The pharmacology of indole and indazole synthetic cannabinoid designer drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA and 5F-ADBICA

Contents:

Names, CAS numbers, and references for selected compounds: S2–S4.

1H and 13C NMR spectra for selected compounds: S5–S16.

AUC for AB-PINACA and AB-FUBINACA hypothermia following pretreatment with CB$_1$ and CB$_2$ antagonists: S17.
Table S1. IUPAC names, CAS numbers, and literature references for valinamide- and tert-leucinamide-derived indole and indazole synthetic cannabinoids.

<table>
<thead>
<tr>
<th>CAS</th>
<th>CAS</th>
<th>Notified to EMCDDA</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB-FUBINACA</td>
<td>N-(1-amino-3-methyl-1-oxobutyl-2-y1)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide</td>
<td>1629062-56-1 (racemate)</td>
<td>4 July 2013, Belgium 1–5</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADB-FUBINACA</td>
<td>N-(1-amino-3,3-dimethyl-1-oxobutyl-2-y1)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide</td>
<td>1445583-51-6 (racemate)</td>
<td>28 November 2013, Turkey and Germany 1, 4, 6–8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB-PINACA</td>
<td>N-(1-amino-3-methyl-1-oxobutyl-2-y1)-1-pentyl-1H-indazole-3-carboxamide</td>
<td>1445583-20-9 (racemate)</td>
<td>21 May 2013, Sweden 2, 4, 5, 7</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADB-PINACA</td>
<td>N-(1-amino-3,3-dimethyl-1-oxobutyl-2-y1)-1-pentyl-1H-indazole-3-carboxamide</td>
<td>1633766-73-0 (racemate)</td>
<td>3 December 2013, United Kingdoma 3, 8, 9</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5F-AB-PINACA</td>
<td>N-(1-amino-3-methyl-1-oxobutyl-2-y1)-1-(5-fluoropentyl-1H-indazole-3-carboxamide</td>
<td>-</td>
<td>5 July 2013, Belgium 10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5F-ADB-PINACA</td>
<td>N-(1-amino-3,3-dimethyl-1-oxobutyl-2-y1)-1-(5-fluoropentyl-1H-indazole-3-carboxamide</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB-FUBICA</td>
<td>N-(1-amino-3-methyl-1-oxobutyl-2-y1)-1-(4-fluorobenzyl)-1H-indole-3-carboxamide</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADB-FUBICA</td>
<td>N-(1-amino-3,3-dimethyl-1-oxobutyl-2-y1)-1-(4-fluorobenzyl)-1H-indole-3-carboxamide</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB-PICA</td>
<td>N-(1-amino-3-methyl-1-oxobutyl-2-y1)-1-pentyl-1H-indole-3-carboxamide</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADB-PICA</td>
<td>N-(1-amino-3,3-dimethyl-1-oxobutyl-2-y1)-1-pentyl-1H-indole-3-carboxamide</td>
<td>1445583-48-1 (racemate)</td>
<td>11 October 2013, Sweden 6</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5F-AB-PICA</td>
<td>N-(1-amino-3-methyl-1-oxobutyl-2-y1)-1-(5-fluoropentyl-1H-indole-3-carboxamide</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5F-ADB-PICA</td>
<td>N-(1-amino-3,3-dimethyl-1-oxobutyl-2-y1)-1-(5-fluoropentyl-1H-indole-3-carboxamide</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aAn advisory was issued in September 2013 after information provided by law enforcement agencies in the United States, supplemented by information from the EMCDDA’s monitoring of open source information, identified a series of non-fatal
intoxications in the United States associated with ADB-PINACA and 5F-ADBICA. These substances are known to be present on the EU drug market and have been reported by several Member States.

References

Figure S1. 1H NMR spectrum (500 MHz, CDCl$_3$, 300 K) of AB-FUBINACA (7).
Figure S2. 13C NMR spectrum (125 MHz, CDCl$_3$, 300 K) of AB-FUBINACA (7).
Figure S3. 1H NMR spectrum (500 MHz, CDCl$_3$, 300 K) of AB-PINACA (9).
Figure S4. 13C NMR spectrum (125 MHz, CDCl$_3$, 300 K) of AB-PINACA (9).
Figure S5. 1H NMR spectrum (400 MHz, CDCl$_3$, 300 K) of ADB-PINACA (10).
Figure S6. 13C NMR spectrum (100 MHz, CDCl$_3$, 300 K) of ADB-PINACA (10).
Figure S7. 1H NMR spectrum (400 MHz, DMSO-d_6, 300 K) of AB-PICA (15).
Figure S8. 13C NMR spectrum (100 MHz, DMSO-d$_6$, 300 K) of AB-PICA (15).
Figure S9. 1H NMR spectrum (400 MHz, DMSO-d$_6$, 300 K) of 5F-AB-PICA (17).
Figure S10. 13C NMR spectrum (100 MHz, DMSO-d$_6$, 300 K) of 5F-AB-PICA (17).
Figure S11. 1H NMR spectrum (400 MHz, CDCl$_3$, 300 K) of 5F-ADBICA (18).
Figure S12. ^{13}C NMR spectrum (100 MHz, CDCl$_3$, 300 K) of 5F-ADBICA (18).
Figure S13. Mean area under the vehicle-vehicle baseline curve (AUC ± SEM) for body temperature for (A) AB-PINACA and (B) AB-FUBINACA (3 mg/kg), following pretreatment with vehicle, rimonabant (CB₁ antagonist, 3 mg/kg), or SR144528 (CB₂ antagonist, 3 mg/kg). The area was significantly reduced for both AB-PINACA and AB-FUBINACA by rimonabant but not SR144528. * p < .05 compared to vehicle.