Supporting Information:

Why is MP2-Water “Cooler” and “Denser” than DFT-Water?

Soohaeng Yoo Willow,∗,† Xiao Cheng Zeng,‡ Sotiris S. Xantheas,¶ Kwang S. Kim,§ and So Hirata†

Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA, Department of Chemistry, University of Nebraska at Lincoln, 536 Hamilton Hall, Lincoln, Nebraska 68588, USA, Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, USA, and Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea

E-mail: willow@illinois.edu

∗To whom correspondence should be addressed
†Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
‡Department of Chemistry, University of Nebraska at Lincoln, 536 Hamilton Hall, Lincoln, Nebraska 68588, USA
¶Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, USA
§Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
Figure S1: Potential energy curves of a water dimer (C_s symmetry) as a function of the oxygen-oxygen distance calculated by MP2, SCS-MP2, and Cp-MP2 theories with the aug-cc-pVDZ basis set. Cp-MP2 indicates MP2 with a function counterpoise correction for the BSSE.
Figure S2: Distributions of molecular dipole moments in liquid water calculated with MD using forces from modified TTM-3F with three different values of polarizability scale factor \((E)\). The maximum peak of the dipole distribution with \(E = 0.8\), 1.0, and 1.2 is located at 2.52, 2.76, and 2.92 Debye, respectively.

Figure S3: Oxygen-oxygen RDFs of liquid water with \(\rho = 1\) g/cm\(^3\) at \(T = 300\) K calculated with MD using forces from modified TIP4/2005 with three different values of dispersion scale factor \((D)\). The values in parentheses are the average pressure.
Figure S4: Oxygen-oxygen RDFs of liquid water with $\rho = 1 \text{g/cm}^3$ at $T = 300 \text{K}$ calculated with MD using forces from modified Dang-Chang with three different values of dispersion scale factor (D). The values in parentheses are the average pressure.

Figure S5: Oxygen-oxygen RDFs of liquid water with $\rho = 1 \text{g/cm}^3$ at $T = 300 \text{K}$ calculated with MD using forces from modified Dang-Chang with three different values of polarizability scale factor (E). The values in parentheses are the average pressure.