Supporting Information

Highly transparent and stretchable conductors based on a directional arrangement of silver nanowires by a microliter-scale solution process

Yeongun Ko, Seung Keun Song, Nam Hee Kim, and Suk Tai Chang*

School of Chemical Engineering and Materials Science, Chung-Ang University
Seoul 156-756, Republic of Korea
*E-mail: stchang@cau.ac.kr

Figure S1. Schematic of the MDD coating process for AgNW thin films.
Figure S2. Film roughness of the AgNW films measured by AFM as a function of the number of coating (NC). The AgNW films were prepared on the glass substrate with 0.5 wt% AgNWs and 20 µL of AgNW suspension.

Figure S3. Transmittance spectra of cross-AgNW thin films on a glass substrate (a) with various injection volume of 0.5 wt% AgNW suspension and (b) with 20 µL of 0.05 – 0.5 wt% AgNW suspension. The AgNW thin films were deposited with NC = 2.
Figure S4. Plot of the transmittance (550 nm) as a function of the sheet resistance for the AgNW films. The data for the AgNW films prepared by other coating techniques were taken from the literature and replotted for comparison.

Figure S5. Transmittance at $\lambda = 550$ nm of the AgNW coatings as a function of sheet resistance. The AgNW films were deposited on glass, PET, and PDMS substrates with 0.5 wt% AgNWs, 20 or 40 μL of AgNW suspension, and NC = 2 – 6. The sheet resistance of the AgNW thin films was measured without the annealing process.
Figure S6. Relative sheet resistance of (a – c) cross-AgNW thin films and (d – f) parallel-AgNW thin films on a PDMS substrate as a function of stretching cycle with 10\% strain and a stretching angle (θ) of 0, 45, and 90\°. The solid and open symbols show the relative sheet resistance measured in the stretched and released films, respectively.