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Experimental techniques:

General consideration:

New cyclophanes were fully characterized with standard spectroscopic techniques.
Microanalyses were performed on a Carlo 1102 elemental analysis instrument. Electronic absorption
(UV-Vis) spectra were recorded using a Shanghi 756 MC UV-Vis spectrometer. ‘H NMR, *C NMR,
HSQC, COSY and NOESY spectra were performed on a Bruker Advance DPX500 (500 and 600
MHz) and Varian VNMRS 600 spectrometer at 298 K. High resolution mass spectra were obtained on
a Micromass Platform Il mass spectrometer. Fluorescence studies were carried out on Shimadzu RF-
5301 PC spectrofluorophotometer at 298 K. Imidazole, 2,6-Bis(bromomethyl)naphthalene, acridine,
bromomethyl methylether (BMME), benzaldehyde, di(imidazol-1-yl)methanone and cobalt chloride
hexahydrate (CoCl,.6H,0) were purchased from Aldrich, while 9,10-bis(bromomethyl) anthracene
was purcghased from Santa Crutz laboratories and were used as such. Sodium salts of AMP, ADP,
ATP, GMP, GDP, GTP, CMP, CTP, TMP, TTP, UMP, UTP and n-TBA salts of F, CI', I, H,PO,,
HP,0,* CH;COO™ and NO;~ were also purchased from Aldrich and used without further purification.
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Scheme S1. Synthesis of cyclophanes 1, 2 and 3.

Synthesis of 1,1'-(phenylmethylene)bis(1H-imidazole) and Probe (1)



Synthesis of 1,1'-(phenylmethylene)bis(1H-imidazole):

To a stirred solution of benzaldehyde (2.3 ml, 21.75 mmol) and di(i-midazol-1-yl)methanone
(3.5 g, 21.75 mmol) in dry CH;CN (20 ml) was added cobalt chloride (CoCl,.6H,0, 40 mg, 0.2
mmol) as a catalyst at room temperature under N, atmosphere. The mixture was heated at reflux
temperature for 8 h and then solution was filtered. The solvent was removed on rotary evaporator and
the resulting solid was purified by column chromatography using CHCls/MeOH (99:1) to yield 1,1'-
(phenylmethylene)bis(1H-imidazole) (a) (2 g, 70% yield) as light yellow solid. (M. P. 123°C); *H
NMR (600MHz, (CD3),S0, 25°C): § 8.05 (s, 1H), 7.91 (s, 2H), 7.38-7.45 (m, 5H) and 7.00-7.03 ppm
(m, 4H); *C NMR (125MHz, (CD3),SO, 25°C): & 68.48, 118.64, 126.41, 129.08, 129.31, 129.54,
136.48 and 137.28 ppm. MS (FAB, m/z): [M]" calcd for Cy3H1,N,: 224.11; found: 224.11.

Synthesis of Probe (1)

A solution of 1,1'-(phenylmethylene)bis(1H-imidazole) (0.54 mmol, 121 mg), tetrabutyl
ammonium bromide (0.54 mmol, 174 mg), and 9,10-bis(bromomethyl) anthracene (0.54 mmol, 197
mg) in dry DMF (10 mL) was stirred at 90°C for 48 hr under N, atmosphere. The resultant hot
solution was filtered to collect light yellow precipitates. The precipitates were washed with DMF and
acetone. Residue so obtained was recrystallized from CH;OH. The obtained product was in 75% vyield.
(M. P. >300°C dec.); "H NMR (600 MHz, (CD5),S0, 25°C) & 6.66 (s, 8H, -N-CH2-C-), 7.40 (d, 4H, -
N-CH=CH-N-), 7.55-7.75 (m, 18H, phenyl ring and anthracene ring), 8.11 (s, 4H, -N-CH=CH-N-),
9.66 (s, 10H, bridging benzyl and anthracene ring), 9.75 (s, 4H, imidazolium C2 H); *C NMR (125
MHz, (CD;),SO, 25°C) & 45.36, 71.51, 121.07, 123.57, 124.84, 126.29, 127.58, 127.78, 129.55,
130.60, 130.89, 131.01, 138.00: Anal. Calcd for CsgHygBrsNg: C, 51.49; H, 3.73; N, 13.65, Found: C,
50.5; H, 3.9; N, 13.51. MS(FAB, m/z): [M-Br]" calc.: 1097.16; found: 1097.16.

Synthesis of 4,5-bis(bromomethyl) acridine and Probe (2)
Synthesis of 4,5-bis(bromomethyl) acridine:

BMME (2.78 g, 22.32 mmol) was added dropwise to a solution of acridine (1 g, 5.58 mmol)
in H,SO,4 (10 mL) at 50°C. The mixture was stirred at 50°C under nitrogen environment for 24 hr.
This mixture was poured in a vessel containing ice, and the resulting precipitates were filtered out.
The filtered cake was dissolved in CHCI; and the organic phase was washed with water. Organic layer
was then dried over anhydrous MgSQO, and evaporated under vacuum. The residual product was
further purified by silica gel chromatography (chloroform:hexane = 8:2) and a pale yellow solid was
obtained. The solid was recrystallized by CHCI; to obtain yellowish green crystals (1.40 g, yield 60%).
'H NMR (CDCls, 600 MHz, 25°C): § 5.41 (s, 4H, -C-CH2-Br), 7.48 (m, 2H), 7.91-7.97 (m, 4H), 8.75



(s, 1H, H-9); *C NMR (CDCl,, 125 MHz, 25°C): & 30.40, 126.03, 127, 129.25, 131.32, 136.67,
136.69, 145.95: Anal. Calc. (CisH11BroN): C, 49.35; H, 3.04; N, 3.84. Found: C, 49.49; H, 3.03; N,
3.83.; MS (FAB, m/z): [M]" calc.: 364.92; found: 364.92.

Synthesis of Probe (2)

A solution of 1-(1H-imidazol-1-ylmethyl)-1H-imidazole (0.54 mmol, 148.2 mg) and 4,5-
bis(bromomethyl) ancridine (0.54 mmol, 197 mg) in dry DMF (10 mL) was stirred at 90°C for 48 hr.
The resultant hot solution was filtered to collect light yellow precipitates. The precipitates were
washed with DMF and acetone. The residue so obtained was recrystallized from CH;OH. The
obtained product was in 80% vyield. (M. P. >300°C dec.); *H NMR (500 MHz, (CDs),SO, 25°C) &
6.647 (s, 8H, -N-CH2-C-), 7.370 (s, 4H, -N-CH2-N-), 7.705-8.28 (m, 20H, imidazolium ring -N-
CH=CH-N- and acridine ring), 9.309 (s, 2H, H-9 acridine), 9.709 (s, 4H, imidazolium C2 H); **C
NMR (125 MHz, (CDs),SO, 25°C) & 49.96, 58.37, 122.21, 122.53, 123.17, 126.01, 126.26, 129.81,
130.94, 131.98, 138.09, 138.47, 147.18.; Anal. Calcd for C4H3sBrsNyo: C, 51.49; H, 3.73; N, 13.65,
Found: C, 51.5; H, 3.8; N, 13.55.; MS (FAB, m/z): [M-Br]" calc.: 947.09; found: 947.09.

Synthesis of Probe (3)

To a solution of 1-(1H-imidazol-1-ylmethyl)-1H-imidazole (0.54 mmol, 80mg) and
tetrabutylammonium bromide (0.54 mmol, 174mg) in dry CH3;CN (10 mL) 2,6-bis(bromomethyl)
naphthalene (0.54 mmol, 170mg) was added slowly then solution was heated under reflux at 80°C for
24 h. The resulting hot solution was filtered and residue was washed with first with CH;CN (20 mL)
and then with methanol (20 mL). The product was dried under vacuum. The obtained product was in
82 % yield. (M. P. >300°C dec.); "H NMR (600 MHz, (CD5),S0O, 25° C) § 5.62 (s, 8H, -N-CH2-C-),
6.67 (s, 4H, -N-CH2-N-), 7.59 (m, 4H, naphthalene ring), 7.81-8.05(m, 16H, -N-CH=CH-N- and
naphthalene ring ), 9.63 (S, 4H, imidazolium C2 H); *CNMR (500 MHz, (CD3),SO, 25°C) & 52.85,
59.00, 122.96, 123.61, 127.03, 128.25, 129.41, 132.69, 132.91, 138.26.: Anal. Calcd. for C3sHzsBr;Ns:
C, 49.38; H, 3.93; N, 12.12, Found: C, 49.23; H, 4.03; N, 12.21.; MS (FAB, m/z): [M- Br]+ calc.:
845.06; found: 845.06



NMR spectral analysis:
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Figure S1."H NMR spectrum of compound 1,1'-(phenylmethylene)bis(1H-imidazole) in DMSO-d.
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Figure S2.*C NMR spectrum of compound 1,1'-(phenylmethylene)bis(1H-imidazole) DMSO-ds.
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Figure S4.%C NMR spectrum of compound (1) in DMSO-ds.
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Figure S5. 600 MHz HSQC spectrum of 1 with in DMSO-ds.

|

|
|

.

I Y A S ‘Lr} VUL L | . )Uu ppm

= : ' !
{% ' H [] [ 4.5
5.0
5.5

- , . .
} 6.0
L]

_ ' ¢ ] d L6.5

r7.0
— ]
— . ¢ 7.5
_ - P °
D " .
—j 8.0
= / I & o . ' ' Lss
3 '
9.0
i 9.5
= ¢ '
l T T T T T T T T T T T
95 90 85 80 75 70 65 60 55 50 45 ppm
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140
ppm




Figure S7. Partial 500 MHz *H NMR spectra for (a) 1 (2 mM), (b) 1-AMP (1 equiv), and (c) AMP.
AMP was dissolved in D,O as stock solution.
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Figure S8.'H NMR spectrum of compound 4,5-bis(bromomethyl) acridine in CDCls.
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Figure S9."C NMR spectrum of compound 4,5-bis(bromomethyl) acridine CDCls.
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Figure S11."3C NMR spectrum of compound 2 in DMSO-ds.
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Figure S14. Partial 500 MHz 'H NMR spectra for (a) 2 (2 mM), (b) 2-GTP (1 equiv), (c) GTP. GTP

was dissolved in D,O as stock solution.
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1. Fluorometric Analysis:

All spectrofluorimetric titrations were performed as follows. Stock solution of compound (1,
2 or 3) (ImM) was prepared at pH 7.4 in 0.01 M HEPES buffer water mixture and used in the
preparation of titration solution by appropriate dilution up to 10 uM. Aliquots of F, CI, I', CH3;CO,,
NOgs, Pi, PPi, AMP, ADP, ATP, GMP, GDP, GTP, CMP, CTP, UMP, UTP, TMP and TTP (as the
corresponding tetrabutyl ammonium and sodium salts) in 0.01 M HEPES buffer water mixture was
then injected into the sample solution through a rubber septum in the cap. To account for dilution
effects, these stock anion solutions also contained the receptors at its initial concentration. The sample
solutions were magnetically stirred for 1 minute after each addition before rescaning. This process
was repeated until the change in fluorescence intensity became insignificant. Binding constants K, for
anions were derived from the plots of F/F, vs [anion] by assuming one site model using Origin Lab
8.0." Results reported in the main text are the average of at least two independent titrations. Emission

spectrum was measured by keeping slit width =5 nm and Ze= 365 nm.

1+Pi 1+PPi 1+cAMP 1+AMP 1+ADP 1+ATP 1+GMP 1+CMP 1+UMP1+TMP

o —— ——

Ten

Figure S20. Visual fluorescence features of 1 (10 pM) upon the addition of n-tetrabutylammomonium
(TBA) salts; dihydrogen phosphate (Pi), pyrophosphate (PPi) and sodium salt of AMP, cAMP, ADP,
ATP, GMP, GTP, CMP, CTP, UMP, UTP, TMP and TTP (100 equiv) at pH 7.4 (0.01 M HEPES
buffer).

0.6

1

10mM 7.5mM 5mM 2.5mM

=3 =4
S (L]

l429”438
=1

Figure S21. The emission intensity ratio of cyclophane 1 at l4/l495 in 0.01M HEPES buffer at 10,
7.5, 5 and 2.5 mM (slit width = 5 nm; excitation at 365 nm). The concentration independent changes

in monomer-to-excimer (l429/149g) ratio indicate intamolecular excimer formation.
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Figure S28. A plot of (Fo-F)/(Fo-Fmax) vs log[ADP].
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Figure S29. A plot of (Fo-F)/(Fo-Fmax) vs log[ATP].
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Figure S30. Visual fluorescence features of 2 (10 uM) upon the addition of n-tetrabutylammomonium
(TBA) salts; of CI, I', dihydrogen phosphate (Pi), pyrophosphate (PPi) and sodium salt of ATP, GTP,
CTP, UTP and TTP (10 equiv) at pH 7.4 (10 mM HEPES buffer).
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Figure S31. Effect of different anions (10 equiv) on 1./l of probe 2 at a fixed concentration of 10uM
at pH 7.4 (10mM HEPES buffer) (slit width = 5 nm; Ae=365 nm).
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Figure S32. Emission spectra (excitation at 365 nm) of probe 2 (10 uM) in different solvents.
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Figure S33. Emission spectra (excitation at 365 nm) of probe 2 (10 uM) upon addition of sodium
salt of GTP at pH 7.4 (10 mM HEPES buffer, 25°C) and the corresponding binding isotherm.
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Figure S34. A plot of (Fo-F)/(Fo-Fmax) vs log[GTP].
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Figure S35. Competitive experment in the 2+GTP system with interfering anions. [2] = 10 uM,
[GTP] = 100 pM, and [A]= 100 uM in 10mM HEPES buffer; Aex = 365 nm.
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Figure S36. Emission spectra (excitation at 290 nm) of receptor 3 (10 uM) upon addition of n-TBA
salt of PPi at pH 7.4 (10 mM HEPES buffer) and the corresponding binding isotherm.
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Fig.37. Competitive experiment in the 3 + PPi with interfering anions. [3]= 10 uM , [PPi] = 0.1 mM,
and [A7]= 0.1 mM in 10 mM HEPES buffer. (slit width = 5 nm; A, = 290).
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Figure S38. A plot of (Fo-F)/(Fo-Fmax) vs log[PPi].
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Studies of receptor-anion complex stoichiometry (Job plot)

Job plot analysis was performed using fluorescence emission spectroscopy. The plot was constructed
in the usual way and was found to exhibit maxima at 0.5 for AMP, 0.5 for GTP and 0.66 for PPi. Such
finding supports the proposal that receptors 1 and 2 form a 1:1 complex with the AMP and GTP

respectively while receptors 3 forms 2:1 complex with PPi.

o.Dol ) T T L) L) L) = L)
0.00 045 030 0.45 060 075 090 1.05

G/(H+G)
Figure S39. Assessment of the stoichometry of the AMP complex of 1 via Job plot analysis; [1] +

AMP] = 10 pM, pH 7.4 (0.01 M HEPES buffer), 25°C.
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Figure S40. Assessment of the stoichometry of the ADP complex of 1 via Job plot analysis; [1] +
[ADP] = 10 uM, pH 7.4 (0.01 M HEPES buffer), 25°C.
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Figure S41. Assessment of the stoichometry of the ATP complex of 1 via Job plot analysis; [1] +
[ATP] = 10 puM, pH 7.4 (0.01 M HEPES buffer), 25°C.
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Figure S42. Assessment of the stoichometry of the GTP complex of 2 via Job plot analysis; [2] +
[GTP] = 10 uM, pH 7.4 (10 mM HEPES buffer), 25°C.
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Figure S43. Assessment of the stoichometry of the PPi complex of 3 via Job plot analysis; [3] +
[PPi] =10 uM, pH 7.4 (10 mM HEPES buffer), 25°C.
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UV/vis Analysis:
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Figure S44. Absorption spectra of 1 (10 pM) upon addition of n-tetrabutyl ammonium salt of Pi and

PPi and sodium salts AMP, ADP, ATP, GMP, GTP, CMP, CTP, TMP, TTP, UMP and UTP, (10

equiv) at pH 7.4 (0.1M HEPES buffer, 25°C).
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Figure S45. Absorption spectra of 2 (10 uM) upon addition of sodium salts AMP, ADP, ATP, GMP,
GDP, GTP, CTP, TTP and UTP, (10 equiv) at pH 7.4 (10 mM HEPES buffer, 25°C).
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Figure S46. UV/vis change of 3 (10 uM) upon addition of 10 equiv of PPi in HEPES buffer (10 mM,

pH 7.4).

Table S1: Results of Binding Stoichiometries, Binding Constants and Detection Limits of Probes 1, 2,

(a.
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and 3 with Selected anions.?

300
Wavelength (nm)

350 400

450

500

robe anion binding binding constant (M detection
P stoichiometry 2% limit** (M)
1 AMP 1:1 (7.8+0.2) x 10* 1.26 x 10°
(Figure S39) (Figure S22) (Figure S27)
ADP 1:1 (1.93+0.09) x 10° 1.32x10°
(Figure S40) (Figure S23) (Figure S28)
ATP 1:1 (1.8+0.08) x 10° 1.34x 10°
(Figure S41) (Figure S24) (Figure S29)
) GTP 1:1 (1.140.07) x 10° 6.1x 107
(Figure S42) (Figure S33) (Figure S34)
_ (2+0.1) x 10° 8
. 2:1 7 242 x10
3 PPL (Figure s43) (1.2£0.01) x 10 (Figure S38)

(Figure S36)

#Anions are selected from selective fluorogenic sensing results.

29



Quantum Yield Measurements

Absolute fluorescence quantum yields for 1, 2 and 3 were measured using Shanghi 756 MC UV-Vis
spectrometer and Shimadzu RF-5301 PC spectrofluorophotometer. Anthracene as standard was used
for quantum yield measurement of probes 1 and 2 while naphthalene standard was used for quantum
yield measurement of probe 3. Typically, the quantum yield was obtained by integrating the photons
emitted by 1 up to 600 nm and calculated according to following formula. *

®dun) = [FLI wun/Absun)]x[Absstd/FLI (sta)]X[{nuny/ n(Std)}z]X(D(Std)

Where:

®un) = Quantun yield of unknown

D sy = Quantum yield of standard

FLI1wn) = Fluorescence of unknown

FLIstw) = Fluorescence of standard

Absun) = Absorbance of unknown

Abs sy = Absorbance of standard

Nwn) = Refractive index of solvent in which fluorescence and absorbance of unknown sample has been
carried out.

Nty = Refractive index of solvent in which fluorescence and absorbance of standard sample has been

carried out.
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Theoretical Calculations:

Density functional theory calculation was used with the resolution of identity approximation (RI-
DFT). We applied Grimme’s B97-D functional® and TZVPP basis set* along with dispersion
correction scheme of D3(B97-D3/TZVPP level of theory). The gas phase geometry optimization
calculations were performed for probes 1, 2 and 3 with four bromides as counter anions. Further
aqueous phase calculations were conducted using the conductor-like screening model (COSMO)® at
the previously optimized geometries. Based on the calculation results, we obtained binding modes of
1-AMP, 2-GTP and 3-PPi at the same level of theory except for 2-GTP. All calculations were
performed using Turbomole 6.4 program.®

The energies and structures of 1 are shown in Table S2 and Figure S47. The most stable
conformer of 1 has all the imidazolium moieties, with the acidic hydrogen atoms, pointing in the same
direction creating an environment with strong electron affinity. The benzene moieties are anti to each
other and the anthracene moieties are stacked at a distance of ~3.6 A giving rise to an excimer.” This
structure was chosen to study the binding mode with AMP (Figure S47). In the binding mode of 1-
AMP, the H2 and -NH, of the adenine moieties of AMP interacts with the anthracene moieties of
probe 1 at distance of ~2.7 and ~2.8 A via H-m interaction, respectively.” The adenine interacts with
the benzene ring of cyclophane via -z interaction at a distance of 3.2 A, while the H8 of the adenine
is in the vicinity of benzene at 3.3 A. The phosphate group of AMP shows strong interactions with

imidazolium protons (C—H)", forming ionic hydrogen bonds at distances of ~1.8-2.3 A (Figure S48).

Table S2. Relative energies (kcal/mol) of 1-4Br with respect to the most stable structure.

Complex E% E*
@ 0.00 0.00
(b) 5.47 2.00
© 7.73 252
(d) 8.70 3.20
e) 9.91 4.48
) 12.73 7.53
©) 16.85 8.45
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Figure S47: Stable minimum energy structures (a-f) of cyclophane 1. Structure a is the

global minimum energy conformer.

Figure S48: Optimized structure of 1-AMP calculated at the B97-D3/TZVPP level. The adenine
group is inside the cavity. Interactions of H2, H8 and amino group with fluorophores and interactions
of phosphate group with imidazolium moieties can be seen with red dotted lines. Br" counteranions

are removed for the sake of clarity.
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In the case of probe 2, the energies of the low-lying structures of 2-4Br are summarized in Table
S3 and the corresponding geometries and the binding modes of 2-GTP/GDP are shown in Figure S49.
In both phases geometry (a) shows the lowest energy in which two Br anions are located beside 2 and
other two Br™ anions are situated above and below 2, respectively. This structure in the lowest energy
was selected to conduct further calculations of 2 with GTP or GDP. For the calculation of 2-GDP
several water molecules were added to stabilize the negative charges on the diphosphate moiety.® But
in the case of 2-GTP, it was difficult to stabilize the entire structure only with the small number of
water molecules. We employed, therefore, another method, density functional based tight binding
method; to obtain the binding mode.” We added almost 40 water molecules to include the explicit
solvent effect of water. In the binding mode of 2-GTP (Figure S49 (g)), the ionic interaction distances
between the imidazolium of 2 and phosphate moiety in GTP ((C-H)*-O") are ~2.8 A. On the other
hand, the (C-H)"-O" distances are 1.9 — 2.9 A in 2-GDP (Figures S49 (h)). Furthermore, the 2-GTP
shows stronger H-z interaction between -NH, of GTP and anthracene moiety of 2; the distance
between H(N) and anthracene is ~2.7 (~3.0) A in 2-GTP, whereas the corresponding distances are
~3.27 (~3.71) A in 2-GDP. The proximity of GTP over GDP and GMP seems responsible for the

more intensive quenching in 2-GTP case.

Table S3. Relative energies (kcal/mol) of 2-4Br with respect to the most stable structure in the gas

(E%) and aqueous (E*) phases.

Complex E%% E*
@ 0.00 0.00
(b) 5.18 2.12
©) 2.90 2.19
(d) 5.62 3.36
©) 10.36 6.53
) 7.59 6.54
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(2) (h)

Figure S49: Optimized geometries of (a) — (f) 2-4Br, (g) 2-GTP and (h) 2-GDP. Ball-and-stick
represents Br’, GTP, and GDP, while tube represents 2. Crucial interactions are being indicated by red
dotted lines. Water molecules and Br™ are deleted for (g) and (h) for clarity.

The six possible conformers of cyclophane 3 were optimized in both gas and aqueous phases. The
energies and corresponding structures are presented in Table S4 and Figure S50. Among these
conformers the structures (a) and (b) are nearly isoenergetic. In the most stable geometry of 3-4Br (a),
all the four Br™ anions situate outside the cavity and the imidazolium protons consequently direct
inward. With reference to the NMR experimental data, structure 3 is subjected to a binding mode with
PPi wherein we have witnessed the formation of an unusual dimerization of 3 with the naphthalene
moieties stacked in z-z interaction. PPi molecule is aligned above the stacked naphthalenes (Figure

S51). From the structure we can draw a conclusion that the electronegative environment of the PPi
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draws the positively charged imidazolium moieties of 3 which is the driving force for such an

alignment.

Table S4: Relative energies (kcal/mol) of low-lying energy structures optimized at B97-D3/TZVPP in

both the gas and aqueous phases with respect to their corresponding global minimum energy structure.

Complex E% E*
@ 0.00 0.00
(b) 0.47 0.10
©) 6.77 1.30
(d) 2.26 1.68
©) 4.06 2.61
® 4.61 3.01

(d) (e) (f)

Figure S50: Stable minimum energy structures of cyclophane 3. Structure a is the global minimum

energy conformer.
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Figure S51: Optimized structure of 3-PPi at the B97D-D3/TZVPP level. It is clearly evident from 3-
PPi complexation that the naphthalene moieties are interacting via z-stacking (highlighted in pink) at

a distance of 3.07-3.59 A. Br counter-anions are removed for the sake of clarity.
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