### **Supporting Information for**

# Silver-Catalyzed C-H Trifluoromethylation of Arenes Using Trifluoroacetic Acid as the Trifluoromethylating Reagent

Guangfa Shi, Changdong Shao, Shulei Pan, Jingxun Yu, Yanghui Zhang\*

Department of Chemistry, and Shanghai Key Lab of Chemical Assessment and

Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China. \*To

whom correspondence should be addressed. Email: zhangyanghui@tongji.edu.cn

#### **Table of Contents**

| General Information                                                       | S2    |
|---------------------------------------------------------------------------|-------|
| I. Attempts towards Trifluoromethylation of Pyridine with TFA under Mi    | nisci |
| Reaction Conditions                                                       | S2    |
| II. General Procedure for the Screening of Reaction Conditions            | S3    |
| III. General Procedure for Silver-Catalyzed Trifluoromethylation with TFA | S5    |
| IV. Preliminary Mechanistic Studies                                       | S7    |
| V. Characterization of the Authentic Samples                              | S10   |
| VI. Characterization of Products                                          | S18   |
| VII. Spectra                                                              | S29   |

General Information: All of the solvents were purified by distillation prior to use. Unless otherwise noted, the other commercial materials were used without further purification. <sup>1</sup>H NMR, <sup>19</sup>F NMR and <sup>13</sup>C NMR spectra were recorded with Bruker ARX400. GC-MS data were tested with ThermoFisher Trace1300-ISQ (EI). High resolution mass spectra were measured on Bruker MicroTOF II ESI-TOF mass spectrometer. <sup>1</sup>H NMR spectra were recorded in CDCl<sub>3</sub> and referenced to residual CHCl<sub>3</sub> at 7.26 ppm, <sup>19</sup>F NMR were referenced to CF<sub>3</sub>CH<sub>2</sub>OH at -77.56 ppm in CDCl<sub>3</sub>, and <sup>13</sup>C NMR spectra were referenced to the central peak of CDCl<sub>3</sub> at 77.0 ppm. Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

Some of the trifluoromethylated products were isolated. For the inseparable isomers, the authentic samples were purchased or synthesized. The products were identified by comparing the <sup>19</sup>F NMR and <sup>1</sup>H NMR spectroscopic data of the products with those of authentic samples and confirmed by GC-MS analysis.

# I. Attempts towards Trifluoromethylation of Pyridine with TFA under Minisci Teaction Conditions:

General procedure for trifluoromethylation of pyridine with TFA under Minisci reaction conditions: A 50 mL Schlenk-type tube (with a Teflon high pressure valve) equipped with a magnetic stir bar was charged with pyridine (0.25 mmol, 20.1 uL), AgNO<sub>3</sub> (20 mol %, 8.5 mg), (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv, 114.1 mg), followed by TFA (5.0 equiv, 92.8 uL), concd H<sub>2</sub>SO<sub>4</sub> (20 mol %, 6.8 uL), and H<sub>2</sub>O (0.5 mL) as the solvent. After the reaction mixture was stirred at 70 °C or 120 °C for 10 h (500 rpm), it was allowed to cool to ambient temperature. The reaction mixture was diluted with ethyl acetate (10 mL) and washed with saturated aqueous NaHCO<sub>3</sub> (3 mL) and brine (3 mL, twice). The organic phase was dried with Na<sub>2</sub>SO<sub>4</sub> and analyzed by GC-MS. No or only a trace amount of desired product was detected for the reaction at 70°C or 120°C repsectively.

# Scheme S1. Attempts towards Trifluoromethylation of Pyridine with TFA under Minisci Reaction Conditions

$$\begin{array}{c} \text{AgNO}_3 \text{ (20 mol \%)} \\ \text{TFA (5 equiv)} \\ \text{H}_2\text{SO}_4 \text{ (20 mol \%)} \\ \hline \text{(NH}_4)_2\text{S}_2\text{O}_8 \text{ (2.0 equiv)} \\ \text{0.25 mmol} \\ \text{H}_2\text{O (0.5 mL), 10 h} \end{array} \begin{array}{c} 70 \, ^{\circ}\text{C} \\ \text{No reaction} \\ \text{120 } ^{\circ}\text{C} \\ \text{Trace} \end{array}$$

#### **II.** General Procedure for the Screening of Reaction Conditions:

Conditions A: A 50 mL Schlenk-type tube (with a Teflon high pressure valve and side arm) equipped with a magnetic stir bar was charged with terephthalonitrile (0.25 mmol, 32.0 mg), Ag-catalyst, K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv, 135.2 mg), base, followed by TFA, concd H<sub>2</sub>SO<sub>4</sub>, and MeCN as the solvent. The reaction tube closed with a tiny opening. After the reaction mixture was stirred at 120 °C for 10 h, it was allowed to cool to ambient temperature. The reaction mixture was diluted with ethyl acetate (10 mL) and washed with saturated aqueous NaHCO<sub>3</sub> (3 mL) and brine (3 mL, twice). The organic phase was dried with Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated *in vacuo*. The yield was determined by <sup>19</sup>F NMR and <sup>1</sup>H NMR analysis of crude product using CF<sub>3</sub>CH<sub>2</sub>OH and CH<sub>2</sub>Br<sub>2</sub> as the internal standard respectively.

Conditions B: A 50 mL Schlenk-type tube (with a Teflon high pressure valve and side arm) equipped with a magnetic stir bar was charged with terephthalonitrile (0.25 mmol, 32.0 mg), Ag-catalyst, K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv, 135.2 mg), base, followed by TFA, concd H<sub>2</sub>SO<sub>4</sub>, and DCM as the solvent. After the reaction mixture was stirred at 120 °C for 10 h, it was allowed to cool to ambient temperature. The reaction mixture was diluted with ethyl acetate (10 mL) and washed with saturated aqueous NaHCO<sub>3</sub> (3 mL) and brine (3 mL, twice). The organic phase was dried with Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated *in vacuo*. The yield was determined by <sup>19</sup>F NMR and <sup>1</sup>H NMR analysis of crude product using CF<sub>3</sub>CH<sub>2</sub>OH and CH<sub>2</sub>Br<sub>2</sub> as the internal standard respectively.

Table S1. Condition Optimization of C–H Trifluoromethylation of Terephthalonitrile Using TFA as the Trifluoromethylating Reagent

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                      |                                       |                     |                        |                        |  |
|-------------------------------------------------------|--------------------------------------|---------------------------------------|---------------------|------------------------|------------------------|--|
|                                                       | mmol<br><b>1</b>                     |                                       |                     | mono-<br>1o            | di-                    |  |
| entry                                                 | Ag-catalyst<br>(mol %)               | base (equiv) H <sub>2</sub>           | 2SO <sub>4</sub> (0 | eq) solvent (mL)       | yield (%) <sup>a</sup> |  |
| 1 <sup>b</sup>                                        | Ag <sub>2</sub> CO <sub>3</sub> (40) | -                                     | -                   | MeCN (0.4)             | trace                  |  |
| $2^b$                                                 | Ag <sub>2</sub> CO <sub>3</sub> (40) | -                                     | 0.2                 | MeCN (0.4)             | trace                  |  |
| $3^b$                                                 | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | -                   | MeCN (0.4)             | 17                     |  |
| 4                                                     | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | -                   | MeCN (0.4)             | 55 (di-:17)            |  |
| 5                                                     | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | MeCN (0.4)             | 56 (di-:8)             |  |
| 6                                                     | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | -                   | MeCN (0.9)             | 57 (di-:14)            |  |
| 7                                                     | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | MeCN (0.9)             | 81 (di-:21)            |  |
| $8^b$                                                 | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | MeCN (0.2)             | 27 (di-:5)             |  |
| $9^b$                                                 | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | MeCN (0.4)             | 20                     |  |
| 10 <sup>b</sup>                                       | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | MeCN (0.9)             | 11                     |  |
| 11 <sup>c</sup>                                       | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | MeCN (0.9)             | -                      |  |
| 12 <sup>d</sup>                                       | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | MeCN (0.9)             | -                      |  |
| 13                                                    | Ag <sub>2</sub> O (40)               | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | MeCN (0.9)             | 10                     |  |
| 14                                                    | AgNO <sub>3</sub> (80)               | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | MeCN (0.9)             | 6                      |  |
| 15                                                    | Ag <sub>2</sub> CO <sub>3</sub> (40) | NaHCO <sub>3</sub> (3.0)              | 0.5                 | MeCN (0.9)             | 22                     |  |
| 16                                                    | Ag <sub>2</sub> CO <sub>3</sub> (40) | $K_2CO_3(1.5)$                        | 0.5                 | MeCN (0.9)             | 24                     |  |
| 17                                                    | Ag <sub>2</sub> CO <sub>3</sub> (40) | KF (3.0)                              | 0.5                 | MeCN (0.9)             | 5                      |  |
| 18                                                    | Ag <sub>2</sub> CO <sub>3</sub> (40) | K <sub>3</sub> PO <sub>4</sub> (1.0)  | 0.5                 | MeCN (0.9)             | 27                     |  |
| 19                                                    | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | H <sub>2</sub> O (0.9) | -                      |  |
| 10                                                    | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | Acetone (0.9)          | =                      |  |
| 21                                                    | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | DMF (0.9)              | -                      |  |
| 22                                                    | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | Hexane (0.9)           | -                      |  |
| 23                                                    | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | DCM (0.9)              | 20                     |  |
| 24 <sup>b</sup>                                       | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | DCM (0.9)              | 40 (di-:5)             |  |
| 25 <sup>b</sup>                                       | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | DCM (0.7)              | 57 (di-:6)             |  |
| 26 <sup>b,e</sup>                                     | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (2.5) | 0.2                 | DCM (0.7)              | 77 (di-:19)            |  |
| 27 <sup>b,e</sup>                                     | Ag <sub>2</sub> CO <sub>3</sub> (40) | Na <sub>2</sub> CO <sub>3</sub> (2.5) | 0.2                 | DCM (0.4)              | 25                     |  |
| 28 <sup>b,e</sup>                                     | Ag <sub>2</sub> CO <sub>3</sub> (20) | Na <sub>2</sub> CO <sub>3</sub> (2.5) | 0.2                 | DCM (0.7)              | 64 (di-:10)            |  |
| 29 <sup>b,e</sup>                                     | $Ag_2CO_3$ (5)                       | Na <sub>2</sub> CO <sub>3</sub> (2.5) | 0.2                 | DCM (0.7)              | 27                     |  |
| $30^{b,e}$                                            | -                                    | Na <sub>2</sub> CO <sub>3</sub> (2.5) | 0.2                 | DCM (0.7)              | trace                  |  |
| 31                                                    | Ag <sub>2</sub> CO <sub>3</sub> (10) | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | MeCN (0.9)             | 31                     |  |
| 32                                                    | -                                    | Na <sub>2</sub> CO <sub>3</sub> (1.5) | 0.5                 | MeCN (0.9)             | trace                  |  |

Note: <sup>a</sup> The yields were determined by <sup>19</sup>F NMR analysis of crude products using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard. <sup>b</sup> The reaction flask was well-sealed. <sup>c</sup> no K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>. <sup>d</sup> DTBP instead of K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>. <sup>e</sup> 6.1 equiv TFA.

#### III. General Procedure for Silver-Catalyzed Trifluoromethylation with TFA:

Conditions A: A 50 mL Schlenk-type tube (with a Teflon high pressure valve and side arm) equipped with a magnetic stir bar was charged with substrate (0.25 mmol), Ag<sub>2</sub>CO<sub>3</sub> (40 mol %, 27.6 mg), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv, 135.2 mg), Na<sub>2</sub>CO<sub>3</sub> (1.5 equiv, 39.8 mg), followed by TFA (3.6 equiv, 66.8 uL), concd H<sub>2</sub>SO<sub>4</sub> (50 mol %, 6.8 uL), and MeCN (0.9 mL) as the solvent. The reaction tube was closed with a tiny opening. After the reaction mixture was stirred at 120 °C for 10 h, it was allowed to cool to ambient temperature. The reaction mixture was diluted with ethyl acetate (10 mL) and washed with saturated aqueous NaHCO<sub>3</sub> (3 mL) and brine (3 mL, twice). The organic phase was dried with Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatograph (n-hexane/ethyl acetate mixtures) to give inseparable products. The products were analyzed by <sup>19</sup>F NMR and <sup>1</sup>H NMR spectroscopy and GC-MS. The NMR spectroscopic data matched those obtained for an authentic sample. The yield was determined by <sup>19</sup>F NMR and <sup>1</sup>H NMR analysis of crude product using CF<sub>3</sub>CH<sub>2</sub>OH and CH<sub>2</sub>Br<sub>2</sub> as the internal standard respectively. For volatile products, the reaction mixture was analyzed by <sup>19</sup>F NMR spectroscopy and GC-MS without workup.

Conditions B: A 50 mL Schlenk-type tube (with a Teflon high pressure valve) equipped with a magnetic stir bar was charged with substrate (0.25 mmol), Ag<sub>2</sub>CO<sub>3</sub> (40 mol %, 27.6 mg), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv, 135.2 mg), Na<sub>2</sub>CO<sub>3</sub> (2.5 equiv, 66.3 mg), followed by TFA (6.1 equiv, 113.2 uL), concd H<sub>2</sub>SO<sub>4</sub> (20 mol %, 2.7 uL), and DCM (0.7 mL) as the solvent. After the reaction mixture was stirred at 120 °C for 10 h, it was allowed to cool to ambient temperature. The reaction mixture was diluted with ethyl acetate (10 mL) and washed with saturated aqueous NaHCO<sub>3</sub> (3 mL) and brine (3 mL, twice). The organic phase was dried with Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatograph (*n*-hexane/ethyl acetate mixtures) to give inseparable products. The products were analyzed by <sup>19</sup>F NMR and <sup>1</sup>H NMR spectroscopy and GC-MS. The NMR spectroscopic data matched those obtained for an authentic sample. The yield was determined by <sup>19</sup>F NMR and <sup>1</sup>H NMR analysis of crude product using CF<sub>3</sub>CH<sub>2</sub>OH and CH<sub>2</sub>Br<sub>2</sub> as the internal standard

respectively. For volatile products, the reaction mixture was analyzed by <sup>19</sup>F NMR spectroscopy and GC-MS without workup.

Table S2. Silver-catalyzed C-H Trifluoromethylation of Arenes using TFA as the Trifluoromethylating Reagent

Note: <sup>a</sup> 3.6 equiv TFA. 1.5 equiv Na<sub>2</sub>CO<sub>3</sub>. <sup>b</sup> no concd H<sub>2</sub>SO<sub>4</sub>. <sup>c</sup> 0.4 mL MeCN. <sup>d</sup> 5 mol % Ag<sub>2</sub>CO<sub>3</sub>. <sup>e</sup> The yield and isomer ratio were determined by <sup>19</sup>F NMR and <sup>1</sup>H NMR using CF<sub>3</sub>CH<sub>2</sub>OH and CH<sub>2</sub>Br<sub>2</sub> as the internal standard respectively.

Condition **A**:  $Ag_2CO_3$  (40 mol %),  $K_2S_2O_8$  (2.0 equiv), TFA (3.6 equiv),  $Na_2CO_3$  (1.5 equiv),  $H_2SO_4$  (0.5 equiv), MeCN (0.9 mL), 120 °C, 10 h, not well-sealed.

Condition **B**: Ag<sub>2</sub>CO<sub>3</sub> (40 mol %), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv), TFA (6.1 equiv), Na<sub>2</sub>CO<sub>3</sub> (2.5 equiv), H<sub>2</sub>SO<sub>4</sub> (0.2 equiv), DCM (0.7 mL), 120 °C, 10 h.

#### IV. Preliminary Mechanistic Studies:

1. Inhibition of the trifuoromethylation reaction with TEMPO: A 50 mL Schlenk-type tube (with a Teflon high pressure valve) equivuipped with a magnetic stir bar was charged with benzonitrile (0.25 mmol, 25.5 uL), Ag<sub>2</sub>CO<sub>3</sub> (40 mol %, 27.6 mg), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv, 135.2 mg), Na<sub>2</sub>CO<sub>3</sub> (1.5 equiv, 39.8 mg), followed by TFA (3.6 equiv, 66.8 uL), concd H<sub>2</sub>SO<sub>4</sub> (20 mol %, 2.7 uL), TEMPO (1.0 equiv, 39.1 mg) and DCM (0.7 mL) as the solvent. After the reaction mixture was stirred at 120 °C for 10, it was allowed to cool to ambient temperature. The reaction mixture was diluted with ethyl acetate (10 mL) and washed with saturated aqueous NaHCO<sub>3</sub> (3 mL) and brine (3 mL, twice). The organic phase was dried with Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated *in vacuo*. No desired product was detected by <sup>1</sup>H NMR, <sup>19</sup>F NMR and GC-MS.

Scheme S2. Inhibition of the Trifluoromethylation Reaction with TEMPO

Condition **B**: Ag<sub>2</sub>CO<sub>3</sub> (40 mol %), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv), TFA (6.1 equiv), Na<sub>2</sub>CO<sub>3</sub> (2.5 equiv), H<sub>2</sub>SO<sub>4</sub> (0.2 equiv), DCM (0.7 mL), 120 °C, 10 h.

**2. Kinetic isotope effect experiment:** A 50 mL Schlenk-type tube (with a Teflon high pressure valve) equipped with a magnetic stir bar was charged with benzene (0.125 mmol, 11.14 uL) and  $d_6$ -benzene (0.125 mmol, 11.07 uL), Ag<sub>2</sub>CO<sub>3</sub> (40 mol %, 27.6 mg), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv, 135.2 mg), Na<sub>2</sub>CO<sub>3</sub> (2.5 equiv, 66.3 mg), followed by TFA (6.1 equiv, 113.2 uL), concd H<sub>2</sub>SO<sub>4</sub> (20 mol %, 2.7 uL), and DCM (0.7 mL) as the solvent. After the reaction mixture was stirred at 120 °C for 3 h or 10 h, it was allowed to cool to ambient temperature. The reaction mixture was diluted with CDCl<sub>3</sub>

(3 mL) and washed with saturated aqueous NaHCO<sub>3</sub> (2 mL). The ratios of trifluorotoluene to  $d_5$ -trifluorotoluene were determined by  $^1$ H NMR and  $^{19}$ F NMR analysis of crude products using CH<sub>2</sub>Br<sub>2</sub> and CF<sub>3</sub>CO<sub>2</sub>CH<sub>3</sub> as the internal standard respectively.

Scheme S3. Kinetic Isotope Effect Experiments

$$CF_3$$
  $CF_3$   $CF_3$ 

Condition **B**: Ag<sub>2</sub>CO<sub>3</sub> (40 mol %), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv), TFA (6.1 equiv), Na<sub>2</sub>CO<sub>3</sub> (2.5 equiv), H<sub>2</sub>SO<sub>4</sub> (0.2 equiv), DCM (0.7 mL), 120 °C, 10 h.

**3. Reactions in the dark:** A 50 mL Schlenk-type tubes wraped with aluminum foil (with a Teflon high pressure valve) equipped with a magnetic stir bar were charged with benzonitrile (0.25 mmol, 25.5 uL) or *tert*-butylbenzene (0.25 mmol, 38.5 uL), followed by Ag<sub>2</sub>CO<sub>3</sub> (40 mol %, 27.6 mg), K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (2.0 equiv, 135.2 mg), TFA (3.6 equiv, 66.8 uL), Na<sub>2</sub>CO<sub>3</sub> (1.5 equiv, 39.8 mg), concd H<sub>2</sub>SO<sub>4</sub> (20 mol %, 2.7 uL), and DCM (0.7 mL) as the solvent. After the reaction mixture was stirred at 120 °C in the dark for 10 h, it was allowed to cool to ambient temperature. The reaction mixture was diluted with ethyl acetate (10 mL) and washed with saturated aqueous NaHCO<sub>3</sub> (3 mL) and brine (3 mL, twice). The organic phase was dried with Na<sub>2</sub>SO<sub>4</sub> and filtered. The reactions were analyzed by <sup>19</sup>F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard, which showed similar results to those under visible light.

# Scheme S4. Investigation of the Influence of Light Radiation on the C-H Trifluoromethylation Reaction

CN in the dark: 82% yield (o:m:p:di = 27:10:27:18) 
$$vs$$

0.25 mmol or tBu in the dark (o:m:p:di = 28:11:29:20) or tBu in the dark: 77% yield (43:28:6 isomer ratio)  $vs$ 

0.25 mmol (46:29:6 isomer ratio)

 $\label{eq:condition B: Ag_2CO_3 (40 mol \%), K_2S_2O_8 (2.0 equiv), TFA (6.1 equiv), Na_2CO_3 (2.5 equiv), H_2SO_4 (0.2 equiv), DCM (0.7 mL), 120 °C, 10 h.}$ 

#### V. Characterization of the Authentic Samples

#### 1. Commercially available authentic samples:

#### 2-(Trifluoromethyl)benzonitrile (30):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.86 (d, J = 7.5 Hz, 1H), 7.81 (d, J = 7.4 Hz, 1H), 7.75 (m, 1H), 7.70 (m, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -62.38 (s, 3F).

#### 3-(Trifluoromethyl)benzonitrile (3m):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.93 (s, 1H), 7.87 (m, 2H), 7.66 (t, J = 7.9 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -63.61 (s, 3F).

#### 4-(Trifluoromethyl)benzonitrile (3p):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.82 (d, J = 8.3 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -63.93 (s, 3F).

#### 4-Methyl-2-(trifluoromethyl)benzonitrile (70):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.72 (d, J = 7.9 Hz, 1H), 7.60 (s, 1H), 7.48 (d, J = 7.9 Hz, 1H), 2.50 (s, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -62.38 (s, 3F).

**S10** 

#### 4-Methyl-3-(trifluoromethyl)benzonitrile (7m):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.89 (s, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.43 (d, J = 7.9 Hz, 1H), 2.56 (d, J = 1.1 Hz, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -62.89 (s, 3F).

#### 4-Fluoro-2-(trifluoromethyl)benzonitrile (80):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.88 (m, 1H), 7.52 (dd, J = 8.2, 2.3 Hz, 1H), 7.43 (m, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -62.81 (s, 3F), -100.22 (s, 1F).

#### 4-Fluoro-3-(trifluoromethyl)benzonitrile (8m):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.96 (dd, J = 6.4, 1.6 Hz, 1H), 7.89 (m, 1H), 7.37 (t, J = 9.1 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -62.40 (d, J = 12.7 Hz, 3F), -104.30 (q, J = 12.7 Hz, 1F).

#### 4-Chloro-2-(trifluoromethyl)benzonitrile (90):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.80 (m, 2H), 7.68 (dd, J = 8.2, 1.9 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -62.73 (s, 3F).

#### 4-Chloro-3-(trifluoromethyl)benzonitrile (9m):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.99 (d, J = 1.6 Hz, 1H), 7.78 (dd, J = 8.3, 1.7 Hz, 1H), 7.67 (d, J = 8.3 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -63.73 (s, 3F).

#### 4-Bromo-2-(trifluoromethyl)benzonitrile (10o):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.95 (s, 1H), 7.85 (dd, J = 8.2, 1.4 Hz, 1H), 7.71 (d, J = 8.2 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -62.61 (s, 3F).

#### 4-Bromo-3-(trifluoromethyl)benzonitrile (10m):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.96 (d, J = 1.4 Hz, 1H), 7.88 (d, J = 8.3 Hz, 1H), 7.67 (dd, J = 8.3, 1.7 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -63.81 (s, 3F).

#### 4-Iodo-2-(trifluoromethyl)benzonitrile (11o):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.14 (s, 1H), 8.06 (d, J = 8.1 Hz, 1H), 7.54 (d, J = 8.1 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -62.56 (s, 3F).

#### 4-Iodo-3-(trifluoromethyl)benzonitrile (11m):

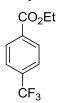
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.19 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 1.6 Hz, 1H), 7.46 (dd, J = 8.2, 1.7 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -64.02 (s, 3F).

#### 2. Synthetic samples:

# General Procedure for the Preparation of Ethyl Benzoates from the Corresponding Benzonitriles:

The ethyl benzoates were synthesized following a literature procedure. <sup>[1]</sup> To a solution of NaOH (1.25 mmol, 50.0 mg) in water (1.0 mL) and ethanol (0.1 mL) was added benzonitrile (0.25 mmol). The reaction mixture was stirred at reflux for 6 h. The mixture was cooled to room temperature and diluted with 5 mL H<sub>2</sub>O, and then washed with DCM (5 mL×2). The aqueous phase was acidified by 1N HCl and extracted with 10 mL ethyl acetate. The organic layer was washed with brine and dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated in vacuum. The crude benzoic acid was added to a solution of H<sub>2</sub>SO<sub>4</sub> (0.5 mL) in ethanol (2 mL), and refluxed for 10 h. The reaction solution was diluted with 10 mL ethyl acetate and washed with H<sub>2</sub>O (5 mL), saturated NaHCO<sub>3</sub> solution (3 mL×3) and brine (3 mL×1), and then dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated in vacuum. The crude product was purified by silica gel column chromatography.

#### **Ethyl 2-(trifluoromethyl)benzoate (40):**


The general procedure was followed with 2-(trifluoromethyl)benzonitrile (0.25 mmol, 42.75 mg) as the substrate to give a colorless liquid (38.8 mg. Yield: 65%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.77$  (m, 1H), 7.73 (m, 1H), 7.59 (m, 2H), 4.39 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -59.75$  (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>10</sub>H<sub>9</sub>F<sub>3</sub>NaO<sub>2</sub> (M+Na)<sup>+</sup>: 241.0447; found: 241.0461. The <sup>1</sup>H NMR data matched that in literature. <sup>[2]</sup>

#### Ethyl 3-(trifluoromethyl)benzoate (4m):



The general procedure was followed with 3-(trifluoromethyl)benzonitrile (0.25 mmol, 42.75 mg) as the substrate to give a colorless liquid (41.8 mg. Yield: 70%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.28$  (s, 1H), 8.21 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.55 (t, J = 7.8 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -63.29$  (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>10</sub>H<sub>9</sub>F<sub>3</sub>NaO<sub>2</sub> (M+Na)<sup>+</sup>: 241.0447; found: 241.0462. The <sup>1</sup>H NMR data matched that in literature. <sup>[3]</sup>

#### Ethyl 4-(trifluoromethyl)benzoate (4p):



The general procedure was followed with 4-(trifluoromethyl)benzonitrile (0.25 mmol, 42.75 mg) as the substrate to give a colorless liquid (34.7mg. Yield: 58%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.15 (d, J = 8.1 Hz, 2H), 7.69 (d, J = 8.2 Hz, 2H), 4.40 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -63.53 (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>10</sub>H<sub>9</sub>F<sub>3</sub>NaO<sub>2</sub> (M+Na)<sup>+</sup>: 241.0447; found: 241.0421. The <sup>1</sup>H NMR data matched that in literature. <sup>[3]</sup>

# General Procedure for the Preparation of Methyl Benzoates from the Corresponding Benzonitriles:

The benzoic acids were synthesized following a literature procedure. To a solution of NaOH (1.25 mmol, 50.0 mg) in water (1.0 mL) and ethanol (0.1 mL) was added benzonitrile (0.25 mmol). The reaction mixture was stirred at reflux for 6 h. The mixture was cooled to room temperature and diluted with 5 mL  $_2$ O, and then washed with DCM (5 mL $_2$ ). The aqueous phase was acidified by 1N HCl and extracted with 10 mL ethyl acetate. The organic layer was washed with brine and dried over Na $_2$ SO<sub>4</sub>, filtered and concentrated in vacuum. The crude benzoic acid was methylated with fresh CH $_2$ N $_2$  in ether. The reaction solution was diluted with 5 mL ether and washed with saturated NaHCO $_3$  solution (3 mL $_2$ 3) and brine (3 mL $_3$ 1), and then dried over Na $_2$ SO<sub>4</sub>, filtered and concentrated in vacuum. The crude product was

purified by silica gel column chromatography.

#### Methyl 4-methyl-2-(trifluoromethyl)benzoate (150):

The general procedure was followed with 4-methyl-2-(trifluoromethyl)benzonitrile (0.25 mmol, 46.25 mg) as the substrate to give a colorless liquid (21.3 mg. Yield: 37%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.70 (d, J = 7.9 Hz, 1H), 7.54 (s, 1H), 7.39 (d, J = 7.8 Hz, 1H), 3.91 (s, 3H), 2.44 (s, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 167.21, 142.02, 132.12, 130.50, 128.84 (q, J = 32.0 Hz), 128.06, 127.36 (q, J = 5.4 Hz), 123.38 (q, J = 271.6 Hz), 52.63, 21.37.  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -60.07 (s, 3F). HRMS (ESI-TOF) m/z: calcd for  $C_{10}H_{9}F_{3}NaO_{2}$  (M+Na) $^{+}$ : 241.0447; found: 241.0454.

#### Methyl 4-methyl-3-(trifluoromethyl)benzoate (15m):

The general procedure was followed with 4-methyl-3-(trifluoromethyl)benzonitrile (0.25 mmol, 46.25 mg) as the substrate to give a colorless liquid (47.1 mg. Yield: 82%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.27 (s, 1H), 8.07 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 3.93 (s, 3H), 2.54 (d, J = 1.0 Hz, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 165.95, 142.04 (m), 132.57, 131.13, 129.22 (q, J = 30.4 Hz), 128.09, 127.11 (q, J = 5.7 Hz), 124.02 (q, J = 272.1 Hz), 52.30, 19.52 (m).  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -62.44 (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>10</sub>H<sub>9</sub>F<sub>3</sub>NaO<sub>2</sub> (M+Na)<sup>+</sup>: 241.0447; found: 241.0463.

#### Methyl 4-chloro-2-(trifluoromethyl)benzoate (160):

The general procedure was followed with 4-chloro-2-(trifluoromethyl)benzonitrile (0.25 mmol, 51.4 mg) as the substrate to give a colorless solid (29.4 mg. Yield: 47%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.79 (d, J = 8.3 Hz, 1H), 7.75 (s, 1H), 7.60 (d, J = 8.4 Hz, 1H), 3.95 (s, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 166.14, 137.73, 131.94, 131.81, 130.57 (q, J = 33.1 Hz), 129.25, 127.22 (q, J = 5.7 Hz), 122.47 (q, J = 272.2 Hz), 52.94.  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -60.43 (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>9</sub>H<sub>6</sub>ClF<sub>3</sub>NaO<sub>2</sub> (M+Na)<sup>+</sup>: 260.9901; found: 260.9909.

#### Methyl 4-chloro-3-(trifluoromethyl)benzoate (16m):

The general procedure was followed with 4-chloro-3-(trifluoromethyl)benzonitrile (0.25 mmol, 51.4 mg) as the substrate to give a colorless solid (53.3 mg. Yield: 85%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.34 (s, 1H), 8.12 (dd, J = 8.3, 1.4 Hz, 1H), 7.58 (d, J = 8.3 Hz, 1H), 3.94 (s, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 165.01, 137.22 (m), 133.67, 131.73, 129.00, 128.77 (q, J = 31.9 Hz), 128.79 (q, J = 5.3 Hz), 122.37 (q, J = 271.7 Hz), 52.62.  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -63.39 (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>9</sub>H<sub>6</sub>ClF<sub>3</sub>NaO<sub>2</sub> (M+Na)<sup>+</sup>: 260.9901; found: 260.9878.

#### Methyl 4-bromo-2-(trifluoromethyl)benzoate (170):

The general procedure was followed with 4-bromo-2-(trifluoromethyl)benzonitrile (0.25 mmol, 62.5 mg) as the substrate to give a colorless solid (40.6 mg. Yield: 55%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.89$  (d, J = 1.5 Hz, 1H), 7.75 (dd, J = 8.3, 1.7 Hz, 1H), 7.68 (d, J = 8.3 Hz, 1H), 3.93 (s, 3H).  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -60.35$  (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>9</sub>H<sub>7</sub>BrF<sub>3</sub>O<sub>2</sub> (M+H)<sup>+</sup>: 282.9576; found: 282.9532.

#### Methyl 4-bromo-3-(trifluoromethyl)benzoate (17m):

The general procedure was followed with 4-bromo-3-(trifluoromethyl)benzonitrile (0.25 mmol, 62.5 mg) as the substrate to give a colorless solid (64.2 mg. Yield: 87%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.33 (d, J = 1.7 Hz, 1H), 8.02 (dd, J = 8.3, 1.9 Hz, 1H), 7.79 (d, J = 8.3 Hz, 1H), 3.94 (s, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 165.17, 135.31, 133.59, 130.62 (q, J = 31.8 Hz), 129.56, 128.90 (q, J = 5.5 Hz), 125.43 (m), 122.48 (q, J = 271.9 Hz), 52.67.  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -63.36 (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>9</sub>H<sub>6</sub>BrF<sub>3</sub>NaO<sub>2</sub> (M+Na)<sup>+</sup>: 304.9395; found: 304.9358.

#### Methyl 4-iodo-2-(trifluoromethyl)benzoate (180):

The general procedure was followed with 4-iodo-2-(trifluoromethyl)benzonitrile (0.25 mmol, 82.5 mg) as the substrate to give a colorless solid (30.1 mg. Yield: 32%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.07 (s, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 8.1 Hz, 1H), 3.92 (s, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 166.48, 140.90, 135.73 (q, J = 5.6 Hz), 131.65, 131.14, 130.34, 130.20 (q, J = 32.8 Hz), 130.13, 122.14 (q, J = 272.5 Hz), 52.96.  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -60.32 (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>9</sub>H<sub>6</sub>IF<sub>3</sub>NaO<sub>2</sub> (M+Na)<sup>+</sup>: 352.9257; found: 352.9276.

#### Methyl 4-iodo-3-(trifluoromethyl)benzoate (18m):

The general procedure was followed with 4-iodo-3-(trifluoromethyl)benzonitrile (0.25 mmol, 82.5 mg) as the substrate to give a colorless solid (71.3 mg. Yield: 76%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.25 (d, J = 1.8 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 7.80 (dd, J = 8.2, 1.7 Hz, 1H), 3.93 (s, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 165.36,

142.49, 134.11 (q, J = 31.4 Hz), 133.24, 130.24, 129.02, 128.38 (q, J = 5.6 Hz), 122.38 (q, J = 272.4 Hz), 52.62. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -63.46$  (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>9</sub>H<sub>6</sub>IF<sub>3</sub>NaO<sub>2</sub> (M+Na)<sup>+</sup>: 352.9257; found: 352.9274.

#### VI. Characterization of the Products

#### 2-(Trifluoromethyl)terephthalonitrile (10):

The product was isolated by preparative HPLC as a colorless solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.09$  (s, 1H), 8.01 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 135.66$ , 135.46, 134.18 (q, J = 33.8 Hz), 130.16 (q, J = 4.7 Hz), 121.25 (q, J = 272.9 Hz), 117.20, 115.74, 114.29, 113.76. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -62.83$  (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>9</sub>H<sub>3</sub>F<sub>2</sub>N<sub>2</sub> (M-F)<sup>+</sup>: 177.0259; found: 177.0259.

#### Trifluorotoluene (20):

The <sup>19</sup>F NMR spectroscopic data of the crude product showed a single peak of -63.14 ppm in CDCl<sub>3</sub> (lit. s, -63.3 ppm in CDCl<sub>3</sub>).<sup>[4]</sup> The identity of the product was confirmed by GC-MS.

#### 2-(Trifluoromethyl)benzonitrile (30):

The product was isolated by silica gel preparative TLC as a colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.86$  (d, J = 7.4 Hz, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.75 (t, J = 7.5 Hz, 1H), 7.70 (t, J = 7.4 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -62.61$  (s, 3F). The NMR spectroscopic data matched that of the authentic samples.

# 2-(Trifluoromethyl)benzonitrile (30), 3-(trifluoromethyl)benzonitrile (3m) and 4-(trifluoromethyl)benzonitrile (3p):

The yield and the isomer ratio were determined by  $^{19}$ F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard by comparing  $^{19}$ F NMR with those of authentic samples. The isomer ratio was o:m:p=28:11:29.  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta=-62.38$  (o-isomer), -63.53 (m-isomer), -63.91 (p-isomer). The  $^{19}$ F NMR spectroscopic data matched that of the authentic samples and the identity of the products was confirmed by GC-MS.

# Ethyl 2-(trifluoromethyl)benzoate (40), ethyl 3-(trifluoromethyl)benzoate (4m) and ethyl 4-(trifluoromethyl)benzoate (4p):

$$CO_2Et$$
  $CO_2Et$   $CO_2E$   $CO_2E$ 

The yield and the isomer ratio were determined by  $^{19}$ F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard by comparing  $^{19}$ F NMR with those of authentic samples. The isomer ratio was o:m:p=35:11:19.  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta=-59.72$  (o-isomer), -63.23 (m-isomer), -63.51 (p-isomer). The  $^{19}$ F NMR spectroscopic data matched that of the authentic samples synthesized above and the identity of the products was confirmed by GC-MS.

1-(tert-Butyl)-2-(trifluoromethyl)benzene (50),

1-(tert-butyl)-3-(trifluoromethyl)benzene (5m) and

1-(*tert*-butyl)-4-(trifluoromethyl)benzene (5p):

The yield and the isomer ratio were determined by  $^{19}$ F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard. The isomer ratio was 46:29:6.  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -53.18$  (s, 3F), -62.75 (s, 3F), -62.87 (s, 3F). The identity of the products was

confirmed by GC-MS.

# 1-Iodo-2-(trifluoromethyl)benzene (60), 1-iodo-3-(trifluoromethyl)benzene (6m) and 1-iodo-4-(trifluoromethyl)benzene (6p):

The yield and the isomer ratio were determined by  $^{19}$ F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard by comparing  $^{19}$ F NMR with the reported ones. The isomer ratio was o:m:p=25:22:19.  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta=-63.13$  (o-isomer, lit. -62.7 ppm in CDCl<sub>3</sub>)<sup>[4]</sup>, -63.33 (m-isomer, lit. -62.9 ppm in CDCl<sub>3</sub>)<sup>[4]</sup>, -63.41 (p-isomer, lit. -63.0 ppm in CDCl<sub>3</sub>)<sup>[4]</sup>. The identity of the products was confirmed by GC-MS.

#### 4-Methyl-2-(trifluoromethyl)benzonitrile (70):

The product was isolated by silica gel preparative TLC as a colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.73$  (d, J = 7.9 Hz, 1H), 7.60 (s, 1H), 7.48 (d, J = 7.9 Hz, 1H), 2.50 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 144.27$ , 134.62, 132.71, 127.44 (q, J = 4.5 Hz), 122.44 (q, J = 272.0 Hz), 115.68, 107.18, 21.79. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -62.34$  (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>9</sub>H<sub>6</sub>F<sub>3</sub>NaN<sub>2</sub> (M+Na)<sup>+</sup>: 208.0345; found: 208.0349. The NMR spectroscopic data matched that of the authentic sample.

#### 4-Methyl-3-(trifluoromethyl)benzonitrile (7m):

The product was isolated by silica gel preparative TLC as a colorless solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.90$  (s, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.43 (d, J = 7.9 Hz, 1H), 2.57 (s, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -62.88$  (s, 3F). The identity of the

product was confirmed by GC-MS. The NMR spectroscopic data matched that of the authentic sample.

#### 4-Fluoro-2-(trifluoromethyl)benzonitrile (80) and

#### 4-fluoro-3-(trifluoromethyl)benzonitrile (8m):

$$CN$$
 $CF_3$ 
 $CF_3$ 
 $CF_3$ 

The yield and the isomer ratio were determined by <sup>19</sup>F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard by comparing <sup>19</sup>F NMR with those of authentic samples. The isomer ratio was o:m = 42:15. **4-Fluoro-2-(trifluoromethyl)benzonitrile (8o):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.89$  (m, 1H), 7.52 (dd, J = 8.2, 2.4 Hz, 1H), 7.40 (m, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -62.79$  (s, 3F), -100.23 (s, 1F). **4-Fluoro-3-(trifluoromethyl)benzonitrile (8m):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.95$  (d, J = 7.4 Hz, 1H), 7.89 (m, 1H), 7.37 (m, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -62.40$  (d, J = 12.4 Hz, 3F), -104.27 (q, J = 12.5 Hz, 1F). The NMR spectroscopic data matched that of the authentic samples and the identity of the products was confirmed by GC-MS.

# 4-Chloro-2-(trifluoromethyl)benzonitrile (90) and 4-chloro-3-(trifluoromethyl)benzonitrile (9m):

The yield and the isomer ratio were determined by <sup>19</sup>F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard by comparing <sup>19</sup>F NMR with those of authentic samples. The isomer ratio was o:m=27:21. **4-Chloro-2-(trifluoromethyl)benzonitrile (9o):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta=7.79$  (m, 2H), 7.67 (m, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta=-62.70$  (s, 3F). **4-Chloro-3-(trifluoromethyl)benzonitrile (9m):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta=7.99$  (s, 1H), 7.79 (m, 1H), 7.67 (m, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta=-63.77$  (s, 3F). The NMR spectroscopic data matched that of the authentic samples and the identity of the products was confirmed by GC-MS.

#### 4-Bromo-2-(trifluoromethyl)benzonitrile (10o) and

#### 4-bromo-3-(trifluoromethyl)benzonitrile (10m):

The yield and the isomer ratio were determined by <sup>19</sup>F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard by comparing <sup>19</sup>F NMR with those of authentic samples. The isomer ratio was o:m=36:24. **4-Bromo-2-(trifluoromethyl)benzonitrile (10o):** <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3)$ :  $\delta = 7.95 \text{ (s, 1H)}, 7.85 \text{ (d, } J = 8.3 \text{ Hz, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz, 1H)}.$ <sup>19</sup>F **NMR** (376)MHz, CDCl<sub>3</sub>): δ -62.59 (s, 3F). **4-Bromo-3-(trifluoromethyl)benzonitrile** (10m):  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta =$ 7.96 (s, 1H), 7.88 (d, J = 8.3 Hz, 1H), 7.68 (d, J = 8.3 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -63.80$  (s, 3F). The NMR spectroscopic data matched that of the authentic samples and the identity of the products was confirmed by GC-MS.

# 4-Iodo-2-(trifluoromethyl)benzonitrile (110) and 4-iodo-3-(trifluoromethyl)benzonitrile (11m):

The yield and the isomer ratio were determined by <sup>19</sup>F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard by comparing <sup>19</sup>F NMR with those of authentic samples. The isomer ratio was o:m = 40:24. **4-Iodo-2-(trifluoromethyl)benzonitrile (11o):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.14$  (s, 1H), 8.06 (d, J = 7.9 Hz, 1H), 7.54 (d, J = 8.1 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -62.57$  (s, 3F). **4-Iodo-3-(trifluoromethyl)benzonitrile** (**11m):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.20$  (d, J = 8.2 Hz, 1H), 7.90 (s, 1H), 7.46 (d, J = 8.1 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -64.04$  (s, 3F). The NMR spectroscopic data matched that of the authentic samples and the identity of the products was confirmed by GC-MS.

#### 2,4-Bis(trifluoromethyl)benzonitrile (120) and

#### 3,4-bis(trifluoromethyl)benzonitrile (12m):

$$CN$$
 $CF_3$ 
 $CF_3$ 
 $CF_3$ 
 $CF_3$ 

The yield was determined by <sup>19</sup>F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard. The isomer ratio was o:m = 41:7. **2,4-Bis(trifluoromethyl)benzonitrile (12o):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.06$  (s, 1H), 8.03 (m, 1H), 7.98 (d, J = 8.2 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -62.37$  (s, 3F), -63.75 (s, 3F). **3,4-Bis(trifluoromethyl)benzonitrile (12m):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.15$  (s, 1H), 8.02 (m, 2H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -59.98$  (m, 3F), -60.10 (m, 3F). The identity of products was further confirmed by GC-MS.

#### Methyl 4-cyano-2-(trifluoromethyl)benzoate (130):

The product was isolated by preparative HPLC as a colorless solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.03$  (s, 1H), 7.91 (m, 2H), 3.97 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 165.55$ , 135.25, 134.97, 131.05, 130.41 (q, J = 5.4 Hz), 130.14 (q, J = 33.7 Hz), 122.14 (q, J = 272.4 Hz), 116.55, 115.48, 53.37. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -60.65$  (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>10</sub>H<sub>6</sub>F<sub>2</sub>NO<sub>2</sub> (M-F)<sup>+</sup>: 210.0361; found: 210.0381.

#### Methyl 4-cyano-3-(trifluoromethyl)benzoate (13m):

The product was isolated by preparative HPLC as a colorless solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.45 (s, 1H), 8.34 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 4.00 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 164.16, 135.00, 134.32, 133.33 (q, J = 33.2 Hz), 132.97, 127.66 (q, J = 4.7 Hz), 121.95 (q, J = 272.5 Hz), 114.68, 113.90, 53.15. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  = -62.44 (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>10</sub>H<sub>6</sub>F<sub>2</sub>NO<sub>2</sub> (M-F)<sup>+</sup>: 210.0361; found: 210.0361.

#### 2,6-Dichloro-3-(trifluoromethyl)benzonitrile (14m):

The product was isolated by preparative HPLC as a colorless solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.85$  (d, J = 8.6 Hz, 1H), 7.58 (d, J = 8.5 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 142.17$ , 137.32, 131.40, 128.27, 121.72 (J = 272.4 Hz), 117.41, 112.32. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -63.37$  (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>8</sub>H<sub>2</sub>Cl<sub>2</sub>F<sub>2</sub>N (M-F)<sup>+</sup>: 219.9527; found: 219.9512.

## 2,6-Dichloro-3- (trifluoromethyl) benzonitrile~(14m)~and

#### 2,6-dichloro-4-(trifluoromethyl)benzonitrile (14p):

The yield was determined by <sup>19</sup>F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard. The isomer ratio was m:p=44:29. **2,6-Dichloro-4-(trifluoromethyl)benzonitrile (14p):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.70$  (s, 2H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -64.07$  (s, 3F). The identity of products was further confirmed by GC-MS.

#### Methyl 4-methyl-2-(trifluoromethyl)benzoate (150):

The product was isolated by silica gel preparative TLC as a colorless solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.72$  (d, J = 7.8 Hz, 1H), 7.55 (s, 1H), 7.40 (d, J = 7.8 Hz, 1H), 3.92 (s, 3H), 2.45 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 167.21$ , 142.02, 132.12, 130.51, 128.86 (q, J = 32.0 Hz), 128.09, 127.37 (q, J = 5.4 Hz), 123.38 (q, J = 271.7 Hz), 52.65, 21.40. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -60.06$  (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>10</sub>H<sub>9</sub>F<sub>3</sub>NaO<sub>2</sub> (M+Na)<sup>+</sup>: 241.0447; found: 241.0443. The NMR spectroscopic data matched that of the authentic sample synthesized above.

#### Methyl 4-methyl-2-(trifluoromethyl)benzoate (150) and methyl

#### 4-methyl-3-(trifluoromethyl)benzoate (15m):

The yield and the isomer ratio were determined by  $^{19}$ F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard by comparing  $^{19}$ F NMR with those of authentic samples. The isomer ratio was o:m=26:18. **Methyl 4-methyl-3-(trifluoromethyl)benzoate (15m):**  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta=8.28$  (s, 1H), 8.08 (d, J=7.9 Hz, 1H), 7.36 (d, J=8.0 Hz, 1H), 3.93 (s, 3H), 2.54 (d, J=1.0 Hz, 3H).  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta=-62.40$  (s, 3F). The NMR spectroscopic data matched that of the authentic samples synthesized above, and the products were further confirmed by GC-MS.

# Methyl 4-chloro-2-(trifluoromethyl)benzoate (160) and methyl 4-chloro-3-(trifluoromethyl)benzoate (16m):

$$CO_2Me$$
  $CO_2Me$   $CF_3$   $CI$   $CI$ 

The yield and the isomer ratio were determined by <sup>19</sup>F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard by comparing <sup>19</sup>F NMR with those of authentic samples. The isomer ratio was o:m = 29:25. **Methyl 4-chloro-2-(trifluoromethyl)benzoate (16o):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.77$  (d, J = 8.3 Hz, 1H), 7.73 (d, J = 1.9 Hz, 1H), 7.59 (m, 1H), 3.93 (s, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -60.42$  (s, 3F). **Methyl 4-chloro-3-(trifluoromethyl)benzoate (16m):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.35$  (d, J = 1.8 Hz, 1H), 8.13 (dd, J = 8.3, 1.8 Hz, 1H), 7.58 (m, 1H), 3.95 (s, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -63.32$  (s, 3F). The NMR spectroscopic data matched that of the authentic samples synthesized above, and the products were further confirmed by GC-MS.

Methyl 4-bromo-2-(trifluoromethyl)benzoate (170) and methyl 4-bromo-3-(trifluoromethyl)benzoate (17m):

$$CO_2Me$$
  $CO_2Me$   $CF_3$   $CF_3$ 

The yield and the isomer ratio were determined by <sup>19</sup>F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard by comparing <sup>19</sup>F NMR with those of authentic samples. The isomer ratio was o:m = 29:24. **Methyl 4-bromo-2-(trifluoromethyl)benzoate (17o):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.89$  (s, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 3.93 (s, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -60.36$  (s, 3F). **Methyl 4-bromo-3-(trifluoromethyl)benzoate (17m):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.35$  (s, 1H), 8.04 (d, J = 8.3 Hz, 1H), 7.81 (d, J = 8.3 Hz, 1H), 3.95 (s, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -63.33$  (s, 3F). The NMR spectroscopic data matched that of the authentic samples synthesized above, and the products were further confirmed by GC-MS.

#### Methyl 4-iodo-3-(trifluoromethyl)benzoate (18m):

The product was isolated by preparative HPLC as a colorless solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.28$  (s, 1H), 8.13 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 8.2 Hz, 1H), 3.95 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 165.39$ , 142.53, 133.26, 130.30, 128.45, 97.21, 52.63. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -63.44$  (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>9</sub>H<sub>6</sub>IF<sub>3</sub>NaO<sub>2</sub> (M+Na)<sup>+</sup>: 352.9257; found: 352.9254. The NMR spectroscopic data matched that of the authentic samples synthesized above.

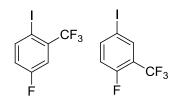
# Methyl 4-iodo-2-(trifluoromethyl)benzoate (180) and methyl 4-iodo-3-(trifluoromethyl)benzoate (18m):

The yield and the isomer ratio were determined by <sup>19</sup>F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard by comparing <sup>19</sup>F NMR with those of authentic samples. The isomer

ratio was o:m = 35:26. **Methyl 4-iodo-2-(trifluoromethyl)benzoate (18o):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.08$  (s, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.51 (d, J = 8.1 Hz, 1H), 3.93 (s, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -60.31$  (s, 3F). The NMR spectroscopic data matched that of the authentic samples synthesized above, and the products were further confirmed by GC-MS.

#### Dimethyl 2-(trifluoromethyl)terephthalate (190):

$$CO_2Me$$
 $CF_3$ 
 $CO_2Me$ 


The product was isolated by preparative HPLC as a colorless solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.39$  (s, 1H), 8.25 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 3.96 (s, 3H), 3.95 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 166.47$ , 164.88, 134.80, 132.70, 132.61, 130.27, 129.06 (q, J = 32.9 Hz), 127.82 (q, J = 5.3 Hz), 122.83 (q, J = 272.0 Hz), 52.99, 52.66. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -60.31$  (s, 3F). HRMS (ESI-TOF) m/z: calcd for C<sub>11</sub>H<sub>9</sub>F<sub>3</sub>NaO<sub>4</sub> (M+Na)<sup>+</sup>: 285.0345; found: 285.0351.

# 4-Bromo-1-iodo-2-(trifluoromethyl)benzene (200) and 4-bromo-1-iodo-3-(trifluoromethyl)benzene (20m):

The yield and the isomer ratio were determined by <sup>19</sup>F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard by comparing <sup>19</sup>F NMR with the reported ones. The isomer ratio was o:m=23:27. **4-Bromo-1-iodo-2-(trifluoromethyl)benzene (20o):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta=7.87$  (d, J=8.4 Hz, 1H), 7.77 (d, J=1.9 Hz, 1H), 7.33 (dd, J=8.3, 1.9 Hz, 1H). The <sup>1</sup>H NMR data matched that in literature<sup>[5]</sup>. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta=-63.68$  (s, 3F). **4-Bromo-1-iodo-3-(trifluoromethyl)benzene (20m):** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta=7.98$  (s, 1H), 7.70 (d, J=8.4 Hz, 1H), 7.42 (d, J=8.4 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta=-63.45$  (s, 3F). The identity of products was further confirmed by GC-MS.

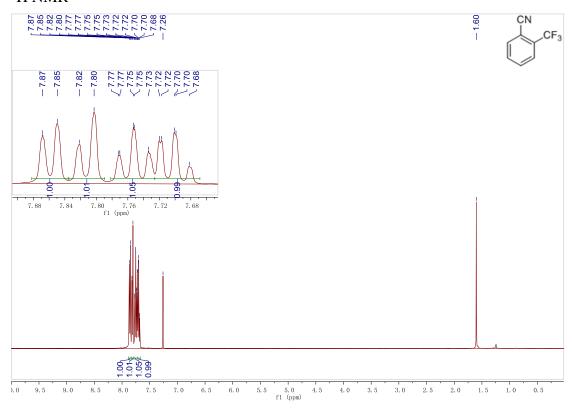
#### 4-Fluoro-1-iodo-2-(trifluoromethyl)benzene (21o) and

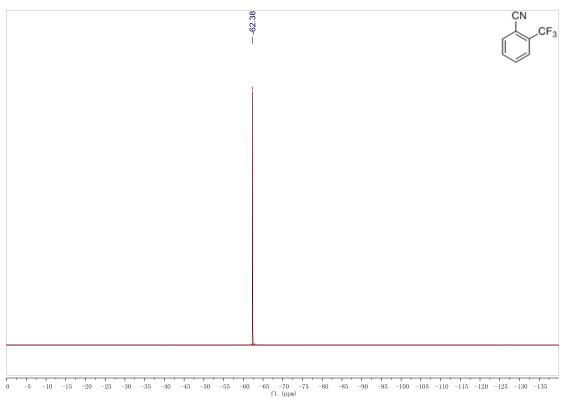
#### 4-fluoro-1-iodo-3-(trifluoromethyl)benzene (21m):



The yield was determined by  $^{19}$ F NMR using CF<sub>3</sub>CH<sub>2</sub>OH as the internal standard. The isomer ratio was o:m = 26:20.  $^{19}$ F NMR: m-isomer: -63.83 (s), -112.45 (s); o-isomer: -62.12 (d, J = 12.4 Hz, 3F), -115.96 (q, J = 12.6 Hz, F). The identity of products was further confirmed by GC-MS.

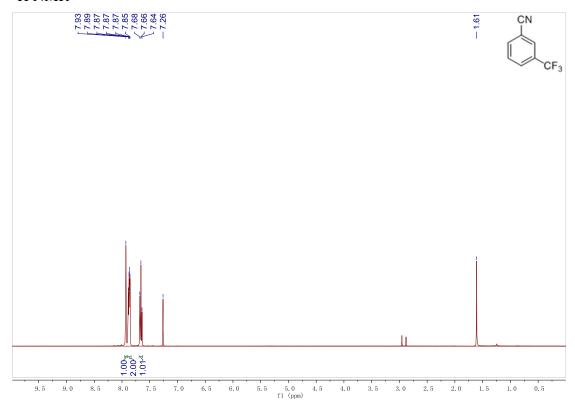
#### Reference:

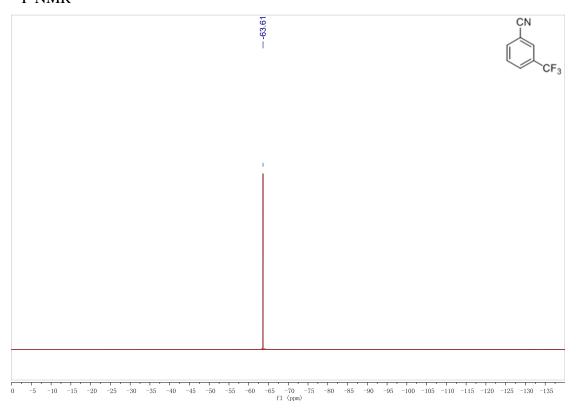

- <sup>[1]</sup> Liu, C.-Y.;\* Wang, X.; Furuyama, T.; Yasuike, S.; Muranaka, A.; Morokuma, K.;\* Uchiyama, M.\* *Chem. Eur. J.* **2010**, *16*, 1780.
- <sup>[2]</sup> Popov, I.; Lindeman, S.; Daugulis, O.\* J. Am. Chem. Soc. **2011**, 133, 9286.
- <sup>[3]</sup> R. Shang, Y. Fu,\* J.-B. Li, S.-L. Zhang, Q.-X. Guo, L. Liu,\* *J. Am. Chem. Soc.*, **2009**, *131*, 5738.
- [4] Ye, Y.-D.; Lee, S. H.; Sanford, M. S.;\* Org. Lett., 2011, 13, 5464.
- [5] Hattori, Y.; Yamamoto, H.; Ando, H.; Kondoh, H.; Asano, T.; Kirihata, M.; Yamaguchia, Y.; Wakamiyaa, T.\* *Bioorgan. Med. Chem.* **2007**, *15*, 2198.


### VII. Spectra

### **Spectra of authentic samples:**

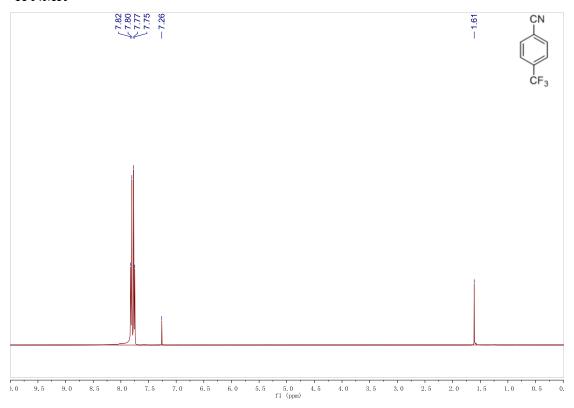
### $\hbox{$2$-(Trifluoromethyl)} benzon it rile:$

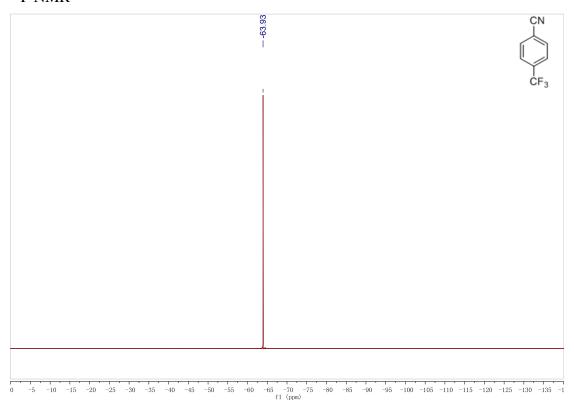

### <sup>1</sup>H NMR






## ${\bf 3-} (Trifluoromethyl) benzonitrile:$

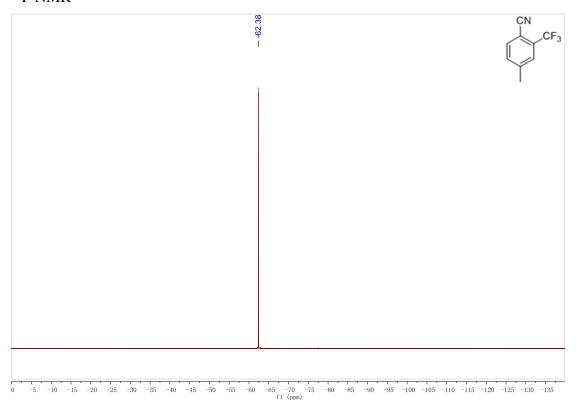

## <sup>1</sup>H NMR





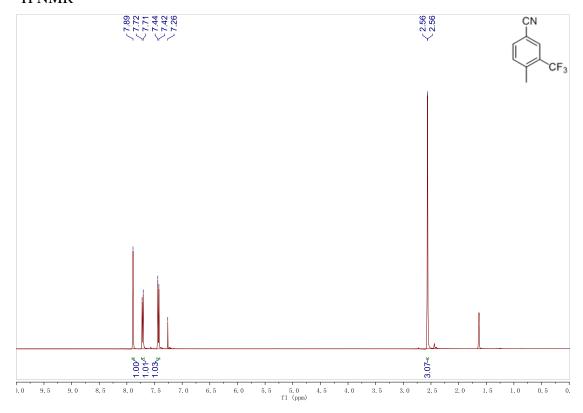

### $\hbox{\bf 4-} (Trifluoromethyl) benzon itrile:$

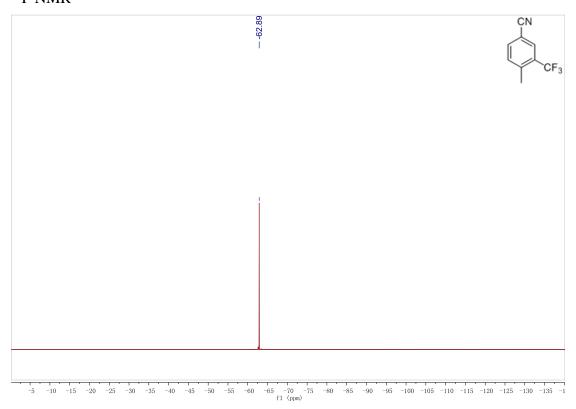
## <sup>1</sup>H NMR





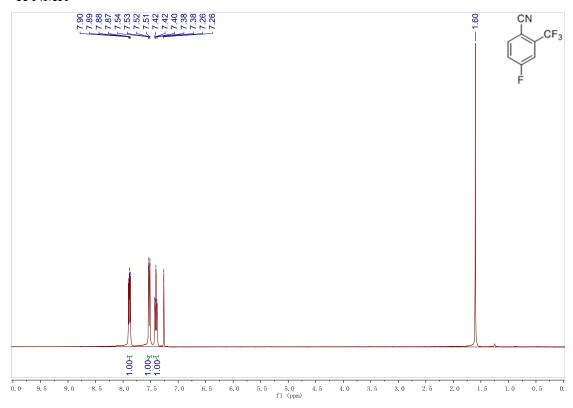

### ${\bf 4-Methyl-2-} (trifluoromethyl) benzon itrile:\\$

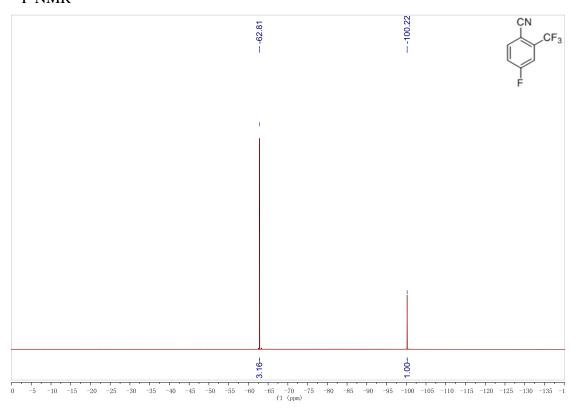

## <sup>1</sup>H NMR





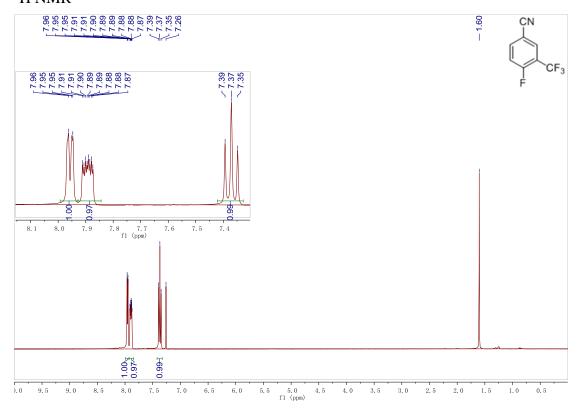

### ${\bf 4-Methyl-3-} (trifluoromethyl) benzon itrile:$

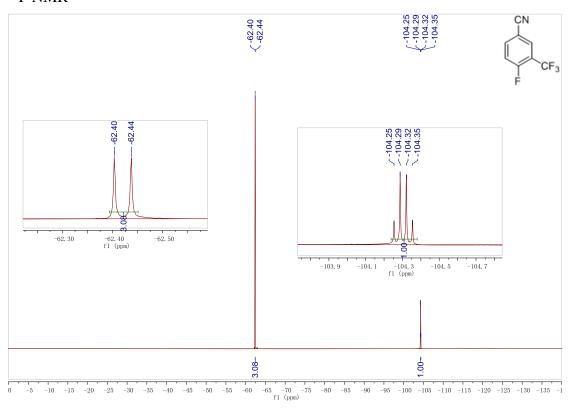

## <sup>1</sup>H NMR





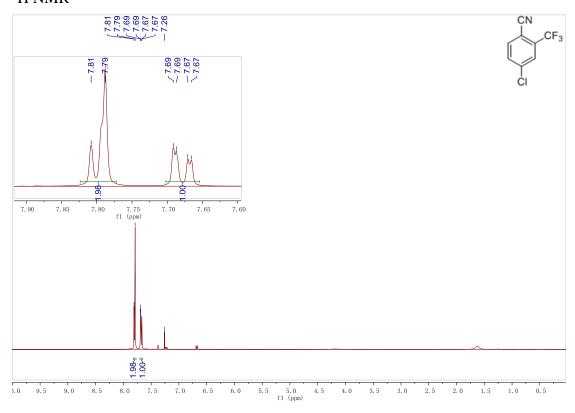

### $\hbox{\bf 4-Fluoro-2-} (trifluoromethyl) benzon itrile:$

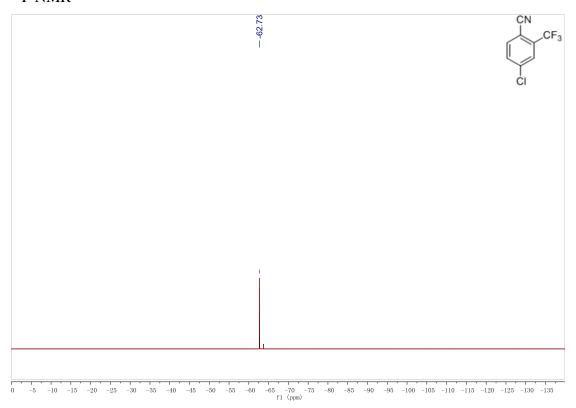

## <sup>1</sup>H NMR





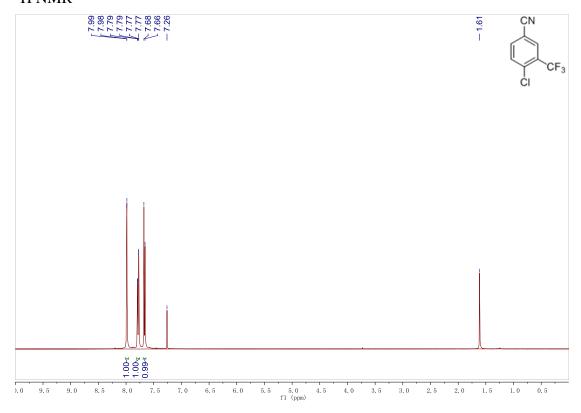

### 4-Fluoro-3-(trifluoromethyl)benzonitrile:

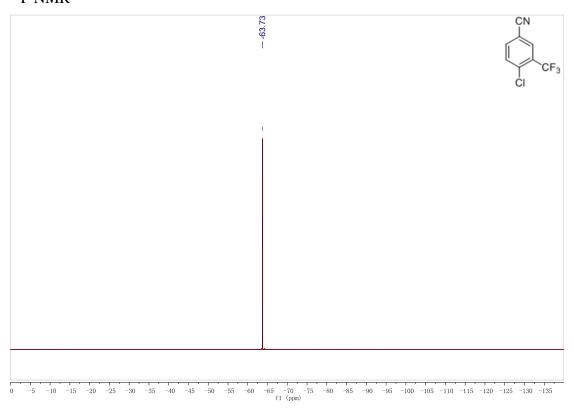

### <sup>1</sup>H NMR





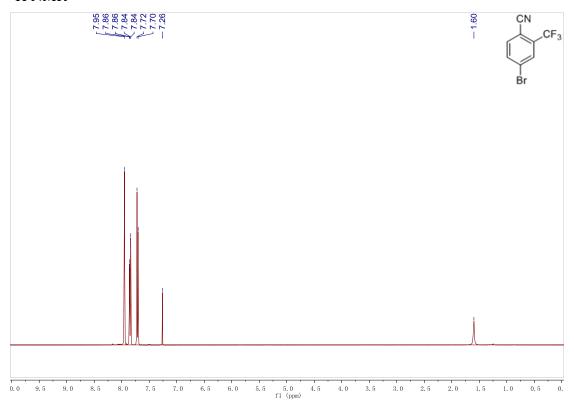

### $\hbox{\bf 4-Chloro-2-} (trifluoromethyl) benzon it rile:$

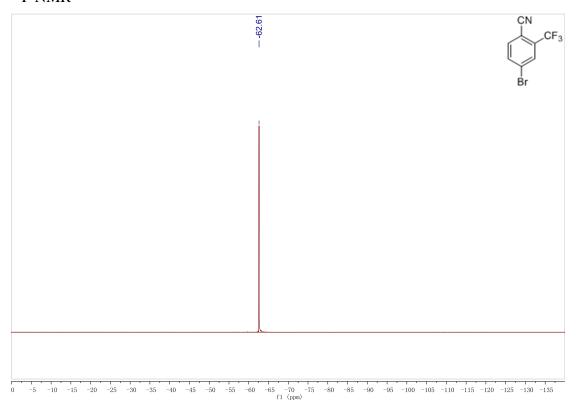

### <sup>1</sup>H NMR





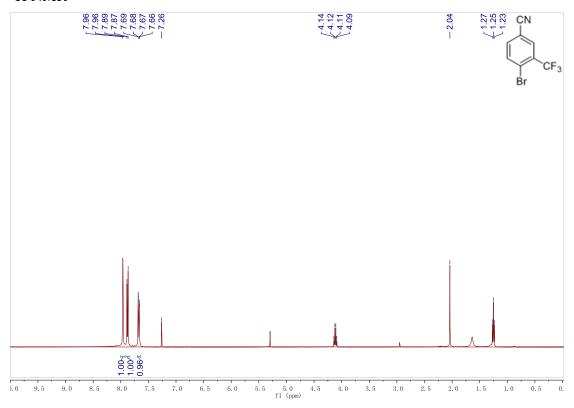

## $\hbox{\bf 4-Chloro-3-} (trifluoromethyl) benzon it rile:$

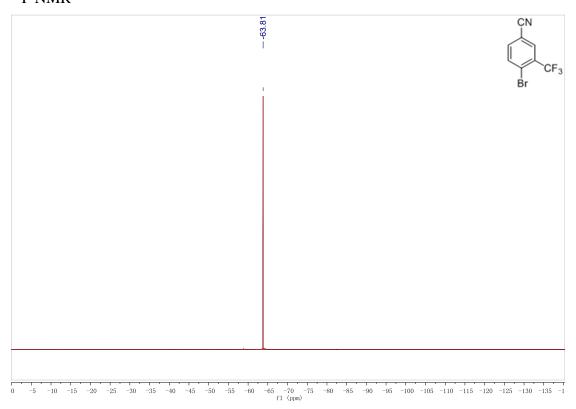

## <sup>1</sup>H NMR





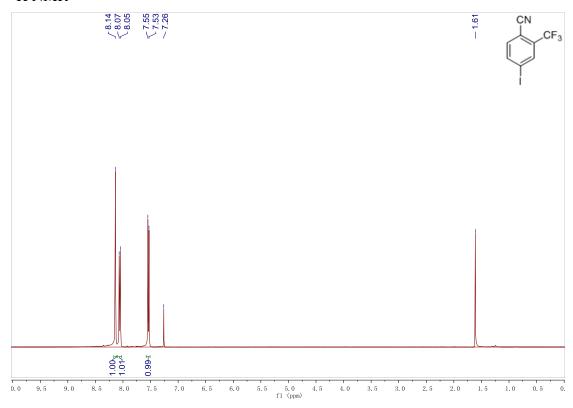

## ${\bf 4-Bromo-2-} (trifluoromethyl) benzon it rile:\\$

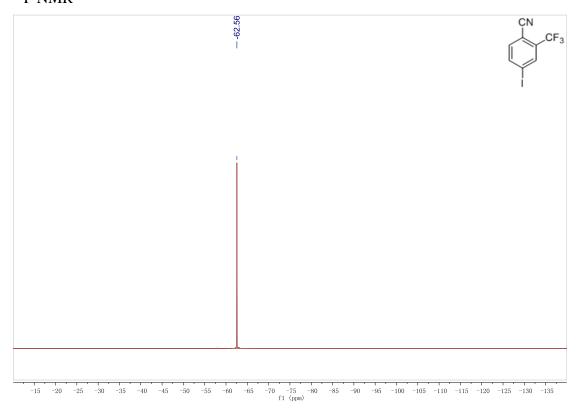

## <sup>1</sup>H NMR





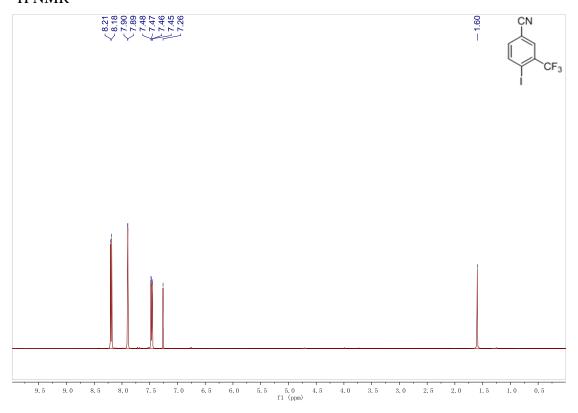

## ${\bf 4-Bromo-3-} (trifluoromethyl) benzon itrile:$

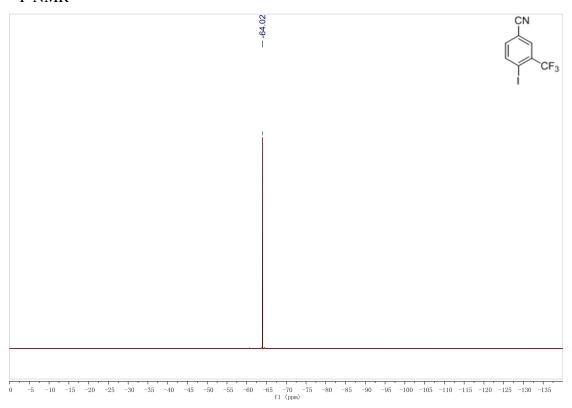

## <sup>1</sup>H NMR





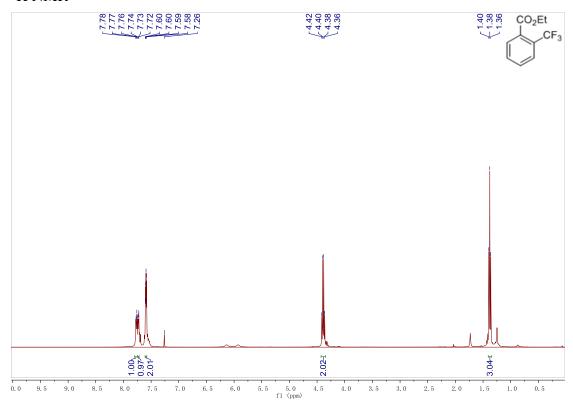

## ${\bf 4-Iodo-2-} (trifluoromethyl) benzon itrile:$

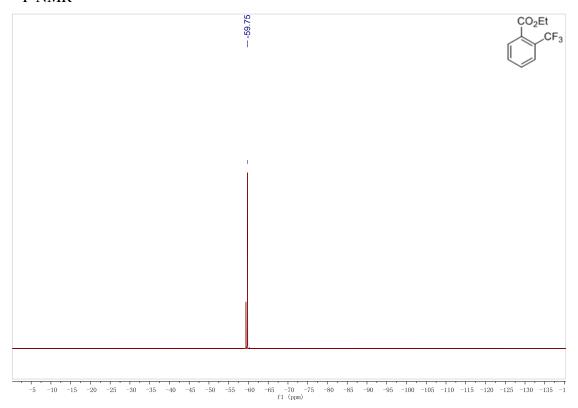

# <sup>1</sup>H NMR





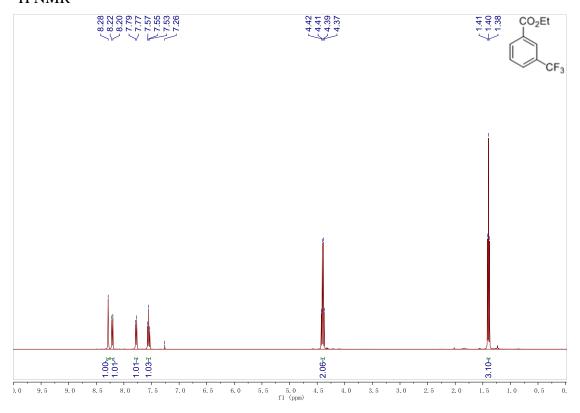

## ${\bf 4-Iodo-3-} (trifluoromethyl) benzon itrile:$

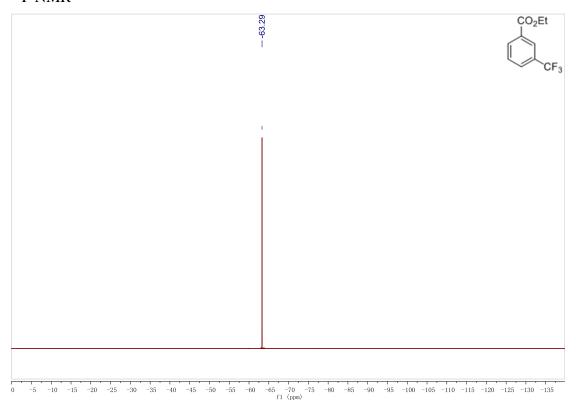

## <sup>1</sup>H NMR





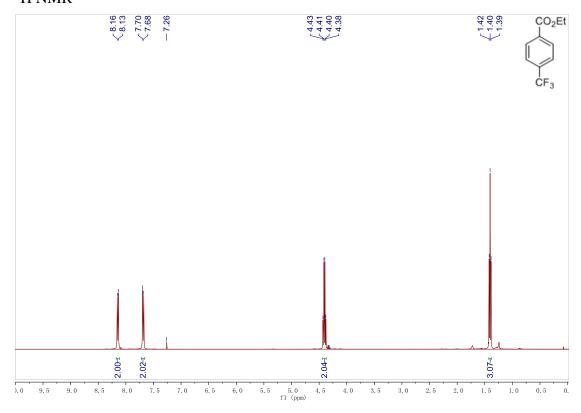

## Ethyl 2-(trifluoromethyl)benzoate:

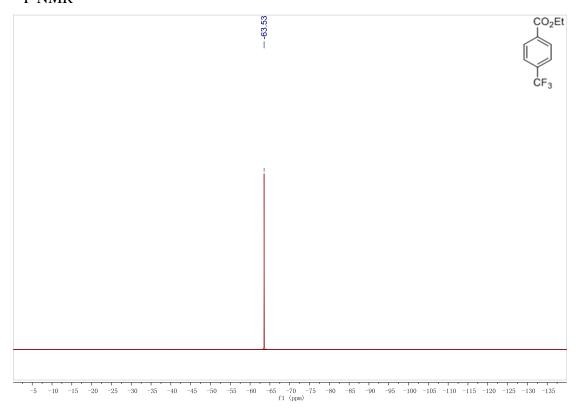

## <sup>1</sup>H NMR





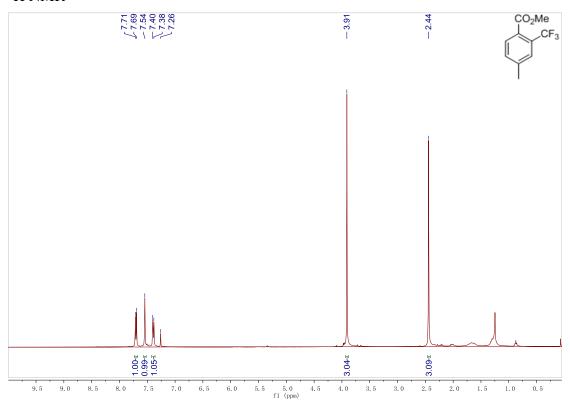

## Ethyl 3-(trifluoromethyl)benzoate:

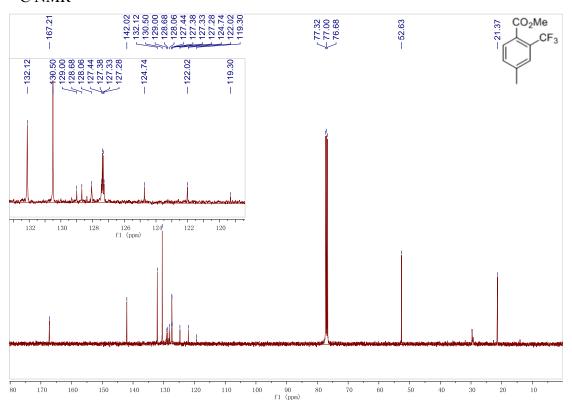

## <sup>1</sup>H NMR

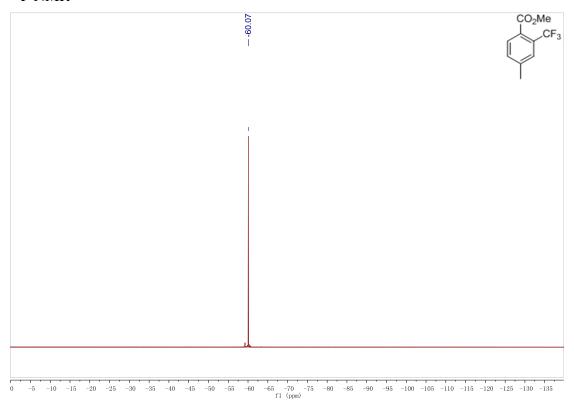




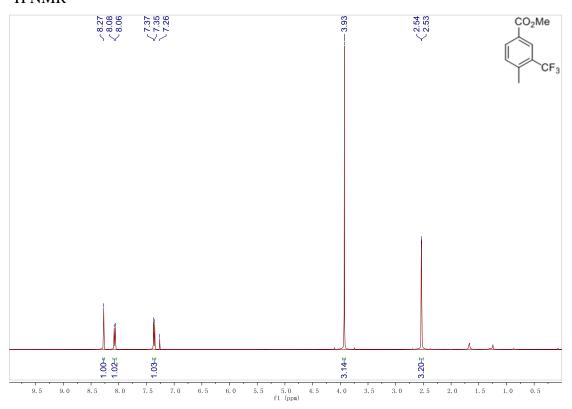

## Ethyl 4-(trifluoromethyl)benzoate:


# <sup>1</sup>H NMR

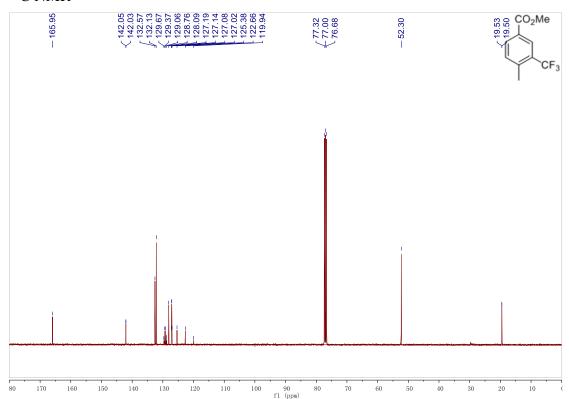


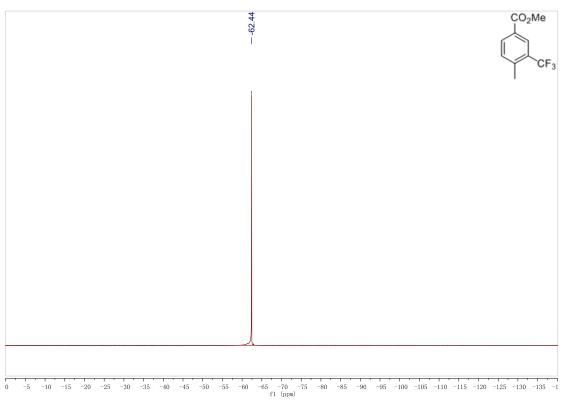




#### Methyl 4-methyl-2-(trifluoromethyl)benzoate:


#### <sup>1</sup>H NMR

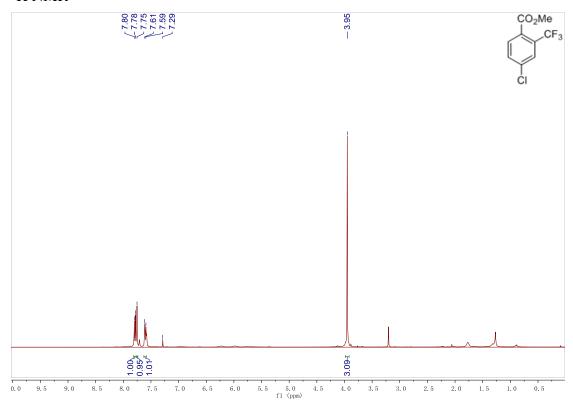


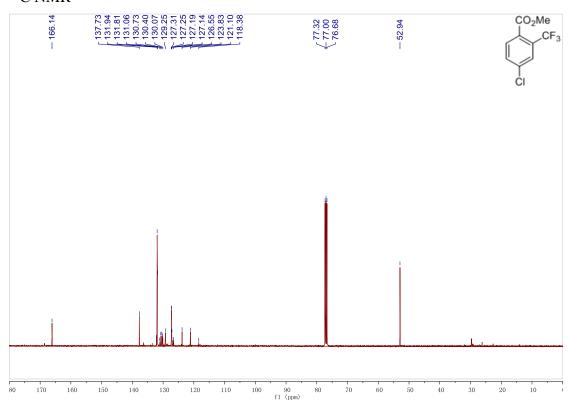


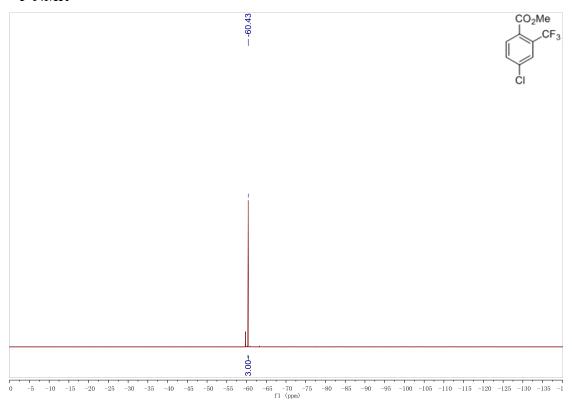




## $Methyl\ 4-methyl-3-(trifluoromethyl) benzoate:$

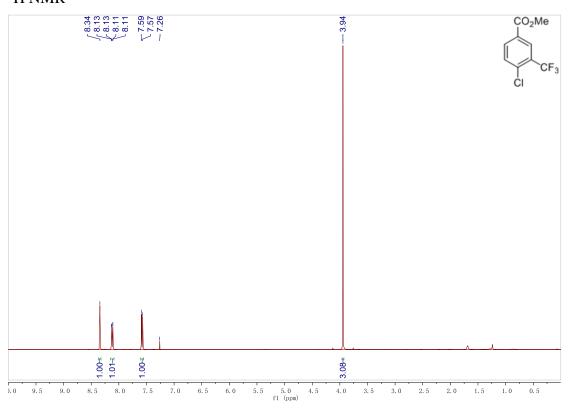




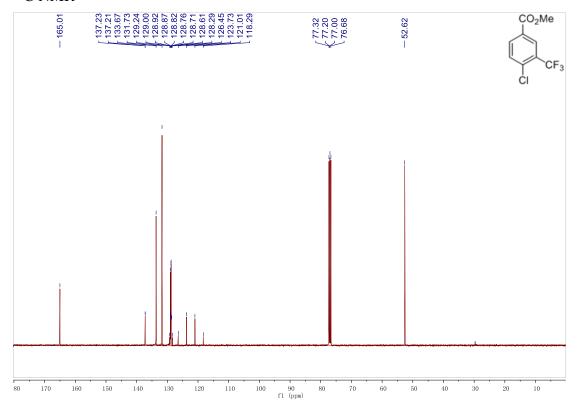



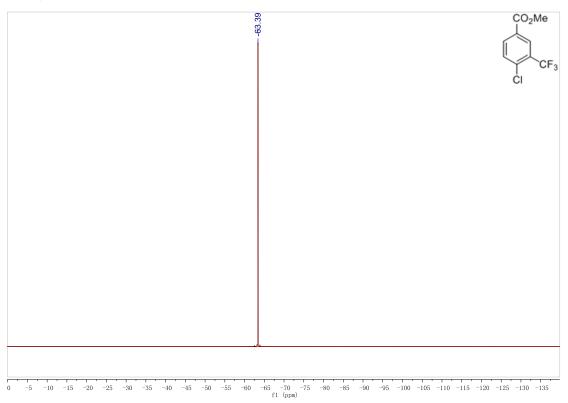




## $Methyl\ 4-chloro-2-(trifluoromethyl) benzoate:$


## <sup>1</sup>H NMR

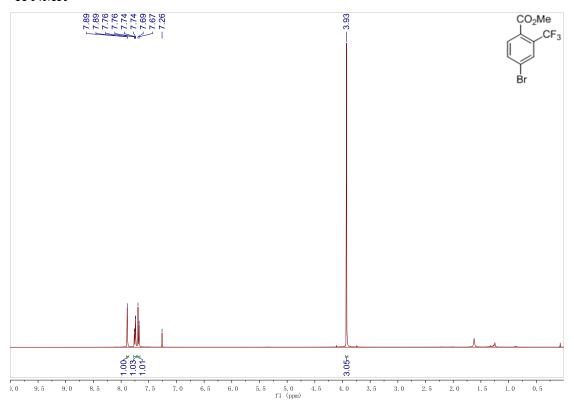


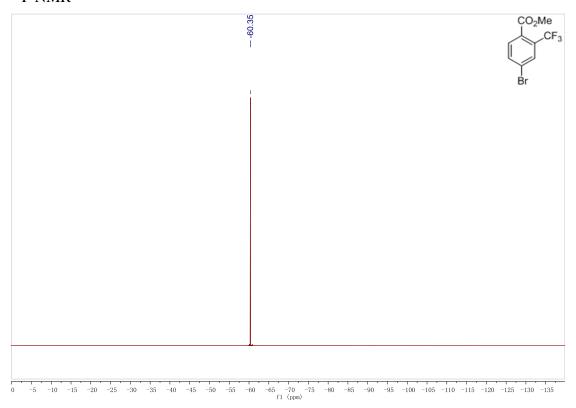



## $Methyl\ 4-chloro-3-(trifluoromethyl) benzoate:$

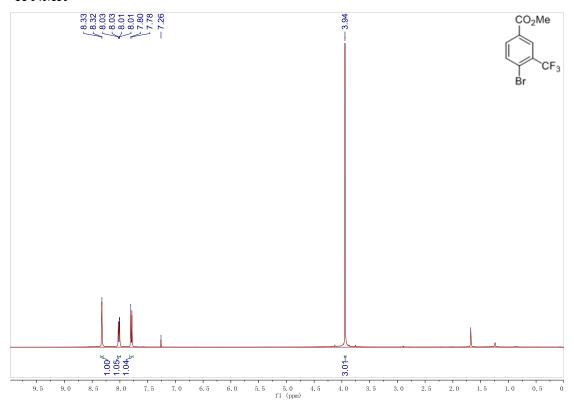


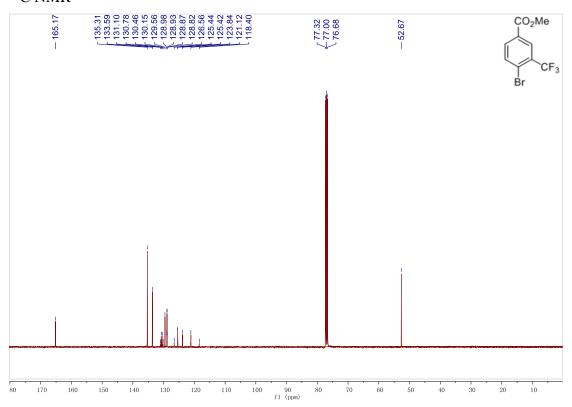

## <sup>13</sup>C NMR

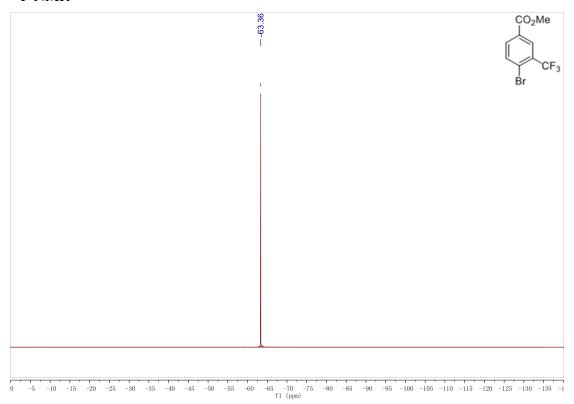




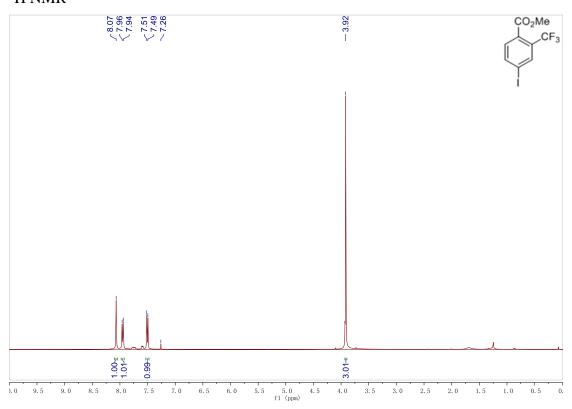

## $Methyl\ 4-bromo-2-(trifluoromethyl) benzoate:$


## <sup>1</sup>H NMR

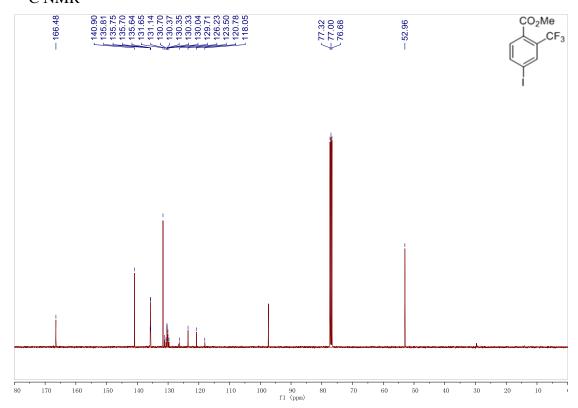


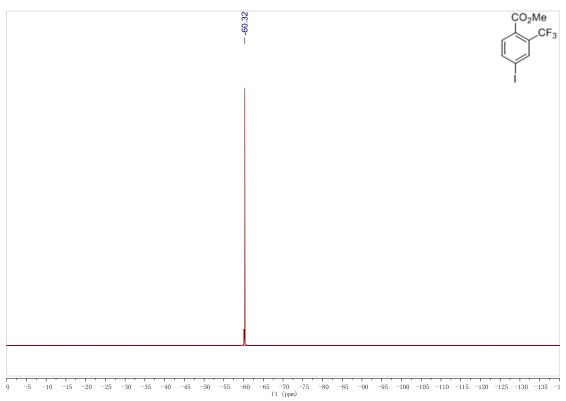




## $Methyl\ 4-bromo-3-(trifluoromethyl) benzoate:$


## <sup>1</sup>H NMR

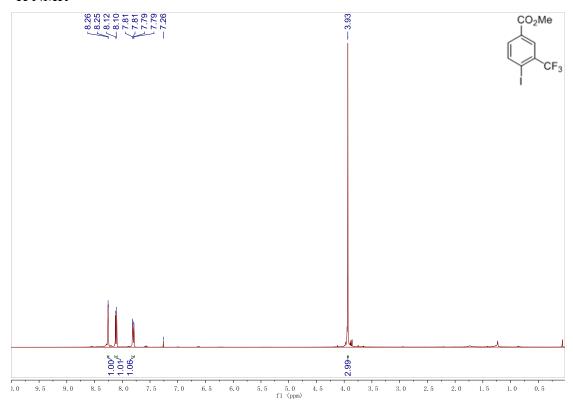




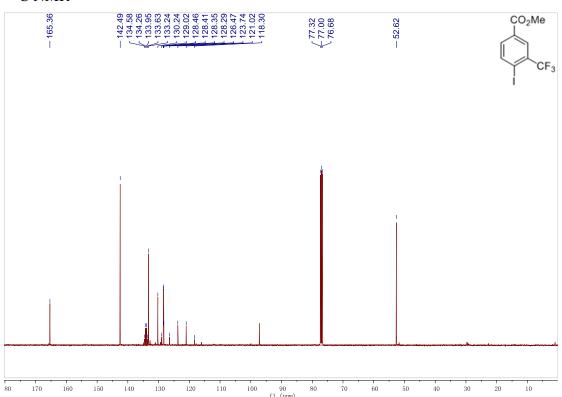




## $Methyl\ 4\hbox{-}iodo-2\hbox{-}(trifluoromethyl) benzoate:$

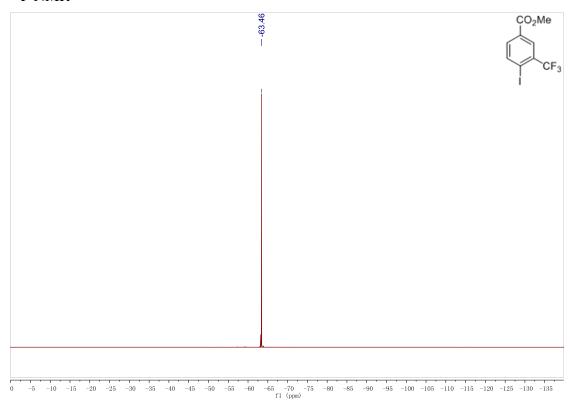



# <sup>13</sup> C NMR



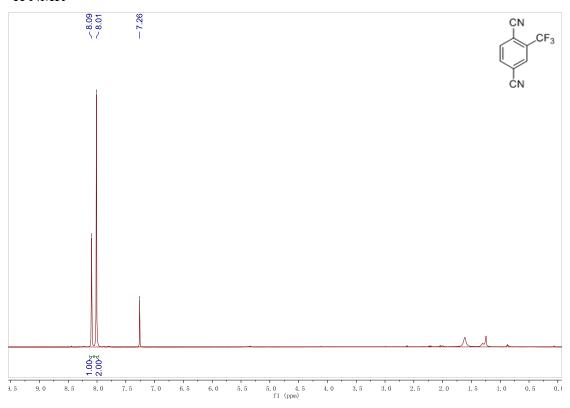



#### Methyl 4-iodo-3-(trifluoromethyl)benzoate:

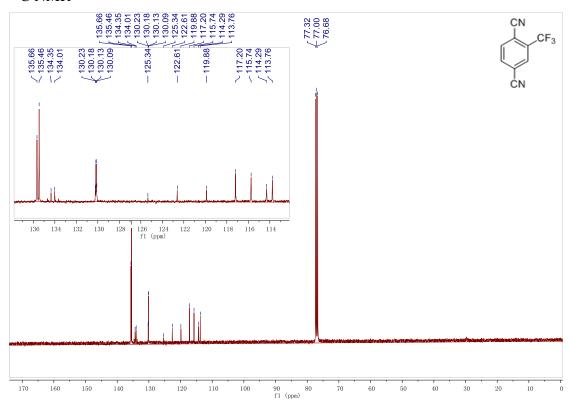

# <sup>1</sup>H NMR

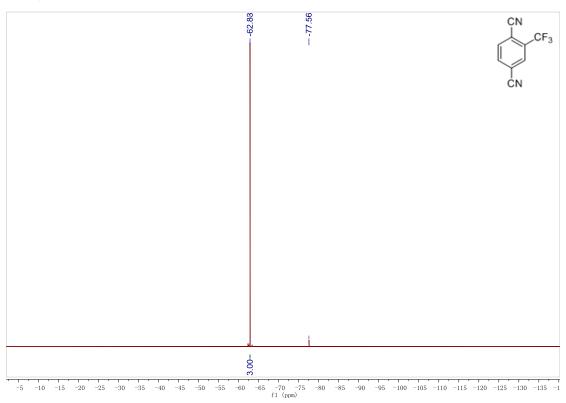


## <sup>13</sup> C NMR



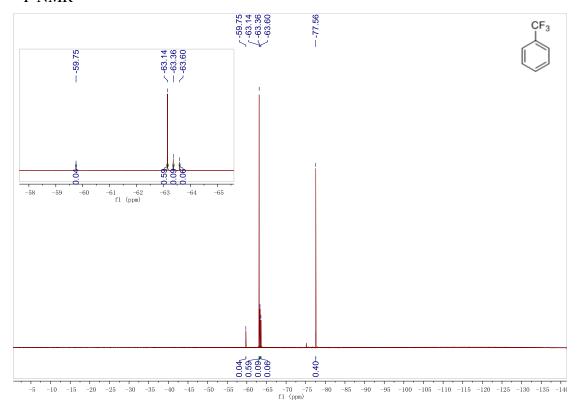


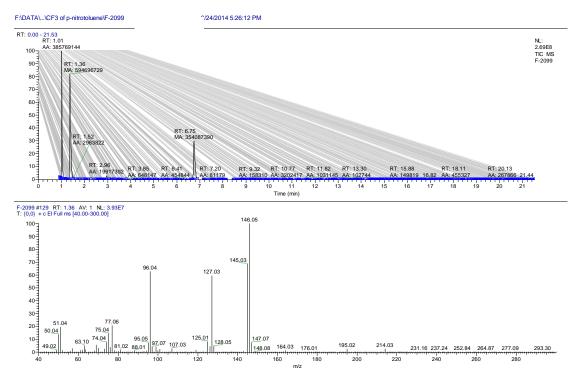





## **Spectra of products:**

## **Compound 10:**

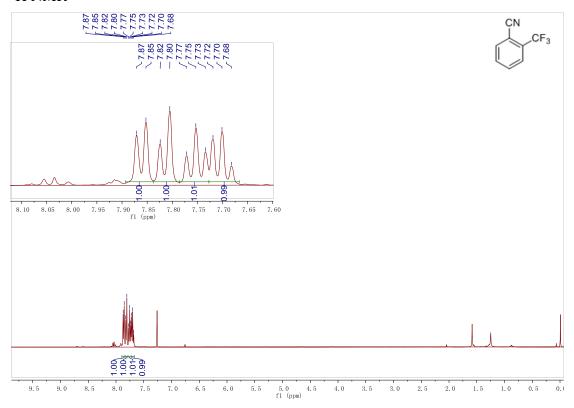


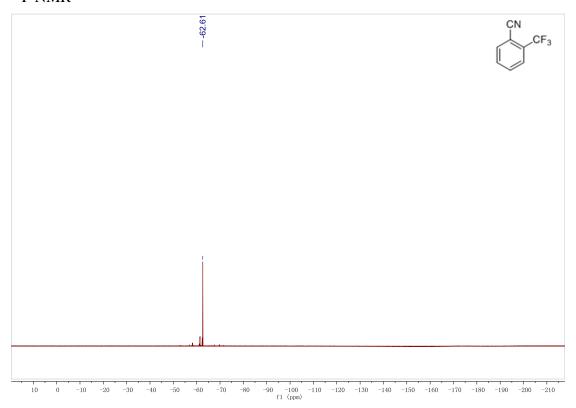

# <sup>13</sup>C NMR





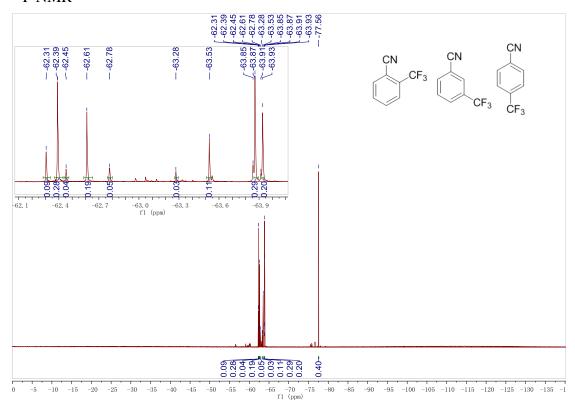

#### **Compound 20:**

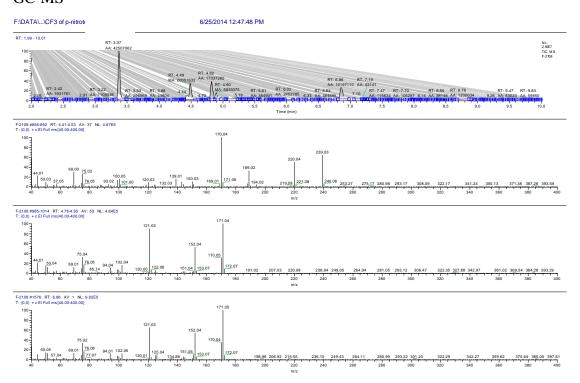

## <sup>19</sup>F NMR





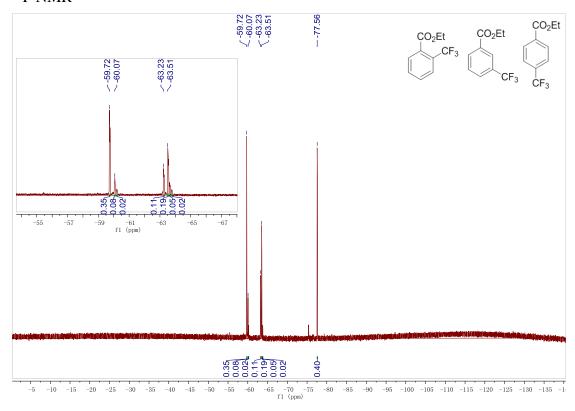

#### **Compound 30:**

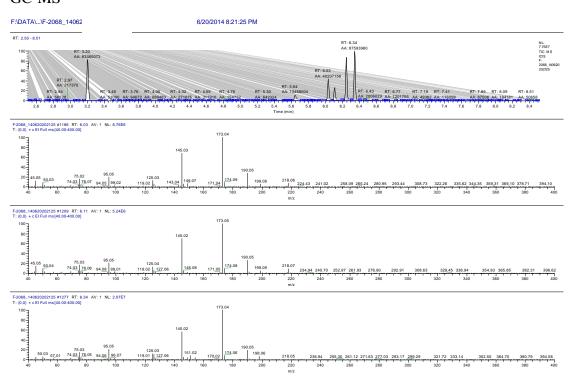

## <sup>1</sup>H NMR





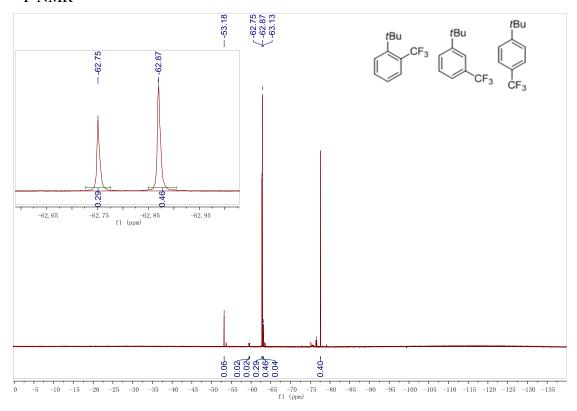

#### Compound 3o-p:

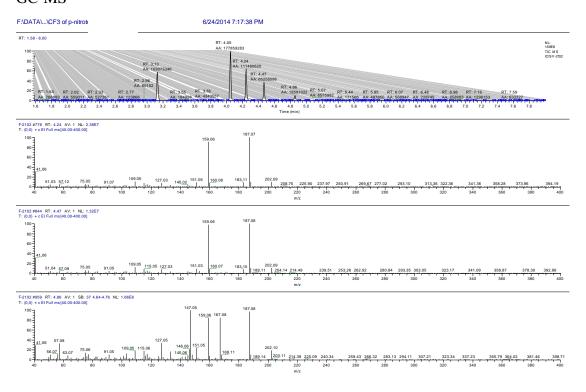

# <sup>19</sup>F NMR





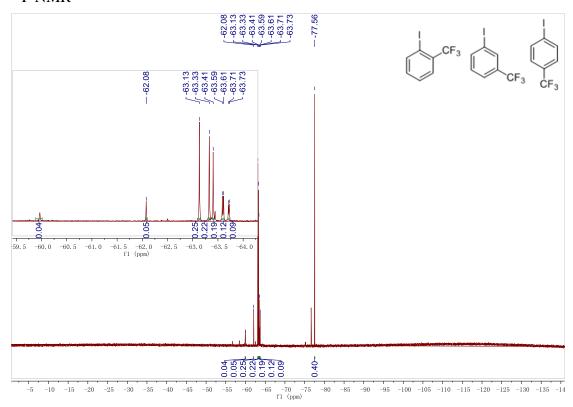

#### Compound 4o-p:

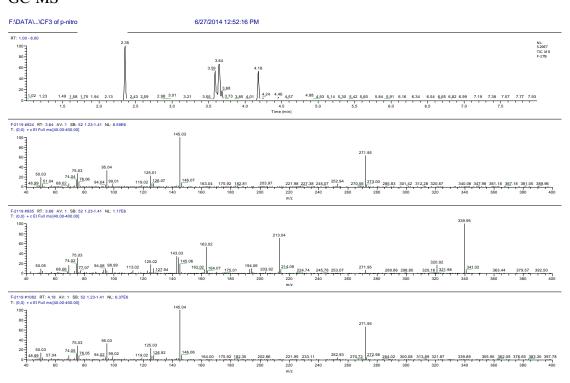

## <sup>19</sup>F NMR





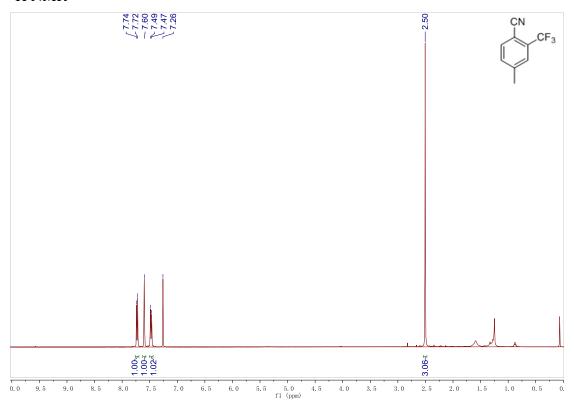

#### Compound 50-p:

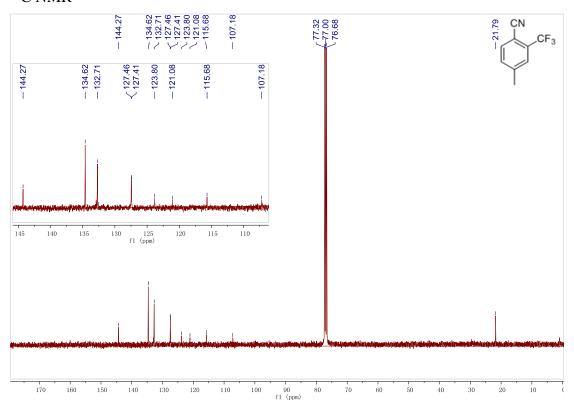

## <sup>19</sup>F NMR



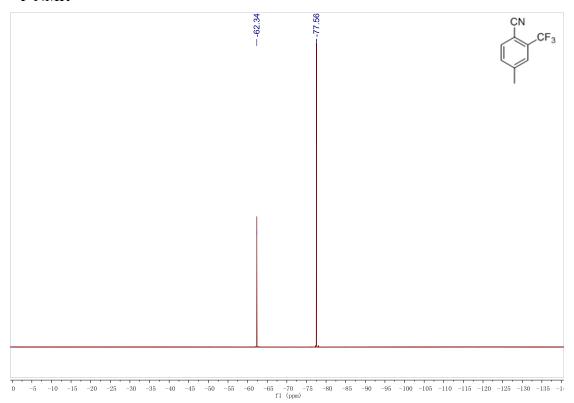



#### Compound 60-p:

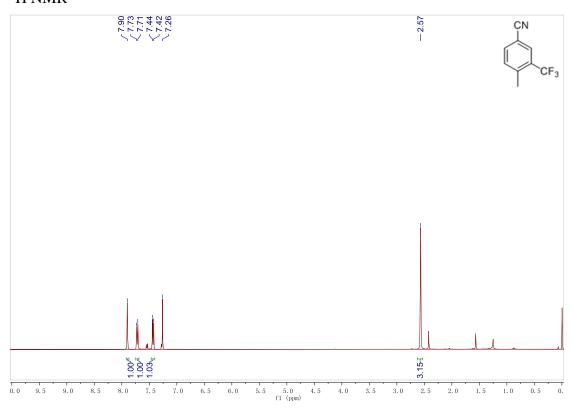

## <sup>19</sup>F NMR

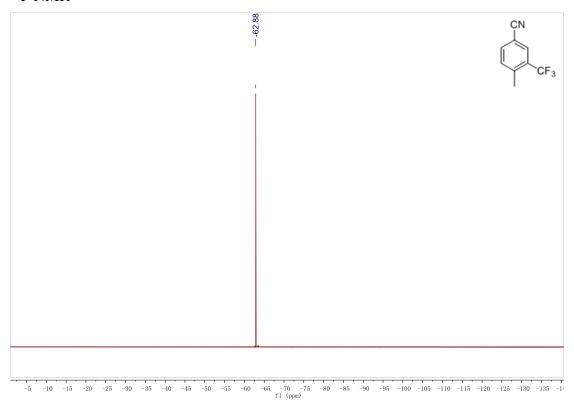




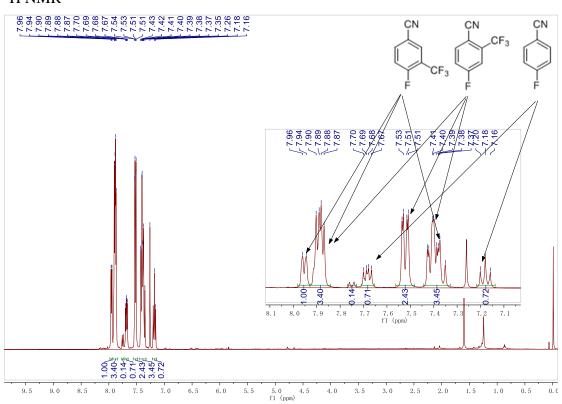


#### **Compound 70:**

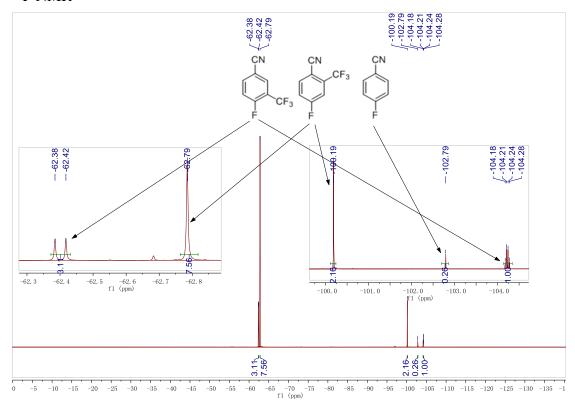
## <sup>1</sup>H NMR

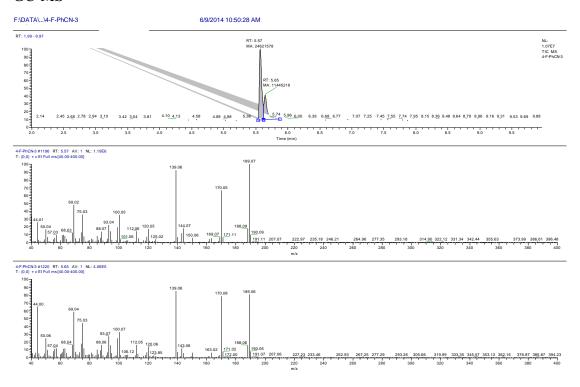




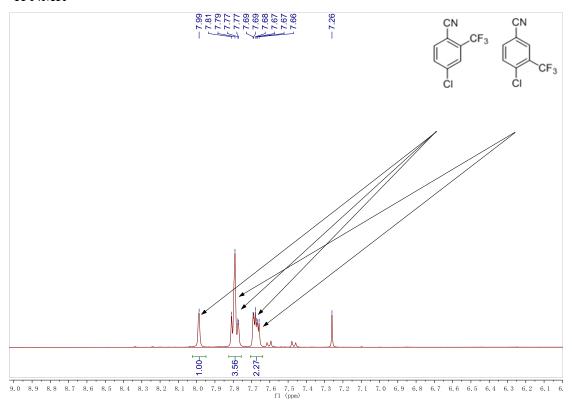



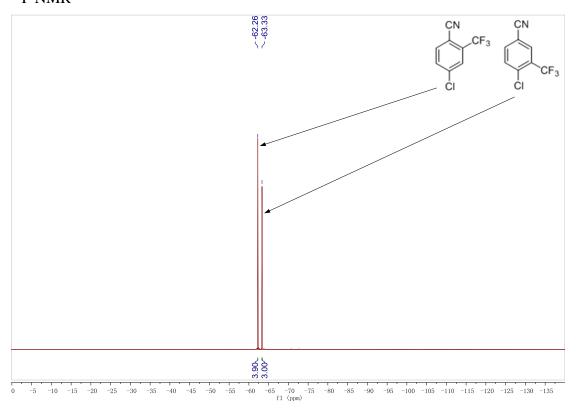


## Compound 7m:



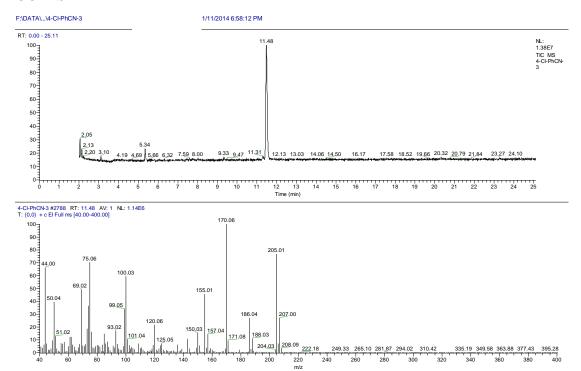



## Compound 80-m:

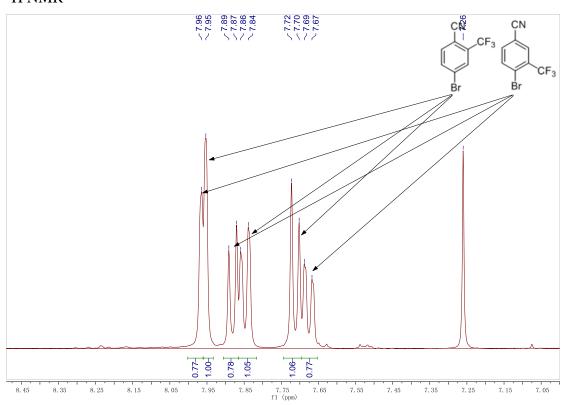


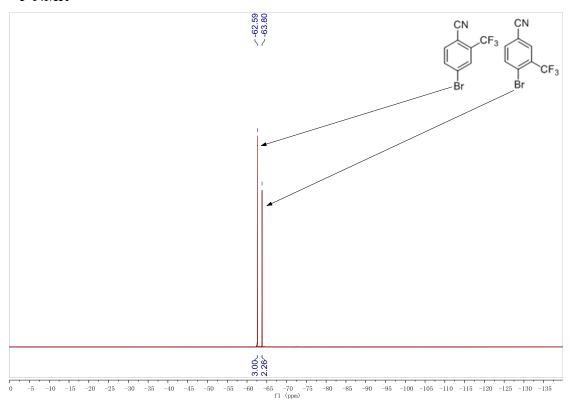





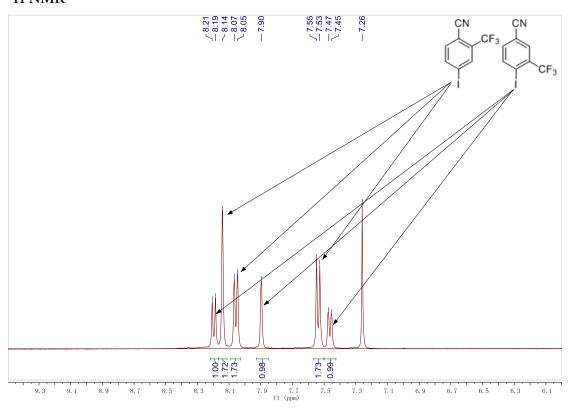


## Compound 90-m:

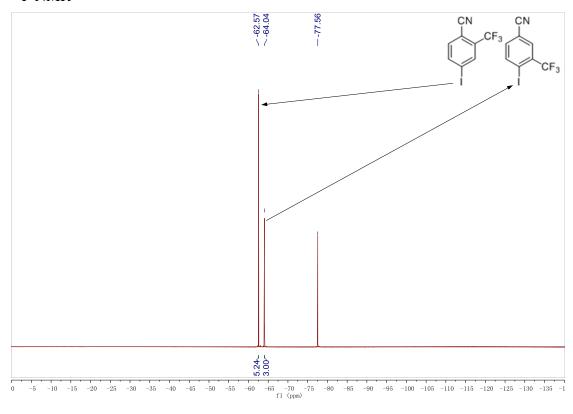
## <sup>1</sup>H NMR

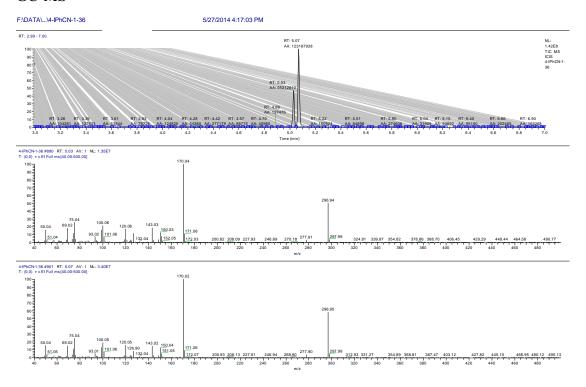



#### GC-MS

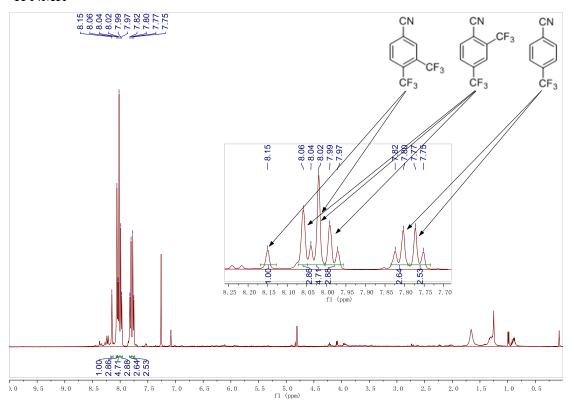


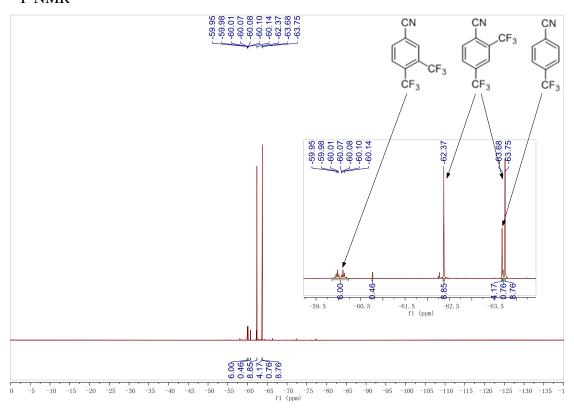


#### Compound 10o-m:



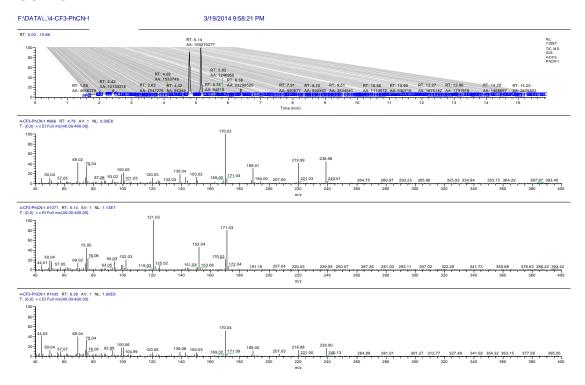



## Compound 11o-m:

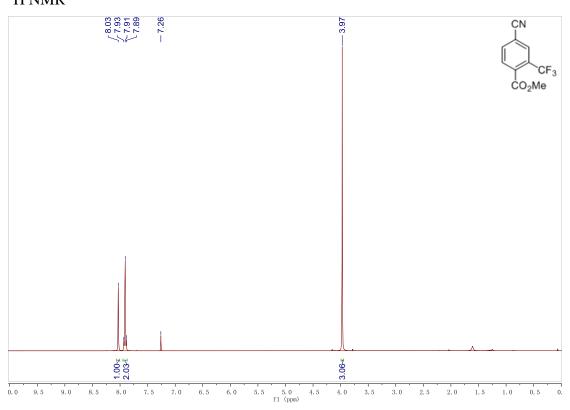


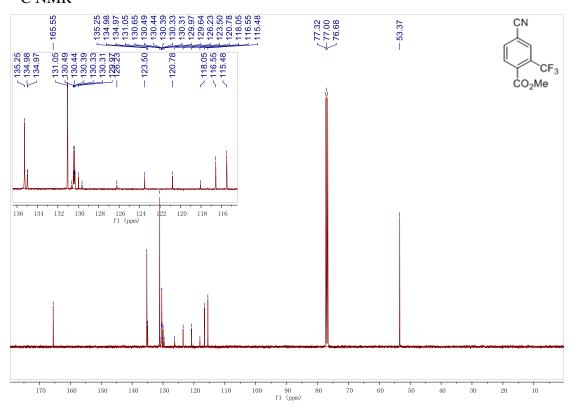


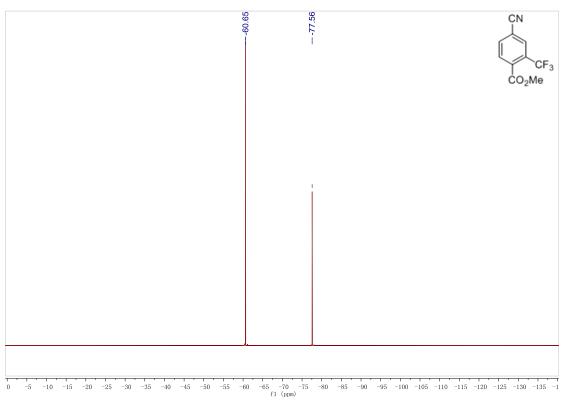


#### Compound 12o-m:

#### <sup>1</sup>H NMR



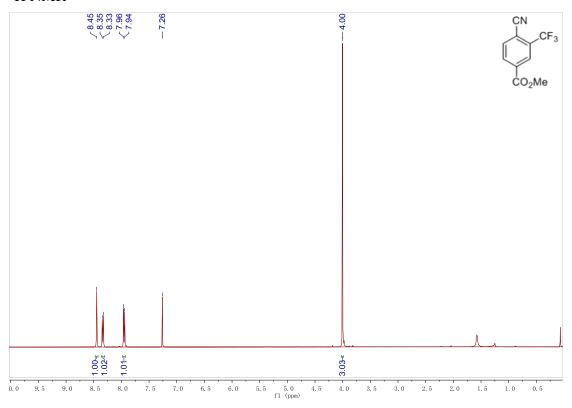


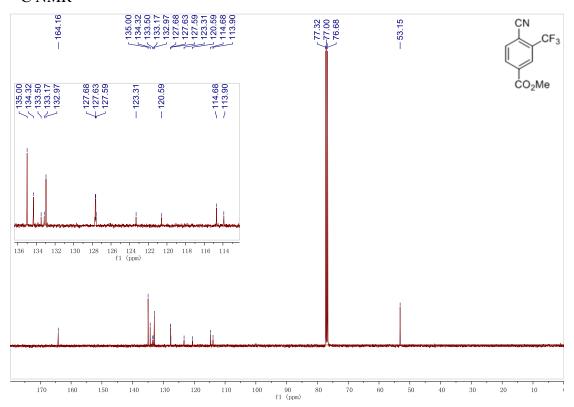


#### GC-MS



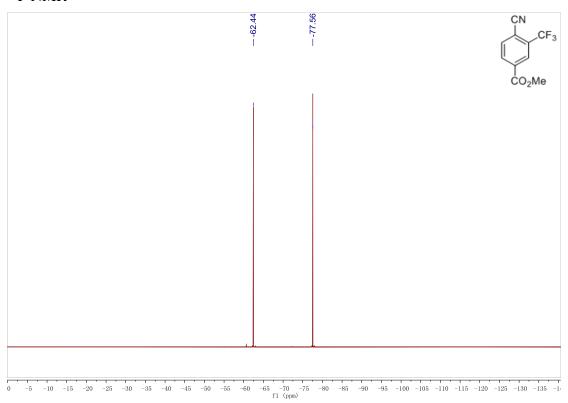

## Compound 13o:



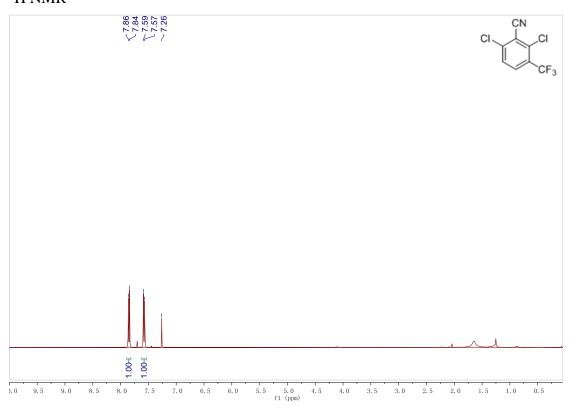

## <sup>13</sup>C NMR



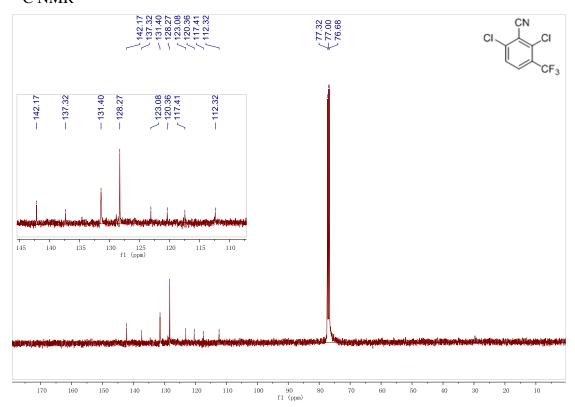


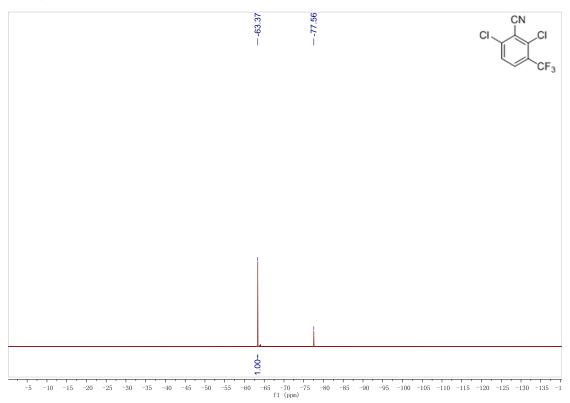


### Compound 13m:

## <sup>1</sup>H NMR



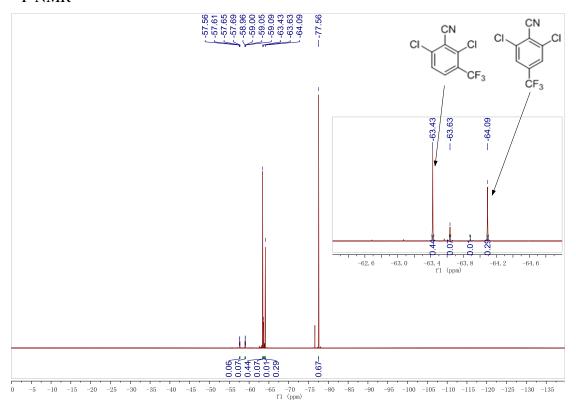


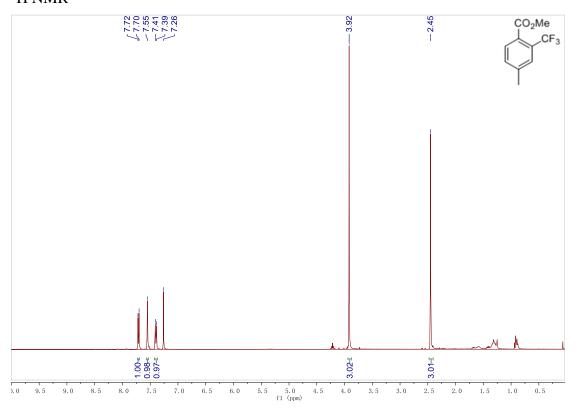




# Compound 14m:

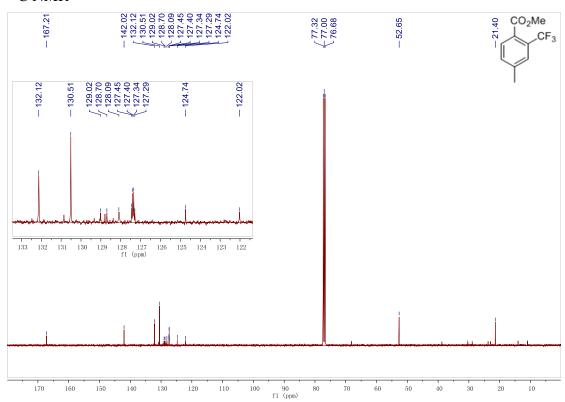


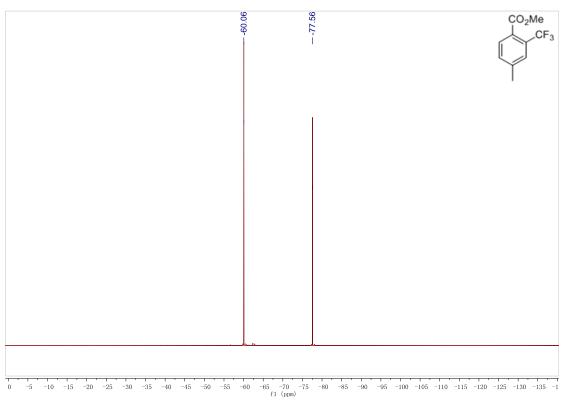

## <sup>13</sup>C NMR





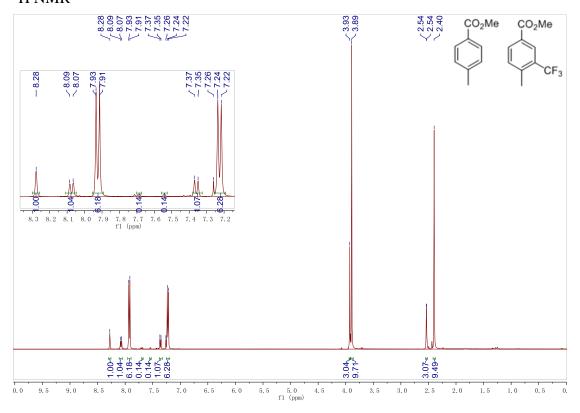

### Compound 14m-p:

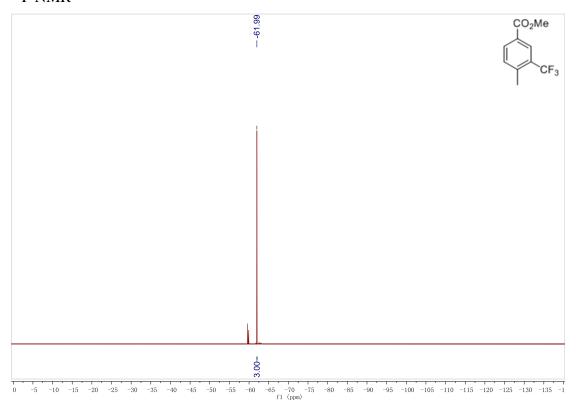

<sup>19</sup>F NMR



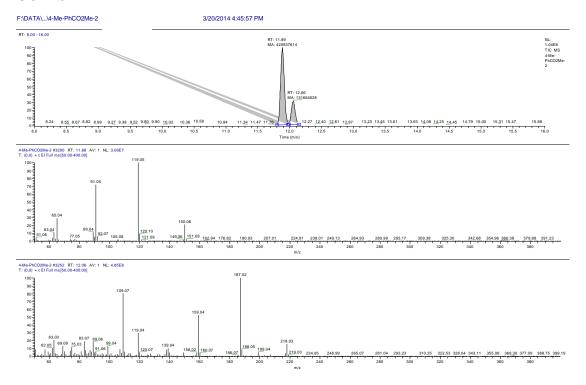

## Compound 150:



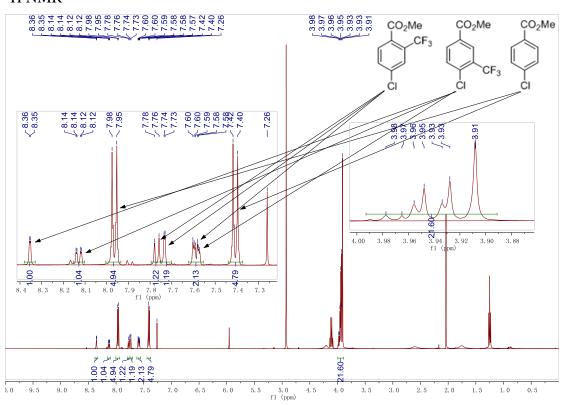

# <sup>13</sup>C NMR



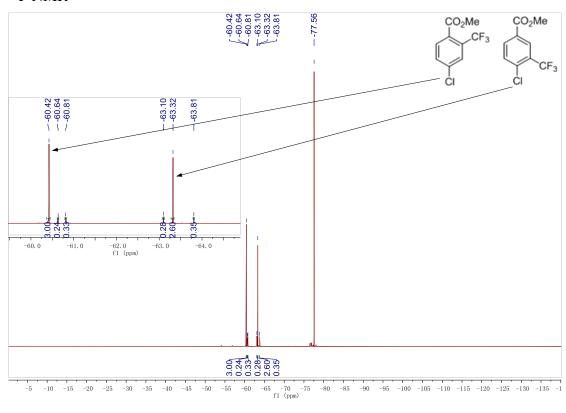




### Compound 15m:

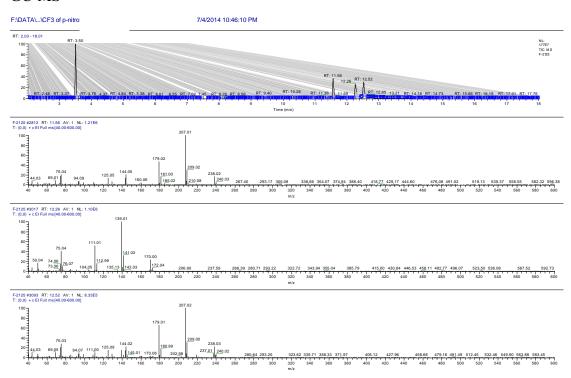
## <sup>1</sup>H NMR





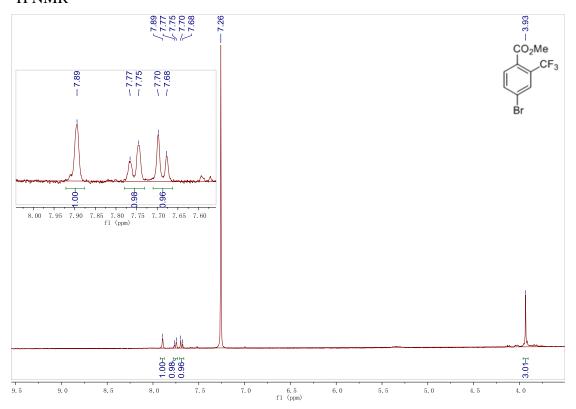


#### GC-MS

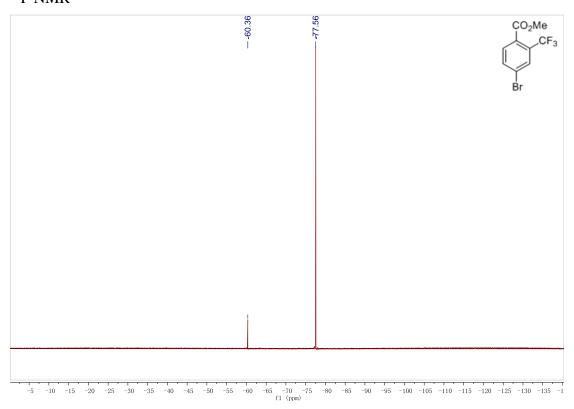



### Compound 160-m:



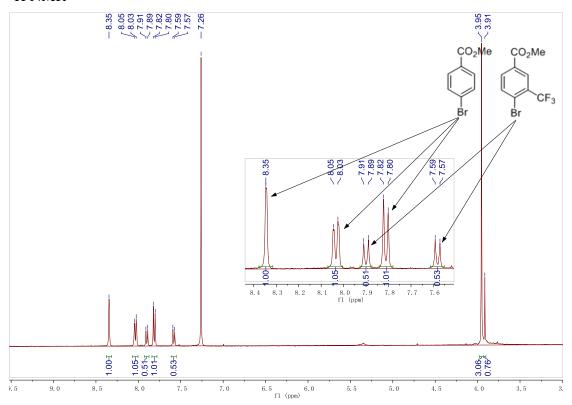
# <sup>19</sup>F NMR

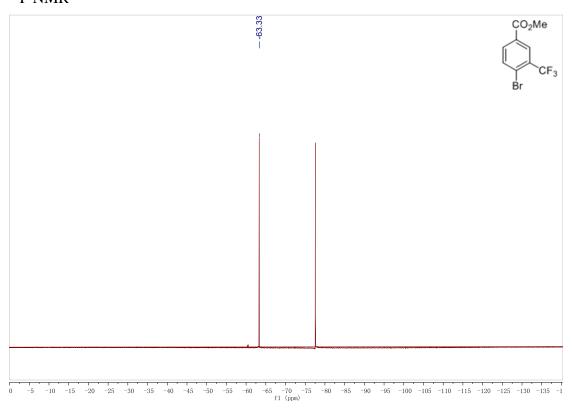




#### GC-MS



## Compound 17o:

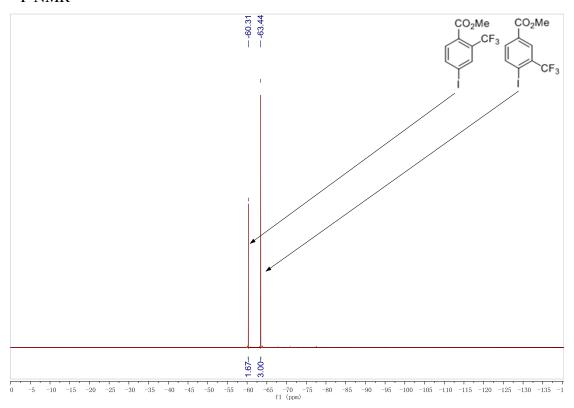

# <sup>1</sup>H NMR



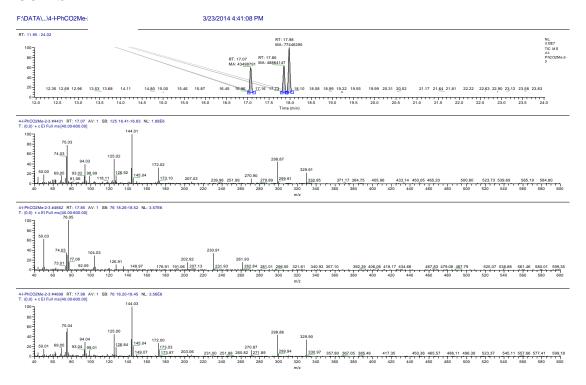



### Compound 17m:

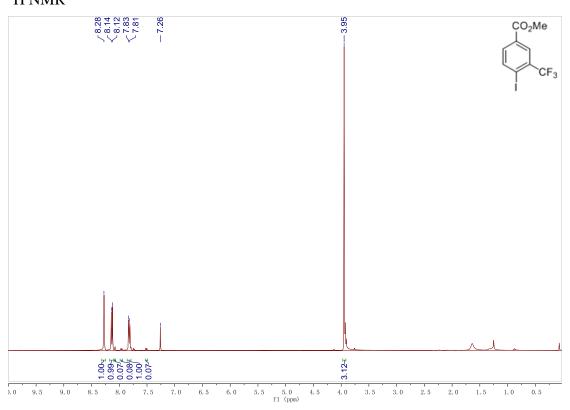

## <sup>1</sup>H NMR



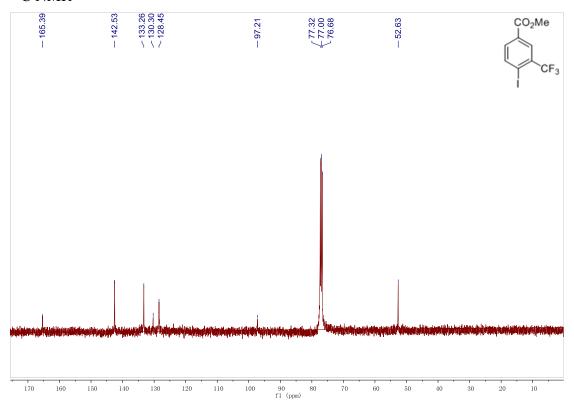


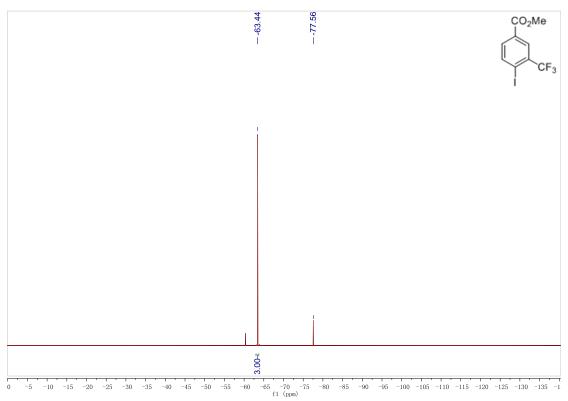


### Compound 18o-m:

## <sup>1</sup>H NMR



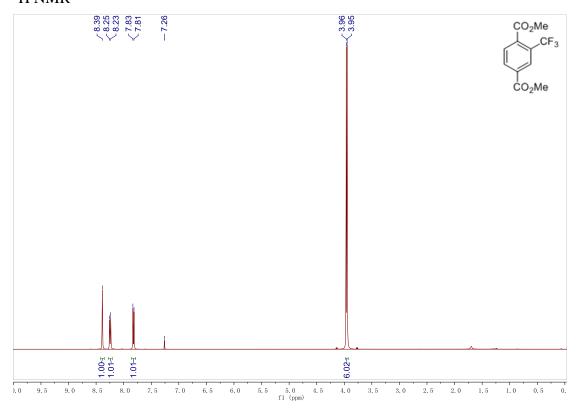


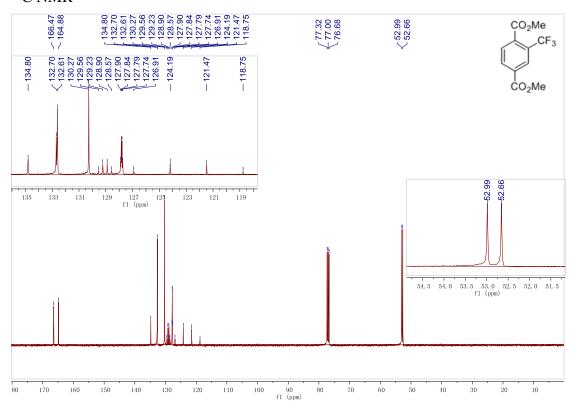


#### GC-MS



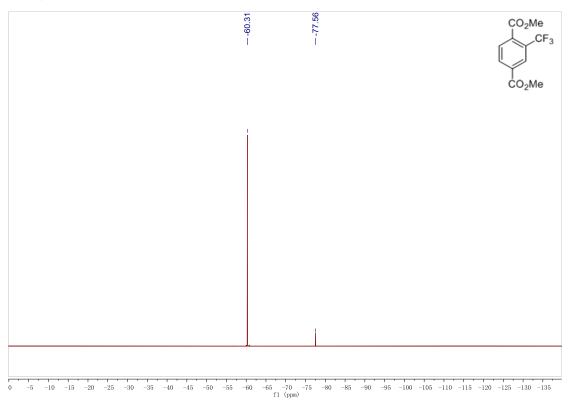

## Compound 18m:



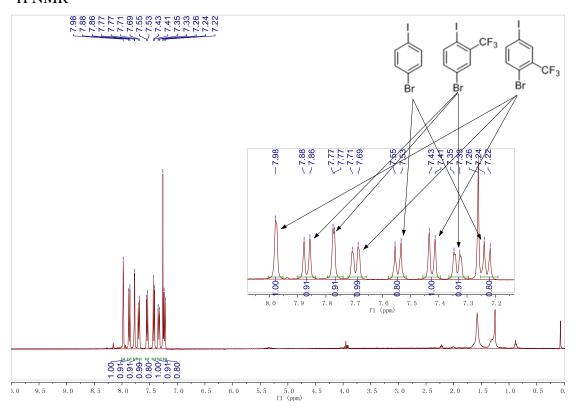


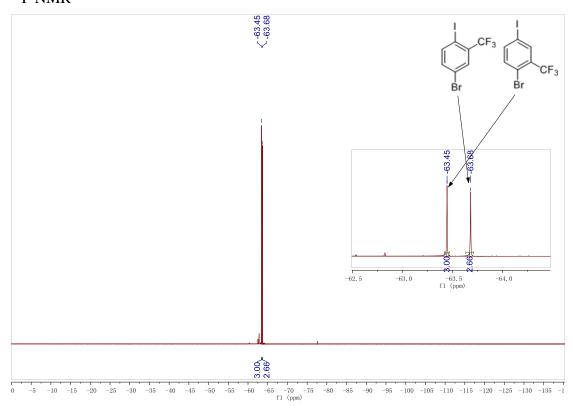




#### **Compound 190:**

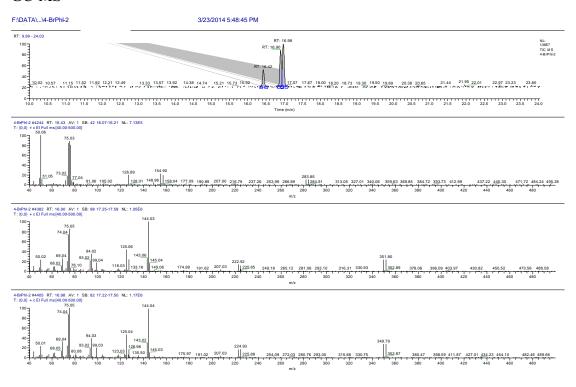
### <sup>1</sup>H NMR





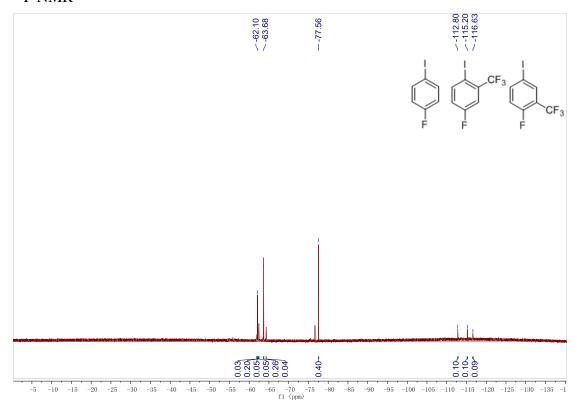


## <sup>19</sup>F NMR



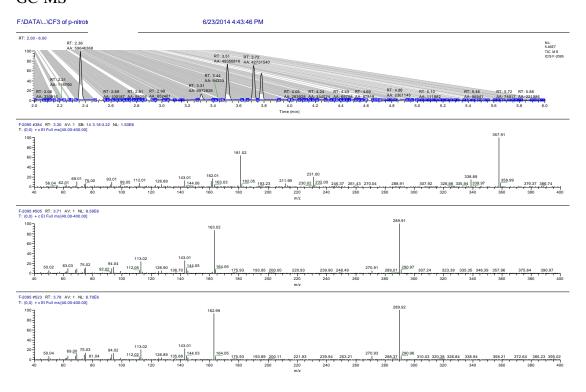

# Compound 20o-m:



# <sup>19</sup>F NMR




#### GC-MS

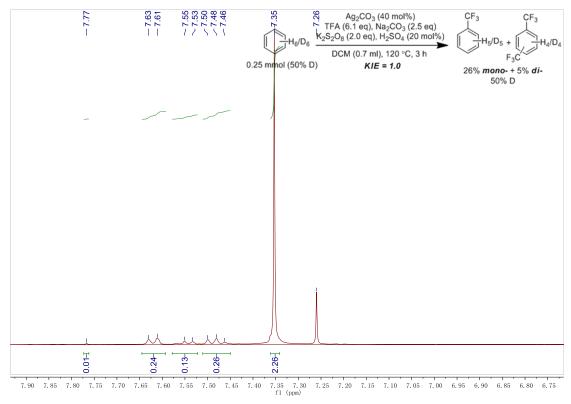


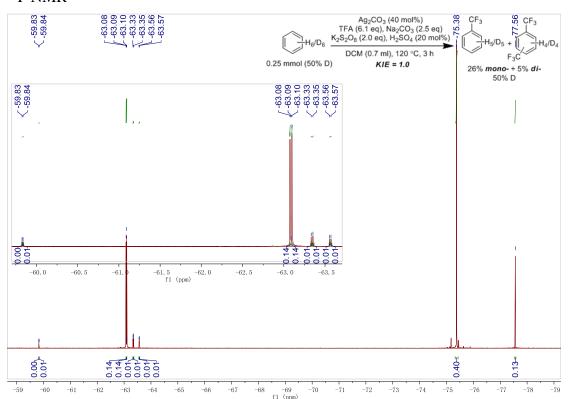

### Compound 21o-m:

<sup>19</sup>F NMR



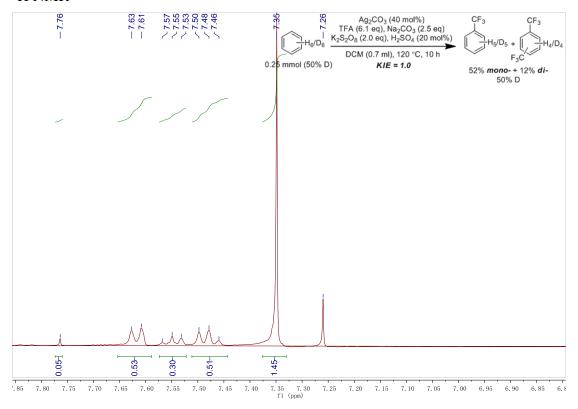
### GC-MS

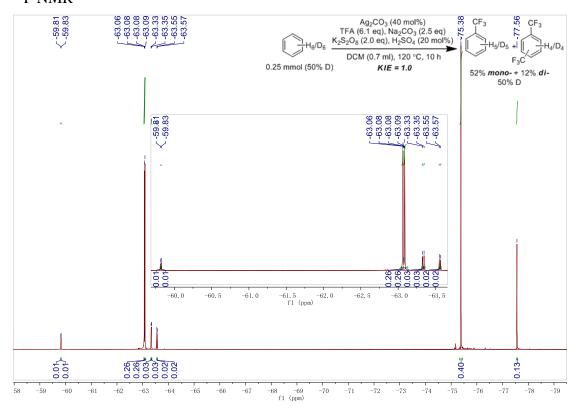




#### NMR Spectra for Preliminary Mechanistic Studies:

#### 1. Kinetic Isotope Effect experiments with benzene and $d_6$ -benzene:

time = 3 h:


<sup>1</sup>H NMR






#### time = 10 h:

## <sup>1</sup>H NMR



