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First-principles calculations are based on Density Functional Theory (DFT) as implemented in
Vienna Ab-initio Simulation Package (VASP).! We use a generalized gradient approximation
(GGA) with the Perdew-Burke-Ernzerhof (PBE)?® functional of the exchange and correlation
energy. In the initial structure, the NH," ion lie between the layers and Na* ions, are present into
the gallery space as well as within the layers.®> All the structures are fully relaxed through
minimization of energy till the magnitude of forces is smaller than 0.02 eV A™ and pressure less
than 0.01 Kbar. We used an energy cut-off of 500 eV on the plane wave basis set and k-mesh
grids of 3x9x9 for sampling Brillouin Zone integrations. We used U = 3.0 eV (Hubbard
parameter) to incorporate onsite correlations of electrons in d orbitals of V in all the calculations.
We calculated average electrochemical potential from Nernst equation

-AG -AE
Ve = E TR

_(Ein—Na - Ede—Na - ENa)

where Vg is the cell voltage, AG is change in Gibbs free energy per mole which is approximate
equal to change in calculated total energy AE, n is the number of moles of electrons transferred
and F is the Faraday constant. Ej,-Na, Eg-Na and Ey, are total energy are the energies per

formula unit of sodiated and de-sodiated structures of electrode and one mol of Na atom,

respectively (Figure S2).
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Figure S1.Configuration of the (a) NasNH;V401. (b) Na;NH4V4010. (€) NagsNH4V4010. (d)

NH4V401p.

Table S1. Magnetic moment of all the Vanadium atoms in NaxNH;V4019 from DFT

calculations.
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Table S2. Calculated lattice parameters and lattice volume at different concentration of Na in

NH4V4010.
Lattice parameter
NaxNH4V40 Volume(A 3)
10 a(A) b(A) c(A)
0 11.78(11.71%) 3.74(3.66") 9.75(9.72") 428.91
0.5 11.79 3.74 9.71 426.55  experimental
lattice
1 12.07 3.77 9.08 413.49 parameter
3 12.51 3.94 9.85 484.4

# JCPDS File No. 31-0075.
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Figure S2. The calculated formation energies of NH4V 401 structure with Na in gallery space

and within the layer.
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Figure S5. (a-c) FEG-TEM image of NH4V,01o material (after 32" cycle).
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Figure S6. (a) 1st charge/discharge profile of NH;V401o cathode material between varying
potential (bare Al-current collector). (b) Discharge capacity vs. cycle number (bare Al-current
collector), (c) 1st charge/discharge of NH4V 401 cathode material between 1.5-3.5 V at varying
current rate with carbon coated Al-current collector. (d) Discharge capacity vs. cycle number

between 1.5-3.5 V at varying current rate with carbon coated Al-current collector.
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Figure S7. R of Carbon coated and bare Al current collector during (a) Discharge process. (b)

Charge process.

w
1

Discharge Capacity/ mAh g'1
N

10 20 30 40 50

Cycle Number

Figure S8. Discharge capacity of carbon at 200 mA g™ current rate between potential window

1.5V-35V.

The capacity contribution from conductive carbon is shown in Figure S8 which is ~3 mAh g™ at

200 mA g* current rate (experiment done only with conductive carbon) between potential

window of 1.5 V-3.5 V. Moreover, Na* storage in conductive carbon was negligible compared to

the NH4V 4019 cathode material with and with-out carbon coated Al current collector.
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