Supporting Information

Acridone Alkaloids from *Glycosmis chlorosperma* as DYRK1A Inhibitors

*Mehdi A. Beniddir,† Erell Le Borgne,† Bogdan I. Iorga,† Nadège Loaëc,§,‡ Olivier Lozach‡
Laurent Meijer,‡ Khalijah Awang,⊥ and Marc Litaudon†∗

†Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, LabEx LERMIT, 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
‡ Protein Phosphorylation & Human Disease group, CNRS, Station Biologique de Roscoff, BP 74, 29682 Roscoff, France.
§ ManRos Therapeutics, Centre de Perharidy, 29680 Roscoff, France.
⊥ Department of Chemistry, University Malaya, 59100 Kuala Lumpur, Malaysia.

*To whom correspondence should be addressed. Tel: 33 1 69 82 30 85. Fax: 33 1 69 07 72 47. E-mail: litaudon@cnrs.fr
Summary:

S1. 1H NMR spectrum (500 MHz, CDCl$_3$) of chlorospermine A (1) 3
S2. 13C NMR spectrum (125 MHz, CDCl$_3$) of chlorospermine A (1) 4
S3. DEPT135 13C NMR spectrum (125 MHz, CDCl$_3$) of chlorospermine A (1) 5
S4. COSY spectrum (500 MHz, CDCl$_3$) of chlorospermine A (1) 6
S5. HSQC spectrum (500 MHz, CDCl$_3$) of chlorospermine A (1) 7
S6. HMBC spectrum (500 MHz, CDCl$_3$) of chlorospermine A (1) 8
S7. NOESY spectrum (500 MHz, CDCl$_3$) of chlorospermine A (1) 9
S8. 1H NMR spectrum (500 MHz, CDCl$_3$) of chlorospermine B (2) 10
S9. 13C NMR spectrum (125 MHz, CDCl$_3$) of chlorospermine B (2) 11
S10. DEPT135 13C NMR spectrum (125 MHz, CDCl$_3$) of chlorospermine B (2) 12
S11. COSY spectrum (500 MHz, CDCl$_3$) of chlorospermine B (2) 13
S12. HSQC spectrum (500 MHz, CDCl$_3$) of chlorospermine B (2) 14
S13. HMBC spectrum (500 MHz, CDCl$_3$) of chlorospermine B (2) 15
S14. Figure S1. Sequence alignment for human and rat DYRK1A 16
S15. Figure S2. Superposition of docking conformations of compounds 1 (green, A), 2 (mauve, B) and 3 (yellow, C) on the docking conformation of compound 4 (purple, A-C). 17
S16. Figure S3. Kinase activity data (panel of 14 kinases) for Acrifoline (4) 18
S1. 1H NMR spectrum (500 MHz, CDCl$_3$) of chlorospermine A (1)
S2. 13C NMR spectrum (125 MHz, CDCl$_3$) of chlorospermine A (1)
S3. DEPT135 13C NMR spectrum (125 MHz, CDCl$_3$) of chlorospermine A (1)
S4. COSY spectrum (500 MHz, CDCl₃) of chlorospermine A (1)
S5. HSQC spectrum (500 MHz, CDCl₃) of chlorospermine A (1)
S6. HMBC spectrum (500 MHz, CDCl₃) of chlorospermine A (1)
S7. NOESY spectrum (500 MHz, CDCl$_3$) of chlorospermine A (1)
S8. 1H NMR spectrum (500 MHz, CDCl$_3$) of chlorospermine B (2)
S9. 13C NMR spectrum (125 MHz, CDCl$_3$) of chlorospermine B (2)
S10. DEPT135 13C NMR spectrum (125 MHz, CDCl$_3$) of chlorospermine B (2)
S11. COSY spectrum (500 MHz, CDCl₃) of chlorospermine B (2)
S12. HSQC spectrum (500 MHz, CDCl₃) of chlorospermine B (2)
S13. HMBC spectrum (500 MHz, CDCl₃) of chlorospermine B (2)
Figure S1. Sequence alignment for human and rat DYRK1A.
Figure S2. Superposition of docking conformations of compounds 1 (green, A), 2 (mauve, B) and 3 (yellow, C) on the docking conformation of compound 4 (purple, A-C).
S16. Figure S3. Kinase activity data (panel of 14 kinases) for Acrifoline (4)