SUPPORTING INFORMATION

Highly Stereoselective Synthesis of Lamivudine (3TC) and Emtricitabine (FTC) by a Novel N-Glycosidation Procedure

Maria Federica Caso, a Daniele D’Alonzo, a,* Stefano D’Errico, b Giovanni Palumbo a and Annalisa Guaragna a

a Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II via Cintia 21, 80126 Napoli (Italy); b Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli (Italy)
dandalonzo@unina.it

CONTENTS

EXPERIMENTAL PROCEDURES S2

COPIES OF NMR SPECTRA S2

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 5-hydroxy-1,3-oxathiolane-2-carboxylate (5a) S7
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 5-(methylcarbonyloxy)-1,3-oxathiolane-2-carboxylate (5b) S9
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl (2R,5S)-5-(4-amino-2-oxo-1,2-dihydro-1-pyrimidinyl)-1,3-oxathiolane-2-carboxylate (8a) S19
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl (2R,5S)-5-(4-amino-5-fluoro-2-oxo-1,2-dihydro-1-pyrimidinyl)-1,3-oxathiolane-2-carboxylate (9a) S21
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl (2R,5S)-5-[2-oxo-4-(phenylcarboxamido)-1,2-dihydro-1-pyrimidinyl]-1,3-oxathiolane-2-carboxylate (8b) S23
5-Fluoro-2-oxo-4-(phenylcarboxamido)-1,2-dihydropyrimidine (12b) S25
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl (2R,5S)-5-[5-fluoro-2-oxo-4-(phenylcarboxamido)-1,2-dihydro-1-pyrimidinyl]-1,3-oxathiolane-2-carboxylate (9b) S28
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl (2R,5S)-5-[4-(methylcarboxamido)-2-oxo-1,2-dihydro-1-pyrimidinyl]-1,3-oxathiolane-2-carboxylate (8c) S30
(2S,5R)-1-[2-(Hydroxymethyl)-1,3-oxathiolan-5-yl]-cytosine (3TC, 1) S32
5-Fluoro-1-(2R,5S)-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-cytosine (FTC, 2) S35
EXPERIMENTAL PROCEDURES

General methods and materials. All chemicals and solvents were purchased with the highest degree of purity (Sigma-Aldrich, Alfa Aesar, VWR) and used without further purification. All moisture-sensitive reactions were performed under nitrogen atmosphere using oven-dried glassware. Reactions were monitored by TLC (precoated silica gel plate F254, Merck) and the products were detected by exposure to ultraviolet radiation, iodine vapor and chromic mixture. Column chromatography: Merck Kieselgel 60 (70-230 mesh); flash chromatography: Merck Kieselgel 60 (230-400 mesh). Monodimensional (1H, 13C, 19F) and bidimensional (NOESY) NMR spectra were recorded on NMR spectrometers operating at 400 MHz (Bruker DRX, Bruker AVANCE), 500 MHz (Varian Inova equipped with a VnmrJ 4.0 software) and 600 MHz (Bruker DRX equipped with a CryoProbe), using CDCl₃ solutions unless otherwise specified. The determination of β/α ratios in the N-glycosidation reactions was performed by integration of 1H NMR anomeric signals (H-5) of each pair of diastereomers at the given spectrometer (detection limit: down to 10⁻⁶ g). Combustion analyses were performed using a CHNS analyzer. Melting points are uncorrected and were determined with a capillary apparatus. Optical rotations were measured at 25 ± 2 °C in the stated solvent.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (2R,5R)-5-(methylcarbonyloxy)-1,3-oxathiolane-2-carboxylate [(2R,5R)-5b]. L-Menthol glyoxylate monohydrate (10) (2.5 g, 10.86 mmol), toluene (12.5 mL) and acetic acid (0.25 mL) were mixed under stirring and the resulting mixture was heated to 120 °C, removing water azeotropically with a Dean-Stark trap. The resulting solution was concentrated under reduced pressure, to collect 5 mL of distillate, and cooled to rt; then 1,4-dithiane-2,5-diol (826 mg, 5.43 mmol) was added. The reaction mixture was refluxed for 4 h; then it was cooled to 80 °C and clarified. The filtrate was cooled to 0 °C, and a solution of triethylamine (150 μL) in n-hexane (15 mL) was added dropwise. The mixture was stirred at 0 °C for 16 h, observing the formation of a precipitate. The isolated solid was filtered, washed with a mixture of toluene and n-hexane (1:3 v/v) and dried to give the hemiacetal 5a (1.86 g, 60% o.y.) as a mixture of two stereoisomers. Data for (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 5-hydroxy-1,3-
oxathiolane-2-carboxylate (5a). 1H NMR (DMSO-d_6, 400 MHz): δ 0.69 (d, $J = 6.9, 1.5$H), 0.70 (d, $J = 6.9, 1.5$H), 0.76-0.90 (m, 7H), 0.90-1.09 (m, 2H), 1.31-1.52 (m, 2H), 1.57-1.65 (m, 2H), 1.77-1.94 (m, 2H), 2.85 (bd, $J = 10.6, 1$H), 3.11 (dd, $J = 4.5, 10.0, 0.5$H), 3.12 (dd, $J = 4.7, 10.0, 0.5$H), 4.59 (dt, $J = 4.2, 11.1, 0.5$H), 4.62 (dt, $J = 4.2, 11.1, 0.5$H), 5.54 (s, 0.5H), 5.55 (s, 0.5H), 5.82-5.87 (m, 1H), 7.02 (d, $J = 8.4, 0.5$H), 7.03 (d, $J = 8.4, 0.5$H). 13C NMR (DMSO-d_6, 100 MHz): ppm 16.5, 16.6, 20.8, 20.9, 22.2, 23.2, 23.3, 26.0, 26.1, 31.1, 31.2, 33.4, 38.0, 38.1, 40.6, 46.6, 46.7, 74.9, 75.0, 76.4, 76.6, 101.2, 101.5, 169.4, 169.5. A solution of 5a (1.86 g, 6.52 mmol), acetic anhydride (3.75 mL, 39.75 mmol) and dichloromethane (10 mL) were mixed under nitrogen atmosphere. The solution was cooled to 0 °C and pyridine (0.95 mL, 18.20 mmol) was added dropwise under stirring. The reaction mixture was warmed to room temperature and stirred for 4 h; after completion (TLC) it was quenched by addition of water at 0 °C. The organic layer was washed with diluted HCl, dried over Na$_2$SO$_4$ and concentrated under reduced pressure. Chromatography of the crude residue over silica gel (hexane/ethyl acetate 95:5) gave 5b (2.34 g, 91% yield) as a mixture of four diastereoisomers. A sample of 1.2 g was dissolved in 40 mL of hexane with 200 µL of TEA, and after 72 h at -20 °C the only desired trans-(2R,5R) stereoisomer was precipitated (0.50 g, 42% of the acetylated product). Data for (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (2R,5R)-5-(methylcarbonyloxy)-1,3-oxathiolane-2-carboxylate [(2R,5R)-5b]. White crystals, m.p. 99-103 °C (hexane). [α]$_D^{25}$ –56.0 (c 3.1, CHCl$_3$). 1H NMR (400 MHz): δ 0.74 (d, $J = 7.0, 3$H), 0.81-0.92 (m, 7H), 0.92-1.10 (m, 2H), 1.39 (bt, $J = 11.3, 1$H), 1.44-1.55 (m, 1H), 1.67 (bd, $J = 11.4, 2$H), 1.87-1.95 (m, 1H), 1.99 (bd, $J = 11.7, 1$H), 2.09 (s, 3H), 3.15 (d, $J = 11.7, 1$H), 3.43 (dd, $J = 4.2, 11.7, 1$H), 4.71 (td, $J = 4.4, 10.9, 1$H), 5.60 (s, 1H), 6.77 (d, $J = 4.2$ Hz, 1H). 13C NMR (100 MHz): δ 16.0, 20.6, 21.0, 21.9, 23.2, 26.0, 31.3, 34.0, 37.1, 40.5, 47.0, 76.0, 79.8, 99.7, 168.5, 169.6. Anal. calcd for C$_{16}$H$_{26}$O$_5$S: C 58.16, H 7.93, S, 9.70. Found: C 58.01, H 7.96, S, 9.74.

5-Fluoro-2-oxo-4-(phenylcarboxamido)-1,2-dihydropyrimidine (12b). 5-Fluorocytosine (12a, 0.2 g, 1.5 mmol) was suspended in pyridine (10 mL) and the resulting mixture was cooled to 0 °C. Benzoyl chloride (1.04 mL, 9 mmol) was added dropwise and the suspension was stirred at rt for 16 h. The reaction mixture was cooled in an ice bath, treated with NH$_4$OH (1 mL) for 90 min and concentrated under reduced pressure. Chromatography of the crude residue over silica gel (dichloromethane:MeOH 85:15) provided the pure nucleobase 12b (0.36 g, 99%). 1H NMR
(DMSO-d_6, 400 MHz): δ 7.49 (t, $J = 7.7$, 2H), 7.60 (t, $J = 7.4$, 1H), 8.01 (bd, $J = 7.4$, 3H). 13C NMR (DMSO-d_6, 100 MHz): δ 128.9, 129.4, 133.2, 135.0, 139.5, (d, $J = 225.9$), 152.3 (d, $J = 21.2$), 162.0, 164.9. Anal. Calcd for C$_{11}$H$_8$FN$_3$O$_2$: C 56.65, H 3.46, N 18.02. Found: C 56.52, H 3.45, N 18.08.

N-glycosylation reaction: general procedure. (a) Iodine (1.2 eq) was suspended in anhydrous dichloromethane (7.50 mL) under nitrogen atmosphere and the silane (1.2 eq) was added. After 15 min, the resulting mixture was cooled to 0 °C and cannulated dropwise into a solution of oxathiolane 5b (1 mmol) in anhydrous dichloromethane (0.75 mL), using additional dichloromethane (7.50 mL) for rinsing. The reaction was then stirred at the same temperature for 1 h. (b) BSA (3.25 eq when reacting with 11a or 12a; 2 eq when reacting with 11b, 11c or 12b) was added to a suspension of the nucleobase (1.3 eq) in anhydrous dichloromethane (7.50 mL) under nitrogen atmosphere. The resulting mixture was warmed to 40 °C until a clear solution was observed. The mixture (a) was cannulated dropwise into solution (b) under stirring at 0 °C, using additional dichloromethane (7.50 mL) for rinsing. The reaction mixture was then warmed to rt and stirred for 1 h. Afterwards, the reaction was quenched with few drops of saturated NaHCO$_3$ solution. The emulsion was washed with a 1 N Na$_2$S$_2$O$_3$ solution and brine and extracted with dichloromethane. The organic layer was dried (Na$_2$SO$_4$) and concentrated under reduced pressure. Chromatography of the crude residue over silica gel (8a, 9a: dichloromethane:MeOH 95:5; 8b-c, 9b: hexane:ethyl acetate 1:1) provided the pure nucleoside (8a: 86-98%; 8b: 87-94%; 8c: 80-95%; 9a: 84-91%; 9b: 85-91%). Data for (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (2R,5S)-5-(4-amino-2-oxo-1,2-dihydro-1-pyrimidinyl)-1,3-oxathiolane-2-carboxylate (8a). 1H NMR (400 MHz): δ 0.77 (d, $J = 7.0$, 3H), 0.84-0.96 (m, 7H), 0.98-1.11 (m, 2H), 1.43 (bt, $J = 12.0$, 1H), 1.48-1.57 (m, 1H), 1.71 (bd, $J = 11.3$, 2H), 1.88-1.99 (m, 1H), 2.01-2.09 (m, 1H), 3.13 (dd, $J = 6.6$, 12.1, 1H), 3.56 (dd, $J = 4.7$, 12.1, 1H), 4.76 (td, $J = 4.4$, 11.1, 1H), 5.46 (s, 1H), 5.73 (d, $J = 7.5$, 1H), 6.47 (dd, $J = 4.7$, 6.5, 1H), 8.40 (d, $J = 7.5$, 1H). 13C NMR (100 MHz): ppm 16.1, 20.7, 21.9, 23.2, 26.1, 31.5, 34.1, 36.6, 40.8, 47.1, 76.7, 78.6, 90.4, 93.8, 142.4, 155.5, 165.5, 169.8; Anal. Calcd for
C_{18}H_{27}N_3O_4S: C, 56.67; H, 7.13; N, 11.01; S, 8.41. Found: C, 56.56; H, 7.16; N, 11.05; S, 8.44. Data for (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (2R,5S)-5-[2-oxo-4-(phenylcarboxamido)-1,2-dihydro-1-pyrimidinyl]-1,3-oxathiolane-2-carboxylate (8b). \(^1\)H NMR (600 MHz): \(\delta\) 0.78 (d, \(J = 6.9, 3H\)), 0.82-0.98 (m, 7H), 0.99-1.15 (m, 2H), 1.45 (bt, \(J = 11.5, 1H\)), 1.49-1.59 (m, 1H), 1.62-1.76 (m, 2H), 1.87-1.99 (m, 1H), 2.02-2.12 (m, 1H), 3.24 (dd, \(J = 5.9, 12.3, 1H\)), 3.69 (dd, \(J = 4.7, 12.3, 1H\)), 4.80 (td, \(J = 4.2, 10.9, 1H\)), 5.54 (s, 1H), 6.42 (t, \(J = 5.3, 1H\)), 7.52 (t, \(J = 7.8, 2H\)), 7.62 (t, \(J = 7.4, 1H\)), 7.89 (d, \(J = 7.5, 2H\)), 8.69 (bs, 1H), 8.79 (d, \(J = 7.5, 1H\)). \(^{13}\)C NMR (100 MHz): ppm 16.1, 20.7, 21.9, 23.2, 26.2, 31.5, 34.0, 37.1, 40.8, 47.1, 77.0, 79.7, 90.7, 96.6, 127.5, 129.1, 133.0, 133.2, 143.6, 154.6, 154.9, 162.6, 166.3, 169.3. Anal. Calcd for C_{25}H_{31}N_2O_5S: C, 61.83; H, 6.43; N, 8.65; S, 6.60. Found: C, 61.97; H, 6.41; N, 8.62; S, 6.57. Data for (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (2R,5S)-5-[4-(methylcarboxamido)-2-oxo-1,2-dihydro-1-pyrimidinyl]-1,3-oxathiolane-2-carboxylate (8c). \(^1\)H NMR (500 MHz): \(\delta\) 0.74 (d, \(J = 6.9\) Hz, 3H), 0.80-0.95 (m, 7H), 0.96-1.11 (m, 2H), 1.41 (bt, \(J = 11.7, 1H\)), 1.46-1.56 (m, 1H), 1.68 (bd, \(J = 11.4\) Hz, 2H), 1.83-1.94 (m, 1H), 2.03 (bd, \(J = 11.6, 1H\)), 2.19 (s, 3H), 3.18 (dd, \(J = 5.8, 12.3, 1H\)), 3.65 (dd, \(J = 4.6, 12.3, 1H\)), 4.75 (td, \(J = 4.4, 11.1\) Hz, 1H), 5.55 (s, 1H), 6.40 (bt, \(J = 5.4, 1H\)), 7.41 (d, \(J = 7.3, 1H\)), 8.13 (bs, 1H), 8.71 (d, \(J = 7.3\) Hz, 1H). \(^{13}\)C NMR (100 MHz): ppm 16.0, 20.6, 21.8, 23.1, 24.9, 26.0, 31.3, 33.9, 37.0, 40.6, 46.9, 76.8, 79.6, 90.6, 96.6, 145.4, 154.9, 162.9, 169.2, 169.9. Anal. Calcd for C_{20}H_{25}N_3O_5S: C, 56.72; H, 6.90; N, 9.92; S, 7.57. Found: C, 56.88; H, 6.87; N, 9.88; S, 7.54. Data for (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (2R,5S)-5-[4-amino-5-fluoro-2-oxo-1,2-dihydro-1-pyrimidinyl]-1,3-oxathiolane-2-carboxylate (9a). \(^1\)H NMR (400 MHz): \(\delta\) 0.76 (d, \(J = 6.9, 3H\)), 0.80-0.95 (m, 7H), 0.96-1.12 (m, 2H), 1.43 (bt, \(J = 11.4, 1H\)), 1.47-1.58 (m, 1H), 1.69 (bd, \(J = 11.4, 2H\)), 1.87-1.98 (m, 1H), 2.04-2.08 (m, 1H), 3.11 (dd, \(J = 6.6, 12.1, 1H\)), 3.51 (dd, \(J = 4.7, 12.1, 1H\)), 4.78 (td, \(J = 4.4, 11.0, 1H\)), 5.44 (s, 1H), 5.82 (bs, 1H), 6.40 (dd, \(J = 1.6, 4.8, 6.4, 1H\)), 8.36 (bs, 1H), 8.46 (d, \(J = 6.6, 1H\)). \(^{13}\)C NMR (100 MHz): ppm 16.0, 20.6, 21.8, 23.1, 26.0, 31.4, 34.0, 36.2, 40.6, 47.0, 76.7, 78.6, 90.3, 125.7 (d, \(J = 33.2\)), 136.5 (d, \(J = 242.0\)), 153.8, 158.3 (d, \(J = 14.2\)), 169.7. Anal. Calcd for C_{18}H_{26}FN_3O_5S: C, 54.12; H, 6.56; N, 10.52; S, 8.03. Found: C 53.97, H 6.58, N, 10.55; S, 8.06. Data for (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl (2R,5S)-5-[5-fluoro-2-oxo-4-(phenylcarboxamido)-1,2-dihydro-1-pyrimidinyl]-1,3-oxathiolane-2-carboxylate (9b). \(^1\)H NMR (600 MHz): \(\delta\) 0.78 (d, \(J = 7.0, 3H\)), 0.83-0.97 (m, 7H), 0.99-1.15 (m, 2H), 1.46 (bt, \(J = 12.2, 1H\)), 1.48-1.60 (m, 1H), 1.72 (bd, \(J = 11.3, 2H\)), 1.87-1.98 (m, 1H), 2.02-2.11 (m, 1H), 3.20 (dd, \(J = 6.9, 12.2, 1H\)), 3.50 (dd, \(J = 4.7, 12.2, 1H\)), 4.82 (dt, \(J = 4.3, 11.0, 1H\)), 5.48 (s, 1H), 6.43 (bt, \(J = 5.6, 1H\)), 7.46 (t, \(J = 7.6, 2H\)), 7.56 (t, \(J = 7.6, 1H\)), 8.27 (d, \(J = 7.6, 2H\)), 8.70 (d, \(J = 6.3, 1H\)). \(^{13}\)C NMR (100 MHz): ppm 16.0, 20.6, 21.8, 23.1, 26.0, 31.4, 33.9, 35.6, 40.6, 47.0, 77.0, 78.6, 89.7, 126.2 (d, \(J = 41.3\)), 128.3, 129.9, 133.0, 135.6, 139.7 (d, \(J = 241.7\)), 147.1,
Reduction of nucleoside precursors 8-9. A suspension of nucleoside 8b or 9b (1 mmol) in anhydrous methanol (20 mL) was heated to 40 °C and left under stirring at the same temperature for 48-72 h. The reaction mixture (containing nucleosides 8a and 9a as the main products) was then cooled to room temperature and a solution of K₂HPO₄ (3 eq) in H₂O (2 mL) was added. Hence a solution of NaBH₄ (2 eq) in H₂O (2 mL) containing 25% w/w NaOH was added to the reaction mixture. After 1 h, the reaction was quenched with dilute HCl, adjusting the pH to 4-4.5 and then to pH 7 using a saturated solution of NaHCO₃. The mixture was filtered through a Celite pad and concentrated under reduced pressure. Chromatography of the crude residue over silica gel gave the pure nucleoside (1: 95% o.y.; 2: 75% o.y.). Data for 4-amino-1-[(2R,5S)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,2-dihydro-2-pyrimidinone (3TC, 1). ¹H NMR (CD₃OD, 500 MHz): δ 3.12 (dd, J = 4.1, 12.0, 1H), 3.50 (dd, J = 5.4, 12.0, 1H), 3.86 (dd, J = 4.0, 12.5, 1H), 3.94 (dd, J = 2.8, 12.5, 1H), 5.27 (bs, 1H), 5.88 (d, J = 7.5, 1H), 6.28 (bt, J = 4.6, 1H), 8.05 (d, J = 7.5, 1H). ¹³C NMR (CD₃OD, 100 MHz): ppm 37.2, 62.5, 86.3, 86.6, 94.2, 141.6, 156.6, 166.3. Anal. Calcd for C₁₈H₁₁N₃O₃S: C, 41.91; H, 4.84; N, 18.33; S, 13.99. Found: C, 42.03; H, 4.82; N, 18.27; S, 14.02. Data for 4-amino-5-fluoro-1-[(2R,5S)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,2-dihydro-2-pyrimidinone (FTC, 2). ¹H NMR (DMSO-d₆, 400 MHz): δ 3.10 (dd, J = 4.4, 11.9, 1H), 3.40 (dd, J = 5.6, 11.9, 1H), 3.72 (dd, J = 4.1, 12.3, 1H), 3.77 (dd, J = 3.8, 12.3, 1H), 5.17 (t, J = 3.9, 1H), 6.12 (ddd, J = 1.8, 4.8, 5.6, 1H), 7.54 (bs, 1H), 7.78 (bs, 1H), 8.17 (d, J = 7.2, 1H). ¹³C NMR (DMSO-d₆, 100 MHz): ppm 36.6, 62.2, 86.4, 86.5, 125.6, (d, J = 32.6), 136.2 (d, J = 240.6), 152.9, 157.5 (d, J = 13.4). Anal. Calcd for C₁₈H₁₁FN₃O₃S: C, 38.86; H, 4.08; N, 17.00; S, 12.97. Found: C, 38.74; H, 4.10; N, 17.05; S, 13.01.
500 MHz, DMSO-d_6

(mixture of two stereoisomers)
100 MHz, DMSO-d_6

(mixture of two stereoisomers)
400 MHz, CDCl₃

(mixture of four stereoisomers)
100 MHz, CDCl₃

(mixture of four stereoisomers)
400 MHz, CDCl₃

(2R,5R)-5b
100 MHz, CDCl₃

(2R,5R)-5b
400 MHz, CDCl₃

(2S,5S)-5b
100 MHz, CDCl₃

(2S,5S)-5b
500 MHz, CDCl₃

(2R,5R)-5b
400 MHz, CDCl₃
400 MHz, CDCl₃
400 MHz, CDCl₃
100 MHz, CDCl₃
600 MHz, CDCl_3
100 MHz, CDCl₃
100 MHz, DMSO-d_6
376 MHz, DMSO-d_6
100 MHz, CDCl₃
100 MHz, CDCl₃
500 MHz, CD$_2$OD

(-)-(2S,5R)-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-cytosine (3TC)
100 MHz, CD$_3$OD
400 MHz, DMSO-d_6

(-)-5-fluoro-1-(2R,5S)-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-cytosine (FTC)