 850 °C with instant N₂ quenching; Corresponding particle sized distributions of (d) dry H₂, (e) humidified syngas, and (f) 30% CO/CO₂.
Figure S11. Reversible cyclic operation consisting of SOFC mode in humidified syngas under constantly applied voltage of -0.3 V vs OCV for 1 h and SOEC mode in 30% CO/CO$_2$ under constantly applied voltage of 0.3 V vs OCV for 0.5 h.
References

(8) Lv, H.; Lin, L.; Zhang, X.; Gao, D.; Song, Y.; Zhou, Y.; Liu, Q.; Wang, G.; Bao, X. In Situ Exsolved FeNi3 Nanoparticles on Nickel Doped Sr2Fe1.5Mo0.5O6-δ Perovskite for Efficient Electrochemical CO2

(10) Fang, S. M.; Yoo, C. Y.; Bouwmeester, H. J. M. Performance and Stability of Niobium-Substituted Ba0.5Sr 0.5Co0.8Fe0.2O3 - δ Membranes. *Solid State Ionics* **2011**, *195* (1), 1–6, DOI 10.1016/j.ssi.2011.05.022.

(15) Huang, Y.; Ding, J.; Xia, Y.; Miao, L.; Li, K.; Zhang, Q.; Liu, W. Ba0.5Sr0.5Co0.8-XFe0.2NbxO3-δ (X≤0.1) as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells with an Electron-Blocking Interlayer. *Ceram. Int.* **2020**, *46* (8), 10215–10223, DOI 10.1016/j.ceramint.2020.01.013.

(17) Li, J.; Wei, B.; Cao, Z.; Yue, X.; Zhang, Y.; Lü, Z. Niobium Doped Lanthanum Strontium Ferrite as A Redox-Stable and Sulfur-Tolerant