Supporting information for

Isolation, Characterization and Antiproliferative Activities of Eudesmanolide Derivatives

from the Flowers of *Inula japonica*
Contents

S1. 1H NMR spectrum of compound 1
S2. 13C NMR spectrum of compound 1
S3. DEPT ($\theta = 135^\circ$) NMR spectrum of compound 1
S4. HMQC spectrum of compound 1
S5. HMBC spectrum of compound 1
S6. 1H-1H COSY spectrum of compound 1
S7. NOESY spectrum of compound 1
S8. HR-ESIMS spectrum of compound 1
S9. 1H NMR spectrum of compound 2
S10. 13C NMR spectrum of compound 2
S11. HMQC spectrum of compound 2
S12. HMBC spectrum of compound 2
S13. HR-ESIMS spectrum of compound 2
S14. 1H NMR spectrum of compound 3
S15. 13C NMR spectrum of compound 3
S16. HMQC spectrum of compound 3
S17. HMBC spectrum of compound 3
S18. HR-ESIMS spectrum of compound 3
S19. 1H NMR spectrum of compound 4
S20. 13C NMR spectrum of compound 4
S21. HMQC spectrum of compound 4
S22. HMBC spectrum of compound 4
S23. HR-ESIMS spectrum of compound 4
S24. ECD spectra of compounds 1 and 2
S25. ECD spectra of compounds 3 and 4

Computational Methods
S1. 1H NMR spectrum of compound 1

S2. 13C NMR spectrum of compound 1
S3. DEPT ($\theta = 135^\circ$) NMR spectrum of compound 1

S4. HMQC spectrum of compound 1
S5. HMBC spectrum of compound 1

S6. 1H-1H COSY spectrum of compound 1
S7. NOESY spectrum of compound 1

S8. HR-ESIMS spectrum of compound 1
S9. 1H NMR spectrum of compound 2

S10. 13C NMR spectrum of compound 2
S11. HMQC spectrum of compound 2

S12. HMBC spectrum of compound 2
S13. HR-ESIMS spectrum of compound 2

S14. 1H NMR spectrum of compound 3
S15. 13C NMR spectrum of compound 3

![13C NMR spectrum of compound 3](image)

S16. HMQC spectrum of compound 3

![HMQC spectrum of compound 3](image)
S17. HMBC spectrum of compound 3

S18. HR-ESIMS spectrum of compound 3
S19. 1H NMR spectrum of compound 4

S20. 13C NMR spectrum of compound 4
S21. HMQC spectrum of compound 4

S22. HMBC spectrum of compound 4
S23. HR-ESIMS spectrum of compound 4

S24. ECD spectra of compounds 1 and 2
Computational Methods

Beginning with the conformation of each compound obtained from the corresponding NOESY spectrum and Chem3D modeling, conformational searches were carried out first through MOE software\(^1\) and conformers were selected for geometry optimizations. Geometry optimizations and reoptimizations at the B3LYP/6-31+G(d) level were finished using Gaussian 09 package.\(^2\) TDDFT ECD calculations\(^3-5\) for the optimized conformers were performed at the CAM-B3LYP/SVP level with a CPCM solvent model in acetonitrile, and the calculated ECD spectra of different conformers were simulated with a half bandwidth of \(\sim 0.4\) eV. The ECD curves were extracted by SpecDis 1.62 software.\(^6\) The overall ECD curves of all the compounds were weighted by Boltzmann distribution after UV correction.

REFERENCES:

(2) Gaussian 09, revision B, 01; Gaussian Inc.: Wallingford, CT, USA, 2010.

