Supporting Information for:

Infrared Emitting PbS Nanocrystal Solids through Matrix Encapsulation.

Pavel Moroz1,3†, Geethika Liyanage3†, Natalia N. Kholmicheva1,3, Sergii Yakunin4,5, Prakash Uprety3, Ebin Bastola3, Upendra Rijal3, Bryan Mellott2, Kamal Subedi3, Liangfeng Sun1,3, Maksym V. Kovalenko4,5, Mikhail Zamkov1,3,*.

The Center for Photochemical Sciences1, Department of Chemistry2, and Department of Physics3, Bowling Green State University, Bowling Green, Ohio 43403. Department of Chemistry and Applied Biosciences4, ETH Zürich, Zürich, 8093, Switzerland. EMPA-Swiss Federal Laboratories for Materials Science and Technology5, Dübendorf, 8600, Switzerland.

Corresponding author: zamkovm@bgsu.edu; Tel: 419-372-0264; Fax: 419-372-9938
Volume fraction calculations. Suppose that on average a unit length of the mixed nanocrystal film contains N_c of CdS and N_p and core/shell nanocrystals. A unit volume of such film be given by

$$ (N_p D_{P/C} + N_c D_{C})^3 $$

where $D_{P/C}$ and D_{C} are the average diameters of PbS/CdS and CdS NCs, respectively. The number of PbS cores in a unit volume will be given by

$$ \frac{N_p}{N} \times (N_p + N_c)^3 $$

where $N = N_p + N_c$, where $N = N_c + N_p$. Therefore the volume fraction can be expressed as:

$$ \frac{V_{PbS}}{V_{CdS}} = \frac{\frac{N_p}{N} \times (N_p + N_c)^3 \times \frac{4}{3} \pi R_{core}^3}{(N_p D_{P/C} + N_c D_{C})^3} = \frac{(n+1)^2 \times \frac{4}{3} \pi R_{core}^3}{(nD_c + D_{P/C})^3} $$

where $n=N_p/N_c$, and R_{core} is the average radius of the PbS core domain in PbS/CdS core/shell nanoparticles.
Figure SF1: Fluorescence intensity decay of CdS-encapsulated PbS nanocrystals. The fast and the slow decay components correspond to charge transfer and charge trapping processes, respectively.
Figure SF2: (top). Steady-state emission of PbS/CdS core/shell NCs in solution (black curve) and encapsulated into a film (red curve). (bottom). Fluorescence intensity decay of OA-acid capped PbS/CdS core/shell NCs in solution.
Figure SF3: Steady-state emission of PbS/CdS solids featuring large R_{edge} distances. The use of a conventional SMENA methodology leads to excessive trap state emission in the $\lambda=500-800$ nm range.
Table ST1: Quantum yield of CdS-encapsulated PbS NC solids emitting at $\lambda_{\text{PbS}} = 1300$ nm. The relative error of Quantum Yield measurement is about 15%. The effects of self-absorption were neglected due to low optical density of the samples.

<table>
<thead>
<tr>
<th>Sample $(\lambda_{\text{PbS}}=1300 \text{ nm})$</th>
<th>PbS volume fraction (ν_{PbS})</th>
<th>Optical density @808 nm</th>
<th>Quantum Yield, %</th>
<th>Life time, ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>R$_{\text{edge}}$=2.5 nm</td>
<td>0.24</td>
<td>0.032</td>
<td>2.0</td>
<td>105</td>
</tr>
<tr>
<td>R$_{\text{edge}}$=6.5 nm</td>
<td>0.096</td>
<td>0.015</td>
<td>3.3</td>
<td>350</td>
</tr>
<tr>
<td>R$_{\text{edge}}$=7.9 nm</td>
<td>0.07</td>
<td>0.015</td>
<td>3.7</td>
<td>480</td>
</tr>
</tbody>
</table>
Figure SF4: Spectra of laser and PL emission of the solid with $R_{\text{edge}}=2.5$ nm, Transmission spectra of longpass and shortpass filters applied for quantum yield.
Figure SF5: Absorption spectra of samples measured with integrating sphere spectrometer.
Figure SF6: High resolution TEM image of PbS/CdS core/shell NCs.