

Supporting Information for

Synthesis and Properties of a Coil-*g*-Rod Polymer Brush by Combination of ATRP and Alternating Copolymerization

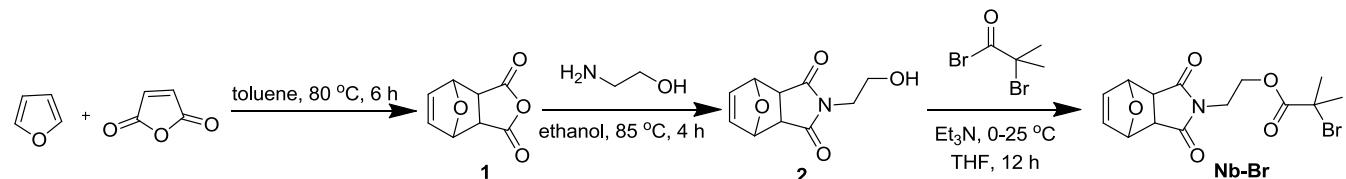
Jing Ping,¹ Yangyang Qiao,^{1,2} Haijian Tian,¹ Zhihao Shen,^{1,*} and Xing-He Fan^{1,*}

¹ *Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering, and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China*

² *School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China*

* To whom correspondence should be addressed. E-mail: fanxh@pku.edu.cn (X.-H.F.);
zshen@pku.edu.cn (Z.S.)

Contents


Synthetic procedures	S2
1.1. Synthesis of Nb-Br	
1.2. Synthesis of MPCS	
1.3. Synthesis of Nb-PMPCS	
Results	S4
References	S7

Synthetic Procedures

1.1. Synthesis of Nb-Br

Nb-Br was synthesized according to the literature, and the detailed route is shown in Scheme S1.^{1,2}

Scheme S1. Synthesis of initiator

1.1.1. Synthesis of 4,10-dioxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (1). Maleic anhydride (10.0 g, 102 mmol) and 50 mL of toluene were charged into a 100 mL three-necked flask with a magnetic stir bar, and the flask was put into an oil bath at 80 °C for a while. Furan (11.0 mL, 153 mmol) was added into the flask, and the mixture was heated for 6 h and then cooled to ambient temperature. After one hour, a white solid was precipitated out. It was filtered and washed with 3×30 mL of petroleum ether. The chemical structure of the product (1) was confirmed by ¹H NMR (Figure S1). ¹H NMR (400 MHz, DMSO-*d*₆, δ , ppm): 3.31 (s, 2H, CH), 5.35 (s, 2H, CHO), 6.58 (s, 2H, CH_{vinyl}).

1.1.2. Synthesis of 4-(2-hydroxyethyl)-10-oxa-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (2). The above product 1 (5.00 g, 30.0 mmol) was dissolved in 15 mL of ethanol, and then a solution of ethanolamine (1.90 mL, 31.5 mmol) in 10 mL of ethanol was added dropwise. The mixture was refluxed for 4 h and then cooled to ambient temperature. After 12 h, the resulting white crystal was filtered and washed with 3×30 mL of petroleum ether. The chemical structure of the product (2) obtained was also verified by ¹H NMR (Figure S2). ¹H NMR (400 MHz, CDCl₃, δ , ppm): 2.90 (s, 2H, CH), 3.70 (t, 2H, NCH₂), 3.77 (t, 2H, OCH₂), 5.28 (s, 2H, CHO), 6.53 (s, 2H, CH_{vinyl}).

1.1.3. Synthesis of Nb-Br. The alcohol 2 (3.14 g, 15.0 mmol) and 3.14 mL of Et₃N were dissolved in 100 mL of THF, and the mixture was cooled to 0 °C. After a solution of 2-bromo

isobutyryl bromide (1.40 mL, 11.1 mmol) in 50 mL of THF was added dropwise, the mixture was stirred at 0 °C for 3 h and then at ambient temperature overnight. The resulting solids were filtered out, and the solution was concentrated by a rotary evaporator to give a raw product which was purified by silica gel column (100% dichloromethane). Yield: 82%. ¹H NMR (Figure S3) (400 MHz, CDCl₃, δ , ppm): 1.90 (s, 6H, CH₃), 2.88 (s, 2H, CH), 3.82 (t, 2H, NCH₂), 4.34 (t, 2H, OCH₂), 5.27 (s, 2H, CHO), 6.52 (s, 2H, CH_{vinyl}). ¹³C NMR (100 MHz, CDCl₃, δ , ppm): 30.59 (1C, CH₂), 37.44 (1C, NCH₂), 47.43 (2C, CH), 55.50 (1C, C(CH₃)₂Br), 62.03 (1C, OCH₂), 80.72 (2C, CHO), 136.33 (2C, CH_{vinyl}), 171.66 (1C, CO_{ester}), 175.87 (2C, CO_{imide}). Anal. Calcd. for C₁₄H₁₆NO₅: C, 46.95; H, 4.50; N, 3.91. Found C, 47.00; H, 4.60; N, 3.91. HRMS (ESI): calcd. (M + Na)^{+/z}, 382.01; (M + K)^{+/z}, 397.98; found (M + Na)^{+/z}, 382.0; (M + K)^{+/z}, 398.0.

1.2. Synthesis of MPCS

As a regularly used monomer in our group, MPCS was synthesized according to our previous report,³ and its purity was confirmed by ¹H NMR (Figure S4).

1.3. Synthesis of Nb-PMPCS

All Nb-PMPCS samples were polymerized in a similar way. In a typical experiment, MPCS (2.02 g, 5.00 mmol), Nb-Br (0.0900 g, 0.250 mmol), CuBr (0.0360 g, 0.250 mmol), PMDETA (0.0430 g, 0.250 mmol), and chlorobenzene (8.08 g) were charged into a glass tube with a magnetic stir bar. The glass tube was degassed by three freeze-thaw cycles and sealed under vacuum. After polymerization at 85 °C for 1 h, the tube was dipped into liquid nitrogen. Then the solution was diluted with 20 mL of dichloromethane, passed through a neutral alumina column to remove the Cu(I) catalyst, and precipitated in 400 mL of methanol. After filtration and being dried in vacuum at ambient temperature for 24 h, Nb-PMPCS was obtained as a white powder.

Results

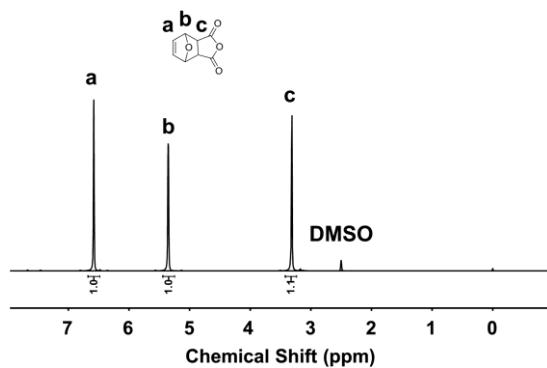


Figure S1. ^1H NMR spectrum of **1** in $\text{DMSO}-d_6$.

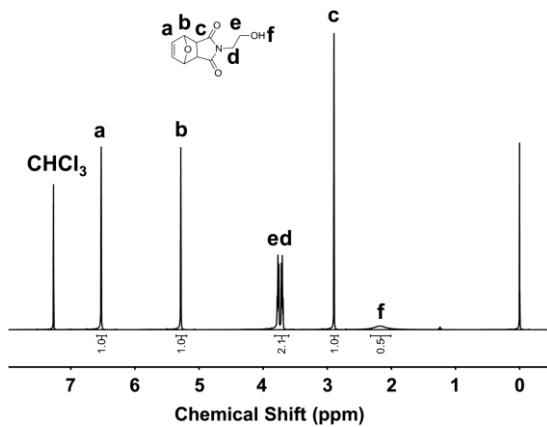


Figure S2. ^1H NMR spectrum of **2** in CDCl_3 .

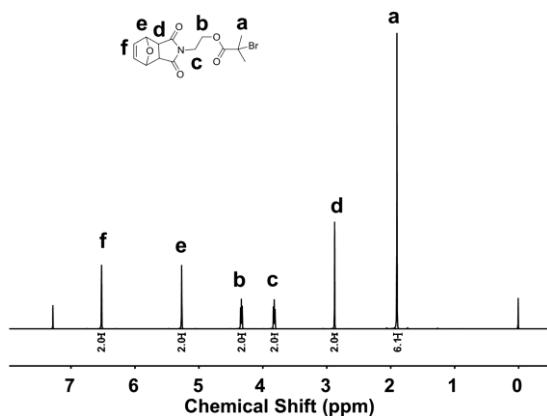


Figure S3. ^1H NMR spectrum of Nb-Br in CDCl_3 .

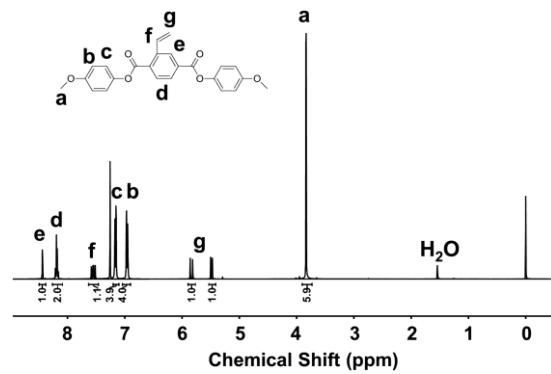


Figure S4. ^1H NMR spectrum of MPPCS in CDCl_3 .

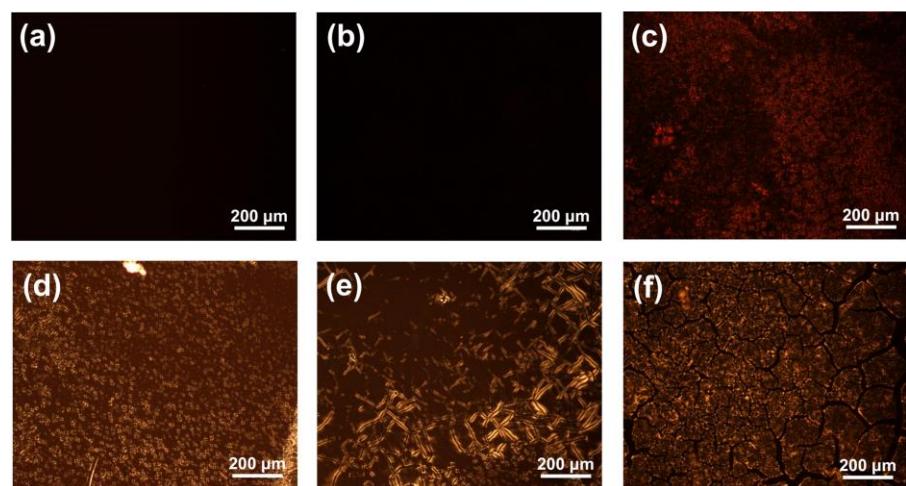


Figure S5. PLM micrographs of MI-PMPPCS 1 (a), Brush 1 (b), MI-PMPPCS 3 (c), Brush 3 (d), MI-PMPPCS 4 (e), and Brush 4 (f) at 240 $^{\circ}\text{C}$.

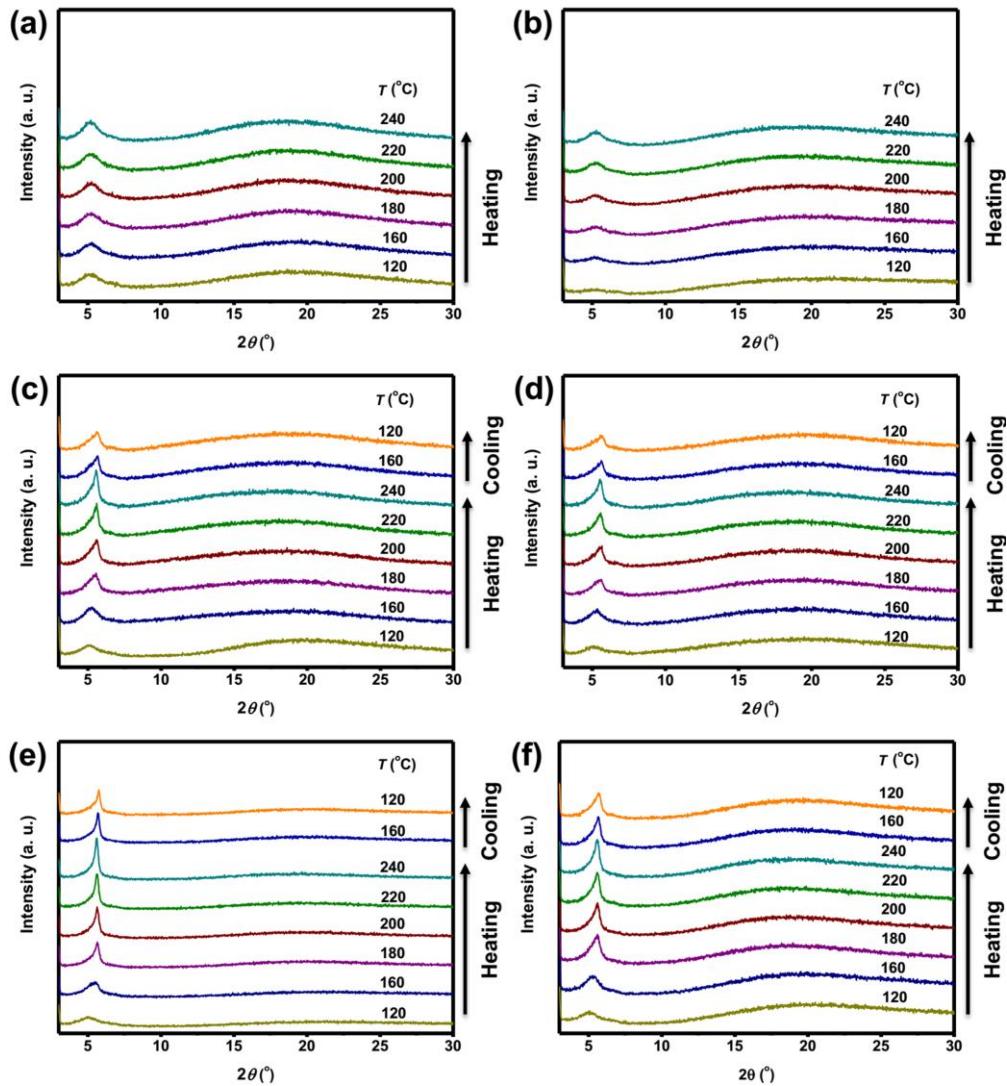


Figure S6. 1D WAXD profiles of MI-PMPCS 1 (a), Brush 1 (b), Brush 2-2 (c), Brush 2-3 (d), MI-PMPCS 4 (e), and Brush 4 (f).

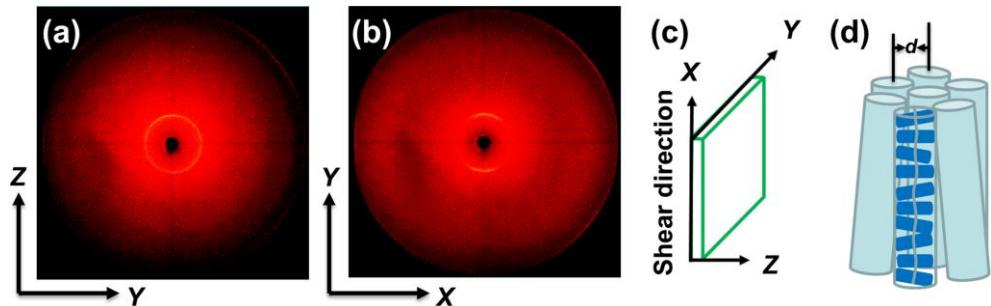


Figure S7. 2D WAXD patterns of a sheared film sample of MI-PMPCS 3 with the X-ray beam along X (a) and Z (b) directions, the shearing geometry (c), and the schematic drawing of the Φ_N phase formed by MI-PMPCS 3 (d).

References:

- (1) Mantovani, G.; Lecolley, F.; Tao, L.; Haddleton, D. M.; Clerx, J.; Cornelissen, J.; Velonia, K. *J. Am. Chem. Soc.* **2005**, *127*, 2966-2973.
- (2) Gramlich, W. M.; Robertson, M. L.; Hillmyer, M. A. *Macromolecules* **2010**, *43*, 2313-2321.
- (3) Zhang, D.; Liu, Y.-X.; Wan, X.-H.; Zhou, Q.-F. *Macromolecules* **1999**, *32*, 5183-5185.