Supporting Information

A 3.4 V Layered VOPO₄ Cathode for Na-ion Batteries

Guang He, Wang Hay Kan, Arumugam Manthiram*

Materials Science and Engineering Program & Texas Materials Institute, University of Texas at Austin, Austin, TX 78712, USA

Figure S1 XRD patterns of the VOPO₄ heated in Ar and air. *: (VO)₂P₂O₇, #: (VO)(PO₃)₂, +: α₁₁-VOPO₄.
Figure S2 Digital images of the products formed during the chemical sodiation process. The letters “s” and “r” represent “stir” and “rest”, respectively.
Figure S3 Digital image of the chemically sodiated β-VOPO$_4$ after 90 min. The VOPO$_4$ and NaI concentrations were the same as in Figure S1, but the I$_2$ color is much lighter here, even after much longer reaction time. It suggests that the insertion of sodium into the β form is more difficult.
Figure S4 The initial charge-discharge profile of the VOPO$_4$ cathode at C/20 rate. The large irreversible capacity possibly originates from the extraction of protons that was introduced during the delithiation process.
Figure S5 charge-discharge profiles of the VOPO$_4$ electrodes on the 2$^{\text{nd}}$ cycle, showing the higher overpotentials with increasing current rates.
Figure S6 SEM image of the VOPO$_4$/rGO composite, showing that the morphology of the particles is maintained after the delithiation process.