Supporting Information

The Thermodynamics of Inorganic Hydration and of Humidity Control,

with an Extensive Database of Salt Hydrate Pairs

Leslie Glasser*

Nanochemistry Research Institute, Department of Chemistry

Curtin University, GPO Box U1987, Perth, WA 6845, Australia

E-mail: <u>l.glasser@curtin.edu.au</u>

Keywords: Thermodynamics, hydration, humidity control, ionic materials, hydrates, database

*Corresponding author

L. Glasser: Telephone: + 61 8 9266-3126 Fax: + 61 8 9266-4699

E-mail: <u>l.glasser@curtin.edu.au</u>

Table S1: Master list, sorted alphabetically by formula.

Salt pair hydrate aqueous vapour pressure at 25°C calculated from the standard Gibbs energy of the reaction (using eq. (4) with "HSC Chemistry" data¹). The equilibrium vapour pressure of water at 25°C is 23.8 Torr.² The final two columns list the standard enthalpy and standard entropy per mole for production of gaseous water from the salt pair, with the enthalpy term providing the temperature coefficient (eq. 2) for the process. The rows in *red italics* contain thermodynamic data which is unusual, and thus suspect; the calculated pressure term has consequently been omitted.

	Δn(H₂O)	$\Delta_r G^{\circ}/\Delta n(H_2O)$	p ^a	$\Delta_r H^\circ / \Delta n(H_2 O)$	$\Delta_r S^{\circ}/\Delta n(H_2O)$
	, - ,	/ kJ mol ⁻¹	/Torr	/ kJ mol ⁻¹	/ J K ⁻¹ mol ⁻¹
$H_2O(s) = H_2O(g)^3$	1	8.1	23.8	50.0	141
$AgF \cdot H_2O = AgF + H_2O(g)$	1	12.2	5.5	59.2	158
$AgF \cdot 2H_2O = AgF \cdot H_2O + H_2O(g)$	1	15.8	1.3	56.2	136
$AgF \cdot 4H_2O = AgF \cdot 2H_2O + 2H_2O(g)$	2	10.2	12.1	51.6	139
$AI_4C_3 \cdot 6H_2O = AI_4C_3 + 6H_2O(g)$	6	128.9		170.9	141
$AICI_3 \cdot 6H_2O = AICI_3 + 6H_2O(g)$	6	43.4	0.0	89.4	154
$AIF_3 \cdot 3H_2O = AIF_3 \cdot 0.5H_2O + 2.5H_2O(g)$	2.5	33.1	0.0	78.4	152
$Al_2O_3 \cdot H_2O = Al_2O_3 + H_2O(g)$	1	31.2	0.0	81.6	169
$Al_2O_3 \cdot 3H_2O = Al_2O_3 \cdot H_2O + 2H_2O(g)$	2	5.5	82.7	51.9	156
$Al_2(SO_4)_3 \cdot 6H_2O = Al_2(SO_4)_3 + 6H_2O(g)$	6	57.4	0.0	102.3	150
$As_2O_5 \cdot 4H_2O = As_2O_5 + 4H_2O(g)$	4	5.6	77.2	50.3	150
$AuCl_3 \cdot 2H_2O = AuCl_3 + 2H_2O(g)$	2	9.3	17.3	56.5	158
$BaAl_2O_4 \cdot H_2O = BaAl_2O_4 + H_2O(g)$	1	39.2	0.0	83.7	149
$BaBr_2 \cdot H_2O = BaBr_2 + H_2O(g)$	1	12.9	4.2 (3.7)	57.8	151
$BaBr_2 \cdot 2H_2O = BaBr_2 \cdot H_2O + H_2O(g)$	1	13.4	3.3	57.3	147
$BaCl_2 \cdot H_2O = BaCl_2 + H_2O(g)$	1	24.5	0.0	67.8	145
$BaCl_2 \cdot 2H_2O = BaCl_2 \cdot H_2O + H_2O(g)$	1	-6.4		39.3	153
$Ba(CIO_4)_2 \cdot 3H_2O = Ba(CIO_4)_2 + 3H_2O(g)$	3	105.4		146.6	138
$Bal_2 \cdot H_2O = Bal_2 + H_2O(g)$	1	33.0	0.0	77.4	149
$Bal_2 \cdot 2H_2O = Bal_2 \cdot H_2O + H_2O(g)$	1	11.4	7.5	55.2	147
$Ba(IO_3)_2 \cdot H_2O = Ba(IO_3)_2 + H_2O(g)$	1	-7.3		27.0	115
$Ba(N_3)_2 \cdot H_2O = Ba(N_3)_2 + H_2O(g)$	1	6.9	46.5	44.3	126
$Ba(OH)_2 \cdot H_2O = Ba(OH)_2 + H_2O(g)$	1	17.4	0.7	60.6	145
$Ba(OH)_2 \cdot 3H_2O = Ba(OH)_2 \cdot H_2O + 2H_2O(g)$	2	12.4	5.1	57.5	152
$Ba(OH)_2 \cdot 8H_2O = Ba(OH)_2 \cdot 3H_2O + 5H_2O(g)$	5	14.2	2.4	58.5	149
$BeSO_4 \cdot H_2O = BeSO_4 + H_2O(g)$	1	24.9	0.0	68.4	146
$BeSO_4 \cdot 2H_2O = BeSO_4 \cdot H_2O + H_2O(g)$	1	26.4	0.0	70.1	147
$BeSO_4 \cdot 3H_2O = BeSO_4 \cdot 2H_2O + H_2O(g)$	1	9.3	17.4	55.7	155

BeSO ₄ ·4H ₂ O = BeSO ₄ ·3H ₂ O + H ₂ O(g)	152 142 140 145 153 182 139
CaCl ₂ ·H ₂ O = CaCl ₂ + H ₂ O(g) 1 31.9 0.0 73.8 CaCl ₂ ·2H ₂ O = CaCl ₂ ·H ₂ O + H ₂ O(g) 1 8.0 30.0 51.2 CaCl ₂ ·4H ₂ O = CaCl ₂ ·2H ₂ O + 2H ₂ O(g) 2 15.1 1.7 60.8 CaCl ₂ ·4H ₂ O = CaCl ₂ ·4H ₂ O + 2H ₂ O(g) 2 11.7 6.6 66.1 Ca(Cl ₂ ·4H ₂ O = CaCl ₂ ·4H ₂ O + 2H ₂ O(g) 4 22.8 0.1 64.1 CaHPO ₄ ·2H ₂ O = CaHPO ₄ + 2H ₂ O(g) 2 16.9 0.8 61.6 Ca(H ₂ PO ₄) ₂ ·H ₂ O = Ca(H ₂ PO ₄) ₂ + H ₂ O(g) 1 17.8 0.6 53.2 Ca(IO ₃) ₂ ·H ₂ O = Ca(IO ₃) ₂ + H ₂ O(g) 1 17.8 0.6 53.2 Ca(IO ₃) ₂ ·H ₂ O = Ca(IO ₃) ₂ + H ₂ O(g) 1 46.1 0.0 89.9 Ca(IO ₃) ₂ ·2H ₂ O = Ca(IO ₃) ₂ ·+2D ₂ O(g) 5 0.8 541.8 46.4 Ca(NO ₃) ₂ ·2H ₂ O = Ca(NO ₃) ₂ ·2+2D ₂ O(g) 2 15.2 1.6 (2.2) 60.2 Ca(NO ₃) ₂ ·3H ₂ O = Ca(NO ₃) ₂ ·2H ₂ O + H ₂ O(g) 1 14.0 2.7 55.4 Ca(NO ₃) ₂ ·3H ₂ O = Ca(NO ₃) ₂ ·3H ₂ O + H ₂ O(g) 1 12.9 4.1 52.5 CaSO ₃ ·0.5H ₂ O = CaSO ₃ ·0.5H ₂ O + 1.5H ₂ O(g) 1.5 8.6 23.8 52.4 CaSO ₃ ·2H ₂ O = CaSO ₃ ·0.5H ₂ O + 1.5H ₂ O(g) 1.5 11.8 6.5 55.4 CaSO ₄ ·2H ₂ O = CaSO ₄ ·0.5H ₂ O + 1.5H ₂ O(g) 2 18.7 0.4 56.8 CaSO ₃ ·2H ₂ O = CaSO ₄ ·2.5H ₂ O + 1.5H ₂ O(g) 2 18.7 0.4 56.8 CaSO ₃ ·2H ₂ O = CaSO ₄ ·2.5H ₂ O + 1.5H ₂ O(g) 2 18.7 0.4 56.8 CaSO ₃ ·2H ₂ O = CaSO ₄ ·2.5H ₂ O + 1.5H ₂ O(g) 2 18.7 0.4 56.8 CaSO ₃ ·2H ₂ O = CaSO ₄ ·2.5H ₂ O + 1.5H ₂ O(g) 2 18.7 0.4 56.8 CaSO ₄ ·2H ₂ O = CaSO ₄ ·2.5H ₂ O(g) 2 18.7 0.4 56.8 CaSO ₃ ·2H ₂ O = CaSO ₄ ·2.5H ₂ O + 1.5H ₂ O(g) 2 18.7 0.4 56.8 CaSO ₃ ·2H ₂ O = CaSO ₄ ·2.5H ₂ O(g) 2 2 30.5 0.0 75.1 CaTeO ₃ ·H ₂ O = CaTeO ₃ + H ₂ O(g) 1 26.9 0.0 70.7	140 145 153 182
CaCl ₂ ·2H ₂ O = CaCl ₂ ·H ₂ O + H ₂ O(g) 1 8.0 30.0 51.2 CaCl ₂ ·4H ₂ O = CaCl ₂ ·2H ₂ O + 2H ₂ O(g) 2 15.1 1.7 60.8 CaCl ₂ ·6H ₂ O = CaCl ₂ ·4H ₂ O + 2H ₂ O(g) 2 11.7 6.6 66.1 Ca(ClO ₄) ₂ ·4H ₂ O = Ca(ClO ₄) ₂ + 4H ₂ O(g) 4 22.8 0.1 64.1 CaHPO ₄ ·2H ₂ O = CaHPO ₄ + 2H ₂ O(g) 2 16.9 0.8 61.6 Ca(H ₂ PO ₄) ₂ ·H ₂ O = Ca(H ₂ PO ₄) ₂ + H ₂ O(g) 1 17.8 0.6 53.2 Ca(IO ₃) ₂ ·H ₂ O = Ca(IO ₃) ₂ ·H ₂ O + 5H ₂ O(g) 1 46.1 0.0 89.9 Ca(IO ₃) ₂ ·H ₂ O = Ca(IO ₃) ₂ ·H ₂ O + 5H ₂ O(g) 5 0.8 541.8 46.4 Ca(NO ₃) ₂ ·2H ₂ O = Ca(NO ₃) ₂ ·H ₂ O + 5H ₂ O(g) 2 15.2 1.6 (2.2) 60.2 Ca(NO ₃) ₂ ·3H ₂ O = Ca(NO ₃) ₂ ·3H ₂ O + H ₂ O(g) 1 14.0 2.7 55.4 Ca(NO ₃) ₂ ·3H ₂ O = Ca(NO ₃) ₂ ·3H ₂ O + H ₂ O(g) 1 12.9 4.1 52.5 CaSO ₃ ·0.5H ₂ O = CaSO ₃ ·0.5H ₂ O + 1.5H ₂ O(g) 0.5 18.4 0.5 62.8	145 153 182
CaCl ₂ ·4H ₂ O = CaCl ₂ ·2H ₂ O + 2H ₂ O(g) 2 15.1 1.7 60.8 CaCl ₂ ·6H ₂ O = CaCl ₂ ·4H ₂ O + 2H ₂ O(g) 2 11.7 6.6 66.1 Ca(ClO ₄) ₂ ·4H ₂ O = Ca(ClO ₄) ₂ + 4H ₂ O(g) 4 22.8 0.1 64.1 CaHPO ₄ ·2H ₂ O = CaHPO ₄ + 2H ₂ O(g) 2 16.9 0.8 61.6 Ca(H ₂ PO ₄) ₂ ·H ₂ O = Ca(H ₂ PO ₄) ₂ + H ₂ O(g) 1 17.8 0.6 53.2 Ca(IO ₃) ₂ ·H ₂ O = Ca(IO ₃) ₂ + H ₂ O(g) 1 46.1 0.0 89.9 Ca(IO ₃) ₂ ·H ₂ O = Ca(IO ₃) ₂ · H ₂ O + 5H ₂ O(g) 5 0.8 541.8 46.4 Ca(NO ₃) ₂ ·2H ₂ O = Ca(NO ₃) ₂ · 2H ₂ O + H ₂ O(g) 2 15.2 1.6 (2.2) 60.2 Ca(NO ₃) ₂ ·3H ₂ O = Ca(NO ₃) ₂ ·2H ₂ O + H ₂ O(g) 1 14.0 2.7 55.4 Ca(NO ₃) ₂ ·3H ₂ O = Ca(NO ₃) ₂ ·3H ₂ O + H ₂ O(g) 1 12.9 4.1 52.5 CaSO ₃ ·0.5H ₂ O = CaSO ₃ ·0.5H ₂ O + 1.5H ₂ O(g) 0.5 18.4 0.5 62.8 CaSO ₄ ·2H ₂ O = CaSO ₄ ·0.5H ₂ O + 1.5H ₂ O(g) 1.5 8.6 23.8 52.4 CaSeO ₄ ·2H ₂ O = CaSeO ₄ + 2H ₂ O(g) 2 18.7 0.4 <td>153 182</td>	153 182
CaCl ₂ ·GH ₂ O = CaCl ₂ ·4H ₂ O + 2H ₂ O(g) 2 11.7 6.6 66.1 Ca(ClO ₄) ₂ ·4H ₂ O = Ca(ClO ₄) ₂ + 4H ₂ O(g) 4 22.8 0.1 64.1 CaHPO ₄ ·2H ₂ O = CaHPO ₄ + 2H ₂ O(g) 2 16.9 0.8 61.6 Ca(H ₂ PO ₄) ₂ ·H ₂ O = Ca(H ₂ PO ₄) ₂ + H ₂ O(g) 1 17.8 0.6 53.2 Ca(IO ₃) ₂ ·H ₂ O = Ca(IO ₃) ₂ + H ₂ O(g) 1 46.1 0.0 89.9 Ca(IO ₃) ₂ ·GH ₂ O = Ca(IO ₃) ₂ + H ₂ O(g) 5 0.8 541.8 46.4 Ca(NO ₃) ₂ ·2H ₂ O = Ca(NO ₃) ₂ + 2H ₂ O(g) 2 15.2 1.6 (2.2) 60.2 Ca(NO ₃) ₂ ·3H ₂ O = Ca(NO ₃) ₂ ·2H ₂ O + H ₂ O(g) 1 14.0 2.7 55.4 Ca(NO ₃) ₂ ·3H ₂ O = Ca(NO ₃) ₂ ·3H ₂ O + H ₂ O(g) 1 12.9 4.1 52.5 CaSO ₃ ·0.5H ₂ O = CaSO ₃ ·0.5H ₂ O + 1.5H ₂ O(g) 1.5 8.6 23.8 52.4 CaSO ₄ ·2H ₂ O = CaSO ₄ ·0.5H ₂ O + 1.5H ₂ O(g) 1.5 11.8 6.5 55.4 CaSO ₄ ·2H ₂ O = CaSO ₄ ·0.5H ₂ O + 1.5H ₂ O(g) 2 18.7 0.4 56.8 CaSi ₆ ·2H ₂ O = CaSi ₆ ·2 + 2H ₂ O(g) 2 30.5 0.0 75.1 CaTeO ₃ ·H ₂ O = CaTeO ₃ + H ₂ O(g) 1 26.9 0.0 70.7	182
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	139
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	150
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	119
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	147
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	153
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	151
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	133
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	147
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	146
$CaTeO_3 \cdot H_2O = CaTeO_3 + H_2O(g)$ 1 26.9 0.0 70.7	128
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	149
$CdBr_2 \cdot 4H_2O = CdBr_2 + 4H_2O(g)$ 4 8.7 22.3 52.1	147
	145
$CdCl_2 \cdot H_2O = CdCl_2 + H_2O(g)$ 1 13.4 3.3 53.3	134
$CdCl_2 \cdot 2.5H_2O = CdCl_2 \cdot H_2O + 1.5H_2O(g)$ 1.5 9.4 16.9 53.4	148
$Cd(NO_3)_2 \cdot 2H_2O = Cd(NO_3)_2 + 2H_2O(g)$ 2 14.9 1.8 57.5	143
$Cd(NO_3)_2 \cdot 4H_2O = Cd(NO_3)_2 \cdot 2H_2O + 2H_2O(g)$ 2 14.5 2.1 (2.1) 57.0	142
$CdSO_4 \cdot H_2O = CdSO_4 + H_2O(g)$ 1 17.6 0.6 64.6	158
$CdSO_4 \cdot 2.67H_2O = CdSO_4 \cdot H_2O + 1.67H_2O(g)$ 1.67 8.7 22.6 51.5	144
$CeCl_3 \cdot 7H_2O = CeCl_3 + 7H_2O(g)$ 7 16.3 1.1 61.0	150
$CePO_4 \cdot 2H_2O = CePO_4 + 2H_2O(g)$ 2 5.4 83.2 50.5	151
$Ce(SO_4)_2 \cdot 5H_2O = Ce(SO_4)_2 + 5H_2O(g)$ 5 344.6 384.1	132
$CoBr_2 \cdot 6H_2O = CoBr_2 + 6H_2O(g)$ 6 14.5 2.2 58.9	149
$CoCl_2 \cdot H_2O = CoCl_2 + H_2O(g)$ 1 22.6 0.1 61.1	129
$CoCl_2 \cdot 2H_2O = CoCl_2 \cdot H_2O + H_2O(g)$ 1 14.4 2.2 60.3	154
$CoCl_2 \cdot 6H_2O = CoCl_2 \cdot 2H_2O + 4H_2O(g)$ 4 11.5 7.1 57.0	153
$Co(NO_3)_2 \cdot 6H_2O = Co(NO_3)_2 + 6H_2O(g)$ 6 14.5 2.2 56.0	139
$CoSO_4 \cdot 6H_2O = CoSO_4 + 6H_2O(g)$ 6 13.6 3.1 57.5	147
$CoSO_4 \cdot 7H_2O = CoSO_4 \cdot 6H_2O + H_2O(g)$ 1 9.3 17.4 54.2	
$CrCl_2 \cdot 2H_2O = CrCl_2 + 2H_2O(g)$ 2 17.7 0.6 62.2	150
$CrCl_2 \cdot 3H_2O = CrCl_2 \cdot 2H_2O + H_2O(g)$ 1 17.8 0.6 62.4	150 149
$CrCl_2 \cdot 4H_2O = CrCl_2 \cdot 3H_2O + H_2O(g)$ 1 13.8 2.9 58.4	
$Cr_2(SO_4)_3 \cdot 8H_2O = Cr_2(SO_4)_3 + 8H_2O(g)$ 8 55.2 0.0 99.6	149
$Cr_2(SO_4)_3 \cdot 14H_2O = Cr_2(SO_4)_3 \cdot 8H_2O + 6H_2O(g)$ 6 13.2 3.6 57.7	149 150
$CsAl(SO_4)_2 \cdot 12H_2O = CsAl(SO_4)_2 + 12H_2O(g)$ 12 10.2 12.3 54.8	149 150 150
$Cs_2CO_3 \cdot 3.5H_2O = Cs_2CO_3 + 3.5H_2O(g)$ 3.5 18.6 0.4 64.5	149 150 150 149

$CsF \cdot H_2O = CsF + H_2O(g)$	1	21.8	0.1	65.9	148
CuBr2·4H2O = CuBr2 + 4H2O(g)	4	10.7	10.0	54.8	148
$CuCl_2 \cdot 2H_2O = CuCl_2 + 2H_2O(g)$	2	15.8	1.3	59.1	145
$CuF_2 \cdot 2H_2O = CuF_2 + 2H_2O(g)$	2	26.0	0.0	71.3	152
$CuHPO_4 \cdot H_2O = CuHPO_4 + H_2O(g)$	1	42.2		35.2	-24
$Cu(IO_3)_2 \cdot H_2O = Cu(IO_3)_2 + H_2O(g)$	1	14.3	2.3	60.2	154
$Cu(NO_3)_2 \cdot 6H_2O = Cu(NO_3)_2 + 6H_2O(g)$	6	12.7	4.5	58.0	152
$Cu_3(PO_4)_2 \cdot 3H_2O = Cu_3(PO_4)_2 + 3H_2O(g)$	3	52.0		46.2	-20
$CuSO_4 \cdot H_2O = CuSO_4 + H_2O(g)$	1	24.0	0.0	69.6	153
$CuSO_4 \cdot 3H_2O = CuSO_4 \cdot H_2O + 2H_2O(g)$	2	12.5	4.8 (5.2)	57.3	150
$CuSO_4 \cdot 5H_2O = CuSO_4 \cdot 3H_2O + 2H_2O(g)$	2	11.4	7.7 (7.6)	55.9	149
$CuSeO_3 \cdot 2H_2O = CuSeO_3 + 2H_2O(g)$	2	10.9	9.1	44.1	111
$DyCl_3 \cdot 6H_2O = DyCl_3 + 6H_2O(g)$	6	27.9	0.0	70.5	143
$DyPO_4 \cdot 2H_2O = DyPO_4 + 2H_2O(g)$	2	62.5	0.0	107.5	151
$ErCl_3 \cdot 6H_2O = ErCl_3 + 6H_2O(g)$	6	27.7	0.0	71.5	147
$ErPO_4 \cdot 2H_2O = ErPO_4 + 2H_2O(g)$	2	54.1	0.0	99.2	151
EuCl3·6H2O = EuCl3 + 6H2O(g)	6	22.5	0.1	65.8	145
$Eu(IO_3)_3 \cdot 2H_2O = Eu(IO_3)_3 + 2H_2O(g)$	2	73.2		23.2	-168
$EuPO_4 \cdot 2H_2O = EuPO_4 + 2H_2O(g)$	2	3.3	200.9	49.0	153
$FeCl_2 \cdot 2H_2O = FeCl_2 + 2H_2O(g)$	2	16.5	1.0	65.8	165
$FeCl_2 \cdot 4H_2O = FeCl_2 \cdot 2H_2O + 2H_2O(g)$	2	11.8	6.5	56.1	149
$FeCl_3 \cdot 6H_2O = FeCl_3 + 6H_2O(g)$	6	16.4	1.0	62.2	154
$FePO_4 \cdot 2H_2O = FePO_4 + 2H_2O(g)$	2	9.0	19.6	53.8	150
$FeSO_4 \cdot H_2O = FeSO_4 + H_2O(g)$	1	25.8	0.0	71.1	152
$FeSO_4 \cdot 4H_2O = FeSO_4 \cdot H_2O + 3H_2O(g)$	3	9.5	16.1	53.4	147
$FeSO_4 \cdot 7H_2O = FeSO_4 \cdot 4H_2O + 3H_2O(g)$	3	10.1	12.5	53.8	147
$GdCl_3 \cdot 6H_2O = GdCl_3 + 6H_2O(g)$	6	23.1	0.1	67.4	149
$GdPO_4 \cdot 2H_2O = GdPO_4 + 2H_2O(g)$	2	66.6	0.0	111.7	151
$H_3PO_4 \cdot 0.5H_2O = H_3PO_4 + 0.5H_2O(g)$	0.5	17.6	0.6	62.8	152
$H_2SO_4 \cdot H_2O = H_2SO_4 + H_2O(g)$	1	31.8	0.0	71.8	134
$H_2SO_4 \cdot 2H_2O = H_2SO_4 \cdot H_2O + H_2O(g)$	1	20.7	0.2	57.7	124
$H_2SO_4 \cdot 3H_2O = H_2SO_4 \cdot 2H_2O + H_2O(g)$	1	15.8	1.3	51.5	120
$H_2SO_4 \cdot 4H_2O = H_2SO_4 \cdot 3H_2O + H_2O(g)$	1	13.3	3.5	49.0	120
$H_2SO_4 \cdot 6.5H_2O = H_2SO_4 \cdot 4H_2O + 2.5H_2O(g)$	2.5	11.4	7.7	47.0	120
$HoCl_3 \cdot 6H_2O = HoCl_3 + 6H_2O(g)$	6	26.1	0.0	70.2	148
$HoPO_4 \cdot 2H_2O = HoPO_4 + 2H_2O(g)$	2	64.6	0.0	109.6	151
$KAI(SO_4)_2 \cdot 3H_2O = KAI(SO_4)_2 + 3H_2O(g)$	3	16.4	1.0	61.8	152
$KAI(SO_4)_2 \cdot 12H_2O = KAI(SO_4)_2 \cdot 3H_2O + 9H_2O(g)$	9	12.1	5.7	56.0	147
$K_2CO_3 \cdot 0.5H_2O = K_2CO_3 + 0.5H_2O(g)$	0.5	23.4	0.1	70.2	157
$K_2CO_3 \cdot 1.5H_2O = K_2CO_3 \cdot 0.5H_2O + H_2O(g)$	1	17.3	0.7	63.6	155
$K_2CuCl_4 \cdot 2H_2O = K_2CuCl_4 + 2H_2O(g)$	2	14.5	2.2	59.7	152
$KF \cdot 2H_2O = KF + 2H_2O(g)$	2	14.0	2.6	57.0	144
$K_4Fe(CN)_6 \cdot 3H_2O = K_4Fe(CN)_6 + 3H_2O(g)$	3	16.9	0.8	50.2	112
$KOH \cdot H_2O = KOH + H_2O(g)$	1	41.5	0.0	87.1	153

KON 3N O KON N O · N O/-)	4	12.0	4.2	56.7	447
$KOH \cdot 2H_2O = KOH \cdot H_2O + H_2O(g)$	1	12.9	4.2	56.7	147
$K_3PO_4 \cdot 7H_2O = K_3PO_4 + 7H_2O(g)$	7	5.8	72.2	49.9	148
$K_4P_2O_7 \cdot 3H_2O = K_4P_2O_7 + 3H_2O(g)$	3	16.9	0.8	60.7	147
$K_2SO_3 \cdot H_2O = K_2SO_3 + H_2O(g)$	1	1.8	364.4	45.6	147
$LaCl_3 \cdot 7H_2O = LaCl_3 + 7H_2O(g)$	7	14.9	1.9	57.3	142
$LaPO_4 \cdot 2H_2O = LaPO_4 + 2H_2O(g)$	2	72.2	0.0	113.8	140
$LiBr \cdot H_2O = LiBr + H_2O(g)$	1	23.8	0.1	69.5	153
$LiBr \cdot 2H_2O = LiBr \cdot H_2O + H_2O(g)$	1	1.4	427.6	56.7	185
$LiCl \cdot H_2O = LiCl + H_2O(g)$	1	19.6	0.3 (0.5)	62.9	145
$LiClO_4 \cdot H_2O = LiClO_4 + H_2O(g)$	1	16.5	1.0	64.0	160
$LiClO_4 \cdot 3H_2O = LiClO_4 \cdot H_2O + 2H_2O(g)$	2	17.4	0.7	60.9	146
$Lil \cdot H_2O = Lil + H_2O(g)$	1	32.9	0.0	78.3	153
$Lil \cdot 2H_2O = Lil \cdot H_2O + H_2O(g)$	1	20.8	0.2	58.9	128
$Lil\cdot 3H_2O = Lil\cdot 2H_2O + H_2O(g)$	1	22.3	0.1	58.9	123
$LiNO_2 \cdot H_2O = LiNO_2 + H_2O(g)$	1	23.3	0.1	65.9	143
$LiNO_3 \cdot 3H_2O = LiNO_3 + 3H_2O(g)$	3	11.2	8.3	55.6	149
$LiOH \cdot H_2O = LiOH + H_2O(g)$	1	16.4	1.0	64.3	161
$Li_2SO_4 \cdot H_2O = Li_2SO_4 + H_2O(g)$	1	15.7	1.3 (2.3)	57.2	139
$LuCl_3 \cdot 6H_2O = LuCl_3 + 6H_2O(g)$	6	20.5	0.2	65.5	151
$LuPO_4 \cdot 2H_2O = LuPO_4 + 2H_2O(g)$	2	37.4	0.0	82.4	151
$MgBr_2 \cdot 6H_2O = MgBr_2 + 6H_2O(g)$	6	30.1	0.0	72.5	142
$MgCO_3 \cdot 3H_2O = MgCO_3 + 3H_2O(g)$	3	8.6	23.3	51.9	145
$MgCO_3 \cdot 5H_2O = MgCO_3 \cdot 3H_2O + 2H_2O(g)$	2	9.3	17.4	53.0	146
$MgCl_2 \cdot H_2O = MgCl_2 + H_2O(g)$	1	41.4	0.0	83.5	141
$MgCl_2 \cdot 2H_2O = MgCl_2 \cdot H_2O + H_2O(g)$	1	27.7	0.0	71.3	146
$MgCl_2 \cdot 4H_2O = MgCl_2 \cdot 2H_2O + 2H_2O(g)$	2	24.1	0.0	67.8	147
MgCl2·6H2O = MgCl2·4H2O + 2H2O(g)	2	17.1	0.8 (0.9)	58.2	138
$Mg(CIO_4)_2 \cdot 6H_2O = Mg(CIO_4)_2 + 6H_2O(g)$	6	26.5	0.0	67.7	138
$Mg(NO_3)_2 \cdot 2H_2O = Mg(NO_3)_2 + 2H_2O(g)$	2	25.2	0.0	68.5	145
$Mg(NO_3)_2 \cdot 6H_2O = Mg(NO_3)_2 \cdot 2H_2O + 4H_2O(g)$	4	17.3	0.7	58.6	139
$MgSO_3 \cdot 3H_2O = MgSO_3 + 3H_2O(g)$	3	19.5	0.3	64.1	150
$MgSO_3 \cdot 6H_2O = MgSO_3 \cdot 3H_2O + 3H_2O(g)$	3	13.7	3.0	55.9	142
$MgSO_4 \cdot H_2O = MgSO_4 + H_2O(g)$	1	61.9	0.0	107.9	154
$MgSO_4 \cdot 2H_2O = MgSO_4 \cdot H_2O + H_2O(g)$	1	-2.5		41.6	148
$MgSO_4 \cdot 4H_2O = MgSO_4 \cdot 2H_2O + 2H_2O(g)$	2	16.3	1.1	58.8	143
$MgSO_4 \cdot 5H_2O = MgSO_4 \cdot 4H_2O + H_2O(g)$	1	14.5	2.2	57.8	145
$MgSO_4 \cdot 6H_2O = MgSO_4 \cdot 5H_2O + H_2O(g)$	1	6.8	49.0	49.7	144
$MgSO_4 \cdot 7H_2O = MgSO_4 \cdot 6H_2O + H_2O(g)$	1	10.2	12.3	59.6	166
$MgSeO_3 \cdot 6H_2O = MgSeO_3 + 6H_2O(g)$	6	13.1	3.8	58.4	152
$MgSeO_4 \cdot H_2O = MgSeO_4 + H_2O(g)$	1	63.3		88.4	84
$MgSeO_4 \cdot 4H_2O = MgSeO_4 \cdot H_2O + 3H_2O(g)$	3	12.5	4.8	56.4	147
$MgSeO_4 \cdot 6H_2O = MgSeO_4 \cdot 4H_2O + 2H_2O(g)$	2	8.9	20.7	52.7	147
$MgTeO_3 \cdot 5H_2O = MgTeO_3 + 5H_2O(g)$	5	17.2	0.7	61.0	147
$MgTeO_3 \cdot 6H_2O = MgTeO_3 \cdot 5H_2O + H_2O(g)$	1	8.9	20.7	52.7	147

4	1.9	342.9	46.7	150
2	35.2	0.0	76.5	139
1	25.4	0.0	63.5	128
1	19.0	0.3	63.6	150
2	11.9	6.1	55.7	147
4	6.5	54.6	50.2	147
4	14.6	2.0	56.9	142
1	25.9	0.0	69.5	146
3	7.4	38.3	52.0	150
2	6.5	54.4	51.0	149
1	53.8		78.2	82
1	53.5	0.0	85.6	107
3	11.2		17.2	20
1	9.4	16.7	48.5	131
1	44.6	0.0	84.5	134
10	11.0	9.0	55.5	149
2	10.0	13.4 (8.3)	53.1	145
2	12.2	5.4 (2.9)	57.3	151
0.5	11.2	8.3	55.2	148
1.5	9.9	13.9	54.1	148
1	13.0	4.0	59.4	156
6	8.0	30.3	51.6	146
3	12.5	4.9 (17.9)	54.6	141
3	11.3	7.8	55.9	149
1	4.0	151.5	47.8	147
4	11.9	6.2	54.5	143
2	10.8	9.6 (3.9)	57.2	156
5	9.6	15.4 (14.5)	53.2	146
5	9.3	17.6 (19.0)	53.7	149
1	12.3	5.3	52.3	134
2	12.2	5.4	57.3	151
1	24.2	0.0		148
4	6.9	46.0	51.4	149
1	15.0			169
12	10.9	9.1		148
10	10.2	12.0		147
7	8.9	21.1		145
7	8.6	23.4	53.7	151
3				129
10	9.0			145
				145
			52.6	135
1	10.6	10.6	51.9	139
	2 1 1 2 4 4 1 3 2 1 1 1 0 2 0.5 1.5 1 6 3 3 1 4 2 5 5 1 2 1 4 1 1 2 5 5 5 1 7 7 7 3 10 5	2 35.2 1 25.4 1 19.0 2 11.9 4 6.5 4 14.6 1 25.9 3 7.4 2 6.5 1 53.8 1 53.5 3 11.2 1 9.4 1 44.6 10 11.0 2 10.0 2 12.2 0.5 11.2 1.5 9.9 1 13.0 6 8.0 3 12.5 3 11.3 1 4.0 4 11.9 2 10.8 5 9.6 5 9.3 1 12.3 2 12.2 1 24.2 4 6.9 1 15.0 1 2 10.9 10 10.2 7 8.9 7 8.6 3 9.9 10 9.0 5 10.6	2 35.2 0.0 1 25.4 0.0 1 19.0 0.3 2 11.9 6.1 4 6.5 54.6 4 14.6 2.0 1 25.9 0.0 3 7.4 38.3 2 6.5 54.4 1 53.8 1 1 53.8 1 1 53.8 1 1 53.8 1 1 53.8 1 1 53.8 1 1 9.4 16.7 1 44.6 0.0 10 11.0 9.0 2 10.0 13.4 (8.3) 2 12.2 5.4 (2.9) 0.5 11.2 8.3 1.5 9.9 13.9 1 13.0 4.0 6 8.0 30.3 3 12.5 4.9 (17.9) 3 11.3 7.8 1 4.0 151.5 <	2 35.2 0.0 76.5 1 25.4 0.0 63.5 1 19.0 0.3 63.6 2 11.9 6.1 55.7 4 6.5 54.6 50.2 4 14.6 2.0 56.9 1 25.9 0.0 69.5 3 7.4 38.3 52.0 2 6.5 54.4 51.0 1 53.8 78.2 1 53.8 78.2 1 53.8 78.2 1 53.5 0.0 85.6 3 11.2 17.2 1 9.4 16.7 48.5 1 44.6 0.0 84.5 10 11.0 9.0 55.5 2 10.0 13.4(8.3) 53.1 2 12.2 5.4(2.9) 57.3 0.5 11.2 8.3 55.2 1.5 9.9 13.9 54.1 1 13.0 4.0 59.4

	1				
$Na_2SiO_3 \cdot 9H_2O = Na_2SiO_3 \cdot 8H_2O + H_2O(g)$	1	1.2	460.0	53.1	174
$Na_2WO_4 \cdot 2H_2O = Na_2WO_4 + 2H_2O(g)$	2	11.2	8.1	55.3	148
$NdCl_3 \cdot 6H_2O = NdCl_3 + 6H_2O(g)$	6	16.9	0.8	61.7	150
$NdPO_4 \cdot 2H_2O = NdPO_4 + 2H_2O(g)$	2	71.1	0.0	111.7	136
$Nd_2(SO_4)_3 \cdot 8H_2O = Nd_2(SO_4)_3 + 8H_2O(g)$	8	41.2	0.0	83.2	141
$NiCl_2 \cdot 2H_2O = NiCl_2 + 2H_2O(g)$	2	19.1	0.3	62.2	145
NiCl2·4H2O = NiCl2·2H2O + 2H2O(g)	2	12.0	5.9 (5.5)	59.8	160
$NiCl_2 \cdot 6H_2O = NiCl_2 \cdot 4H_2O + 2H_2O(g)$	2	10.1	12.9	51.3	138
$Ni(IO_3)_2 \cdot 2H_2O = Ni(IO_3)_2 + 2H_2O(g)$	2	-8.5		41.6	168
$Ni(NO_3)_2 \cdot 6H_2O = Ni(NO_3)_2 + 6H_2O(g)$	6	17.7	0.6	58.2	136
$NiSO_4 \cdot H_2O = NiSO_4 + H_2O(g)$	1	97.3	0.0	140.3	144
$NiSO_4 \cdot 4H_2O = NiSO_4 \cdot H_2O + 3H_2O(g)$	3	13.2	3.6	57.7	149
$NiSO_4 \cdot 7H_2O = NiSO_4 \cdot 6H_2O + H_2O(g)$	1	8.7	22.9	51.7	144
$PrCl_3 \cdot 6H_2O = PrCl_3 + 6H_2O(g)$	6	16.6	0.9	61.6	151
$PrCl_3 \cdot 7H_2O = PrCl_3 \cdot 6H_2O + H_2O(g)$	1	19.8	0.3	64.4	150
$PtCl_4 \cdot 5H_2O = PtCl_4 + 5H_2O(g)$	5	14.2	2.5	62.9	163
$PuCl_3 \cdot 6H_2O = PuCl_3 + 6H_2O(g)$	6	17.0	0.8	60.5	146
$PuO_2(OH)_2 \cdot H_2O = PuO_2(OH)_2 + H_2O(g)$	1	3.4	188.5	34.1	103
$RaBr_2 \cdot 2H_2O = RaBr_2 + 2H_2O(g)$	2	13.7	3.0	59.7	154
$Ra(BrO_3)_2 \cdot H_2O = Ra(BrO_3)_2 + H_2O(g)$	1	17.6	0.6	60.2	143
$RaCl_2 \cdot 2H_2O = RaCl_2 + 2H_2O(g)$	2	12.6	4.7	57.7	151
$Ral_2 \cdot 0.5H_2O = Ral_2 + 0.5H_2O(g)$	0.5	27.6	0.0	70.2	143
$Ra(IO_3)_2 \cdot H_2O = Ra(IO_3)_2 + H_2O(g)$	1	5.3	88.0	51.2	154
$RbAl(SO_4)_2 \cdot 12H_2O = RbAl(SO_4)_2 + 12H_2O(g)$	12	13.3	3.5	57.7	149
$Rb_2CO_3 \cdot H_2O = Rb_2CO_3 + H_2O(g)$	1	20.4	0.2	66.5	155
$Rb_2CO_3 \cdot 1.5H_2O = Rb_2CO_3 \cdot H_2O + 0.5H_2O(g)$	0.5	24.4	0.0	69.5	151
$Rb_2CO_3 \cdot 3.5H_2O = Rb_2CO_3 \cdot 1.5H_2O + 2H_2O(g)$	2	5.6	79.4	51.3	153
$RbF \cdot H_2O = RbF + H_2O(g)$	1	21.7	0.1	66.2	149
$RbOH \cdot H_2O = RbOH + H_2O(g)$	1	42.7	0.0	88.3	153
$RbOH \cdot 2H_2O = RbOH \cdot H_2O + H_2O(g)$	1	18.9	0.4	62.8	147
$ScCl_3 \cdot 6H_2O = ScCl_3 + 6H_2O(g)$	6	26.7	0.0	71.2	149
$SmCl_3 \cdot 6H_2O = SmCl_3 + 6H_2O(g)$	6	20.8	0.2	65.6	150
$SmPO_4 \cdot 2H_2O = SmPO_4 + 2H_2O(g)$	2	72.7	0.0	115.9	145
$SrBr_2 \cdot H_2O = SrBr_2 + H_2O(g)$	1	27.4	0.0	72.8	152
$SrBr_2 \cdot 6H_2O = SrBr_2 \cdot H_2O + 5H_2O(g)$	5	15.0	1.7 (2.2)	57.9	144
$Sr(BrO_3)_2 \cdot H_2O = Sr(BrO_3)_2 + H_2O(g)$	1	95.0	0.0	138.9	147
$SrCl_2 \cdot H_2O = SrCl_2 + H_2O(g)$	1	6.4	57.0	61.1	184
$SrCl_2 \cdot 2H_2O = SrCl_2 \cdot H_2O + H_2O(g)$	1	32.3	0.0	59.4	91
$SrCl_2 \cdot 6H_2O = SrCl_2 \cdot 2H_2O + 4H_2O(g)$	4	11.2	8.2 (8.3)	54.6	146
$Sr(IO_3)_2 \cdot H_2O = Sr(IO_3)_2 + H_2O(g)$	1	12.9	4.2	52.0	131
$Sr(IO_3)_2 \cdot 6H_2O = Sr(IO_3)_2 \cdot H_2O + 5H_2O(g)$	5	7.0	43.9	53.6	156
$Sr(NO_3)_2 \cdot 4H_2O = Sr(NO_3)_2 + 4H_2O(g)$	4	8.0	29.9	51.3	145
$SrTeO_3 \cdot H_2O = SrTeO_3 + H_2O(g)$	1	20.2	0.2	64.0	147
$TbCl_3 \cdot 6H_2O = TbCl_3 + 6H_2O(g)$	6	26.2	0.0	70.2	148
10C13.01150 = 10C13 + 0L50(R)	ס	20.2	0.0	/0.2	148

Thro. 311 0. Thro 311 0/-)	2	50.2	0.0	102.4	454
TbPO ₄ ·2H ₂ O = TbPO ₄ + 2H ₂ O(g)	2	58.3	0.0	103.4	151
$Tc_2O_7 \cdot H_2O = Tc_2O_7 + H_2O(g)$	1	15.6	1.4	45.8	102
$ThF_4 \cdot 2.5H_2O = ThF_4 + 2.5H_2O(g)$	2.5	14.6	2.1	60.6	154
Th(NO ₃) ₄ ·4H ₂ O = Th(NO ₃) ₄ + 4H ₂ O(g)	4	32.5	0.0	76.4	147
$Th(NO_3)_4 \cdot 5H_2O = Th(NO_3)_4 \cdot 4H_2O + H_2O(g)$	1	3.2	203.0	47.3	148
$TmPO_4 \cdot 2H_2O = TmPO_4 + 2H_2O(g)$	2	58.3	0.0	103.4	151
$UF_4 \cdot 2.5H_2O = UF_4 + 2.5H_2O(g)$	2.5	18.1	0.5	61.1	144
$UO_2Br_2 \cdot H_2O = UO_2Br_2 + H_2O(g)$	1	33.7	0.0	76.7	144
$UO_2Br_2 \cdot 3H_2O = UO_2Br_2 \cdot H_2O + 2H_2O(g)$	2	16.3	1.0	59.2	144
$UO_2CI_2 \cdot H_2O = UO_2CI_2 + H_2O(g)$	1	30.7	0.0	74.5	147
$UO_2CI_2 \cdot 3H_2O = UO_2CI_2 \cdot H_2O + 2H_2O(g)$	2	16.2	1.1	60.7	149
$UOF_2 \cdot H_2O = UOF_2 + H_2O(g)$	1	11.8	6.5	55.6	147
$UO_2F_2 \cdot 3H_2O = UO_2F_2 + 3H_2O(g)$	3	8.8	21.2	51.8	144
$UOFOH \cdot 0.5H_2O = UOFOH + 0.5H_2O(g)$	0.5	13.8	2.9	57.0	145
$UO_3 \cdot 0.9H_2O = UO_3 + 0.9H_2O(g)$	0.9	25.7	0.0	72.1	156
$UO_3 \cdot H_2O = UO_3 \cdot 0.9H_2O + 0.1H_2O(g)$	0.1	39.8	0.0	71.4	106
$UO_3 \cdot 2H_2O = UO_3 \cdot H_2O + H_2O(g)$	1	7.1	42.3	47.3	135
$UO_2(NO_3)_2 \cdot H_2O = UO_2(NO_3)_2 + H_2O(g)$	1	28.3	0.0	71.2	144
$UO_2(NO_3)_2 \cdot 2H_2O = UO_2(NO_3)_2 \cdot H_2O + H_2O(g)$	1	29.0	0.0	72.9	147
$UO_2(NO_3)_2 \cdot 3H_2O = UO_2(NO_3)_2 \cdot 2H_2O + H_2O(g)$	1	15.6	1.4	59.9	148
$UO_2(NO_3)_2 \cdot 6H_2O = UO_2(NO_3)_2 \cdot 3H_2O + 3H_2O(g)$	3	11.3	8.0	53.9	143
$UO_2(OH)_2 \cdot H_2O = UO_2(OH)_2 + H_2O(g)$	1	11.2	8.3	51.4	135
$(UO_2)_3(PO_4)_2 \cdot 4H_2O = (UO_2)_3(PO_4)_2 + 4H_2O(g)$	4	27.2	0.0	70.1	144
$(UO_2)_3(PO_4)_2 \cdot 6H_2O = (UO_2)_3(PO_4)_2 \cdot 4H_2O + 2H_2O(g)$	2	8.4	24.8	52.8	149
$UO_2SO_4 \cdot 2.5H_2O = UO_2SO_4 \cdot H_2O + 1.5H_2O(g)$	1.5	35.1	0.0	77.0	141
$UO_2SO_4 \cdot 3H_2O = UO_2SO_4 \cdot 2.5H_2O + 0.5H_2O(g)$	0.5	7.6	35.1	47.2	133
$UO_2SO_4 \cdot 3.5H_2O = UO_2SO_4 \cdot 3H_2O + 0.5H_2O(g)$	0.5	9.5	16.3	58.4	164
$U(SO_4)_2 \cdot 4H_2O = U(SO_4)_2 + 4H_2O(g)$	4	8.6	23.2	51.6	144
$U(SO_4)_2 \cdot 8H_2O = U(SO_4)_2 \cdot 4H_2O + 4H_2O(g)$	4	10.1	12.9	53.0	144
$V_2O_5 \cdot H_2O = V_2O_5 + H_2O(g)$	1	8.2	26.9	52.2	147
$VOSO_4 \cdot H_2O = VOSO_4 + H_2O(g)$	1	90.3	0.0	134.7	149
$VOSO_4 \cdot 3H_2O = VOSO_4 \cdot H_2O + 2H_2O(g)$	2	19.8	0.2	64.3	149
$VOSO_4 \cdot 5H_2O(A) = VOSO_4 \cdot 3H_2O + 2H_2O(g)$	2	12.5	4.9	56.9	149
$VOSO_4 \cdot 6H_2O = VOSO_4 \cdot 5H_2O(A) + H_2O(g)$	1	7.6	35.4	52.0	149
$YCl_3 \cdot 6H_2O = YCl_3 + 6H_2O(g)$	6	29.3	0.0	73.6	149
$YPO_4 \cdot 2H_2O = YPO_4 + 2H_2O(g)$	2	6.2	61.3	50.7	149
$YbCl_3 \cdot 6H_2O = YbCl_3 + 6H_2O(g)$	6	-31.6		12.3	147
$YbPO_4 \cdot 2H_2O = YbPO_4 + 2H_2O(g)$	2	68.7	0.0	113.8	151
$ZnBr_2 \cdot 2H_2O = ZnBr_2 + 2H_2O(g)$	2	15.0	1.8	62.3	159
$ZnF_2 \cdot 4H_2O = ZnF_2 + 4H_2O(g)$	4	10.6	10.2	55.7	151
$Zn(NO_3)_2 \cdot 2H_2O = Zn(NO_3)_2 + 2H_2O(g)$	2	24.7	0.0	71.5	157
$Zn(NO_3)_2 \cdot 4H_2O = Zn(NO_3)_2 \cdot 2H_2O + 2H_2O(g)$	2	19.6	0.3 (0.3)	52.6	111
$Zn(NO_3)_2 \cdot 6H_2O = Zn(NO_3)_2 \cdot 4H_2O + 2H_2O(g)$	2	12.2	5.5 (4.2)	62.1	167
$ZnSO_4 \cdot H_2O = ZnSO_4 + H_2O(g)$	1	34.7	0.0	82.6	161

$ZnSO_4 \cdot 2H_2O = ZnSO_4 \cdot H_2O + H_2O(g)$	1	9.4	16.7	49.6	135
$ZnSO_4 \cdot 6H_2O = ZnSO_4 \cdot 2H_2O + 4H_2O(g)$	4	10.0	13.5	53.5	146
$ZnSO_4 \cdot 7H_2O = ZnSO_4 \cdot 6H_2O + H_2O(g)$	1	10.6	10.6 (15.0)	59.4	164

^a The pressures appended in parentheses are from the compilation by Halling.⁴

- 1. Outotec Research Oy, HSC Chemistry 7. HSC Chemistry 7 2009.
- 2. Lide, D. R., ed., *Handbook of Chemistry and Physics*. 87th ed.; CRC Press: Boca Raton, 2006-2007.
- 3. Halling, P. J., Salt hydrates for water activity control with biocatalysts in organic media. *Biotechnol. Tech.* **1992,** *6*, 271-6.

Table S2: Sorted by Pressure.

Salt pair hydrate aqueous vapour pressure at 25°C calculated from the standard Gibbs energy of the reaction (using eq. (4) with "HSC Chemistry" data¹). The equilibrium vapour pressure of water at 25°C is 23.8 Torr.² The final two columns list the standard enthalpy and standard entropy per mole for production of gaseous water from the salt pair, with the enthalpy term providing the temperature coefficient (eq. 2) for the process. Unreliable rows from Table S1 have been deleted. The rare-earth phosphates (highlighted in yellow) generally have large values in the enthalpy column (that is, appear early in this Table), while other phosphates are more widely dispersed.

	Δn(H₂O)	$\Delta_r G^{\circ}/\Delta n(H_2O)$	p ^a	$\Delta_r H^\circ / \Delta n (H_2 O)$	$\Delta_r S^{\circ}/\Delta n(H_2O)$
		/ kJ mol ⁻¹	/Torr	/ kJ mol ⁻¹	/ J K ⁻¹ mol ⁻¹
$NiSO_4 \cdot H_2O = NiSO_4 + H_2O(g)$	1	97.3	0.0	140.3	144
$Sr(BrO_3)_2 \cdot H_2O = Sr(BrO_3)_2 + H_2O(g)$	1	95.0	0.0	138.9	147
$VOSO_4 \cdot H_2O = VOSO_4 + H_2O(g)$	1	90.3	0.0	134.7	149
$SmPO_4 \cdot 2H_2O = SmPO_4 + 2H_2O(g)$	2	72.7	0.0	115.9	145
$LaPO_4 \cdot 2H_2O = LaPO_4 + 2H_2O(g)$	2	72.2	0.0	113.8	140
$NdPO_4 \cdot 2H_2O = NdPO_4 + 2H_2O(g)$	2	71.1	0.0	111.7	136
$YbPO_4 \cdot 2H_2O = YbPO_4 + 2H_2O(g)$	2	68.7	0.0	113.8	151
$GdPO_4 \cdot 2H_2O = GdPO_4 + 2H_2O(g)$	2	66.6	0.0	111.7	151
$HoPO_4$: $2H_2O = HoPO_4 + 2H_2O(g)$	2	64.6	0.0	109.6	151
$DyPO_4 \cdot 2H_2O = DyPO_4 + 2H_2O(g)$	2	62.5	0.0	107.5	151
$MgSO_4 \cdot H_2O = MgSO_4 + H_2O(g)$	1	61.9	0.0	107.9	154
$TbPO_4 \cdot 2H_2O = TbPO_4 + 2H_2O(g)$	2	58.3	0.0	103.4	151
$TmPO_4 \cdot 2H_2O = TmPO_4 + 2H_2O(g)$	2	58.3	0.0	103.4	151
$AI_2(SO_4)_3 \cdot 6H_2O = AI_2(SO_4)_3 + 6H_2O(g)$	6	57.4	0.0	102.3	150
$Cr_2(SO_4)_3 \cdot 8H_2O = Cr_2(SO_4)_3 + 8H_2O(g)$	8	55.2	0.0	99.6	149
$ErPO_4 \cdot 2H_2O = ErPO_4 + 2H_2O(g)$	2	54.1	0.0	99.2	151
$MoO_3 \cdot H_2O = MoO_3 + H_2O(g)$	1	53.5	0.0	85.6	107
$Ca(IO_3)_2 \cdot H_2O = Ca(IO_3)_2 + H_2O(g)$	1	46.1	0.0	89.9	147
$Na_{0.96}AI_{0.96}Si_{2.04}O_6 \cdot H_2O = Na_{0.96}AI_{0.96}Si_{2.04}O_6 + H_2O(g)$	1	44.6	0.0	84.5	134
$AICI_3 \cdot 6H_2O = AICI_3 + 6H_2O(g)$	6	43.4	0.0	89.4	154
$RbOH \cdot H_2O = RbOH + H_2O(g)$	1	42.7	0.0	88.3	153
$KOH \cdot H_2O = KOH + H_2O(g)$	1	41.5	0.0	87.1	153
$MgCl_2 \cdot H_2O = MgCl_2 + H_2O(g)$	1	41.4	0.0	83.5	141
$Nd_2(SO_4)_3 \cdot 8H_2O = Nd_2(SO_4)_3 + 8H_2O(g)$	8	41.2	0.0	83.2	141
$UO_3 \cdot H_2O = UO_3 \cdot 0.9 H_2O + 0.1 H_2O(g)$	0.1	39.8	0.0	71.4	106
$BaAl_2O_4 \cdot H_2O = BaAl_2O_4 + H_2O(g)$	1	39.2	0.0	83.7	149

$LuPO_4 \cdot 2H_2O = LuPO_4 + 2H_2O(g)$	2	37.4	0.0	82.4	151
$MnBr_2 \cdot 6H_2O = MnBr_2 \cdot 4H_2O + 2H_2O(g)$	2	35.2	0.0	76.5	139
$UO_2SO_4 \cdot 2.5H_2O = UO_2SO_4 \cdot H_2O + 1.5H_2O(g)$	1.5	35.1	0.0	77.0	141
$ZnSO_4 \cdot H_2O = ZnSO_4 + H_2O(g)$	1	34.7	0.0	82.6	161
$UO_2Br_2 \cdot H_2O = UO_2Br_2 + H_2O(g)$	1	33.7	0.0	76.7	144
$AIF_3 \cdot 3H_2O = AIF_3 \cdot 0.5H_2O + 2.5H_2O(g)$	2.5	33.1	0.0	78.4	152
$Bal_2 \cdot H_2O = Bal_2 + H_2O(g)$	1	33.0	0.0	77.4	149
$Lil \cdot H_2O = Lil + H_2O(g)$	1	32.9	0.0	78.3	153
$Th(NO_3)_4 \cdot 4H_2O = Th(NO_3)_4 + 4H_2O(g)$	4	32.5	0.0	76.4	147
$SrCl_2 \cdot 2H_2O = SrCl_2 \cdot H_2O + H_2O(g)$	1	32.3	0.0	59.4	91
$CaCl_2 \cdot H_2O = CaCl_2 + H_2O(g)$	1	31.9	0.0	73.8	140
$H_2SO_4 \cdot H_2O = H_2SO_4 + H_2O(g)$	1	31.8	0.0	71.8	134
$Al_2O_3 \cdot H_2O = Al_2O_3 + H_2O(g)$	1	31.2	0.0	81.6	169
$UO_2CI_2 \cdot H_2O = UO_2CI_2 + H_2O(g)$	1	30.7	0.0	74.5	147
$CaSiF_6 \cdot 2H_2O = CaSiF_6 + 2H_2O(g)$	2	30.5	0.0	75.1	149
$MgBr_2 \cdot 6H_2O = MgBr_2 + 6H_2O(g)$	6	30.1	0.0	72.5	142
$YCl_3 \cdot 6H_2O = YCl_3 + 6H_2O(g)$	6	29.3	0.0	73.6	149
$UO_2(NO_3)_2 \cdot 2H_2O = UO_2(NO_3)_2 \cdot H_2O + H_2O(g)$	1	29.0	0.0	72.9	147
$UO_2(NO_3)_2 \cdot H_2O = UO_2(NO_3)_2 + H_2O(g)$	1	28.3	0.0	71.2	144
$DyCl_3 \cdot 6H_2O = DyCl_3 + 6H_2O(g)$	6	27.9	0.0	70.5	143
$ErCl_3 \cdot 6H_2O = ErCl_3 + 6H_2O(g)$	6	27.7	0.0	71.5	147
$MgCl_2 \cdot 2H_2O = MgCl_2 \cdot H_2O + H_2O(g)$	1	27.7	0.0	71.3	146
$Ral_2 \cdot 0.5H_2O = Ral_2 + 0.5H_2O(g)$	0.5	27.6	0.0	70.2	143
$SrBr_2 \cdot H_2O = SrBr_2 + H_2O(g)$	1	27.4	0.0	72.8	152
$(UO_2)_3(PO_4)_2 \cdot 4H_2O = (UO_2)_3(PO_4)_2 + 4H_2O(g)$	4	27.2	0.0	70.1	144
$CaTeO_3 \cdot H_2O = CaTeO_3 + H_2O(g)$	1	26.9	0.0	70.7	147
$ScCl_3 \cdot 6H_2O = ScCl_3 + 6H_2O(g)$	6	26.7	0.0	71.2	149
$Mg(CIO_4)_2 \cdot 6H_2O = Mg(CIO_4)_2 + 6H_2O(g)$	6	26.5	0.0	67.7	138
$BeSO_4 \cdot 2H_2O = BeSO_4 \cdot H_2O + H_2O(g)$	1	26.4	0.0	70.1	147
$TbCl_3 \cdot 6H_2 O = TbCl_3 + 6H_2 O(g)$	6	26.2	0.0	70.2	148
$HoCl_3 \cdot 6H_2O = HoCl_3 + 6H_2O(g)$	6	26.1	0.0	70.2	148
$CuF_2 \cdot 2H_2O = CuF_2 + 2H_2O(g)$	2	26.0	0.0	71.3	152
$MnSO_4 \cdot H_2O = MnSO_4 + H_2O(g)$	1	25.9	0.0	69.5	146
$FeSO_4 \cdot H_2O = FeSO_4 + H_2O(g)$	1	25.8	0.0	71.1	152
$UO_3 \cdot 0.9H_2O = UO_3 + 0.9H_2O(g)$	0.9	25.7	0.0	72.1	156
$MnCl_2 \cdot H_2O = MnCl_2 + H_2O(g)$	1	25.4	0.0	63.5	128
$Mg(NO_3)_2 \cdot 2H_2O = Mg(NO_3)_2 + 2H_2O(g)$	2	25.2	0.0	68.5	145
$BeSO_4 \cdot H_2O = BeSO_4 + H_2O(g)$	1	24.9	0.0	68.4	146
$Zn(NO_3)_2 \cdot 2H_2O = Zn(NO_3)_2 + 2H_2O(g)$	2	24.7	0.0	71.5	157
$BaCl_2 \cdot H_2O = BaCl_2 + H_2O(g)$	1	24.5	0.0	67.8	145
$Rb_2CO_3 \cdot 1.5H_2O = Rb_2CO_3 \cdot H_2O + 0.5H_2O(g)$	0.5	24.4	0.0	69.5	151
$NalO_3 \cdot H_2O = NalO_3 + H_2O(g)$	1	24.2	0.0	68.4	148
$MgCl_2 \cdot 4H_2O = MgCl_2 \cdot 2H_2O + 2H_2O(g)$	2	24.1	0.0	67.8	147
$CuSO_4 \cdot H_2O = CuSO_4 + H_2O(g)$	1	24.0	0.0	69.6	153

122 11 0 112 11 0/)		22.0	0.4	60.5	452
$LiBr \cdot H_2O = LiBr + H_2O(g)$	1	23.8	0.1	69.5	153
$K_2CO_3 \cdot 0.5H_2O = K_2CO_3 + 0.5H_2O(g)$	0.5	23.4	0.1	70.2	157
$LiNO_2 \cdot H_2O = LiNO_2 + H_2O(g)$	1	23.3	0.1	65.9	143
$GdCl_3 \cdot 6H_2O = GdCl_3 + 6H_2O(g)$	6	23.1	0.1	67.4	149
$Ca(CIO_4)_2 \cdot 4H_2O = Ca(CIO_4)_2 + 4H_2O(g)$	4	22.8	0.1	64.1	139
$CoCl_2 \cdot H_2O = CoCl_2 + H_2O(g)$	1	22.6	0.1	61.1	129
$EuCl_3 \cdot 6H_2O = EuCl_3 + 6H_2O(g)$	6	22.5	0.1	65.8	145
$Lil \cdot 3H_2O = Lil \cdot 2H_2O + H_2O(g)$	1	22.3	0.1	58.9	123
$CsF \cdot H_2O = CsF + H_2O(g)$	1	21.8	0.1	65.9	148
$RbF \cdot H_2O = RbF + H_2O(g)$	1	21.7	0.1	66.2	149
$Lil \cdot 2H_2O = Lil \cdot H_2O + H_2O(g)$	1	20.8	0.2	58.9	128
$SmCl_3 \cdot 6H_2O = SmCl_3 + 6H_2O(g)$	6	20.8	0.2	65.6	150
$H_2SO_4 \cdot 2H_2O = H_2SO_4 \cdot H_2O + H_2O(g)$	1	20.7	0.2	57.7	124
$LuCl_3 \cdot 6H_2O = LuCl_3 + 6H_2O(g)$	6	20.5	0.2	65.5	151
$Rb_2CO_3 \cdot H_2O = Rb_2CO_3 + H_2O(g)$	1	20.4	0.2	66.5	155
$SrTeO_3 \cdot H_2O = SrTeO_3 + H_2O(g)$	1	20.2	0.2	64.0	147
$VOSO_4 \cdot 3H_2O = VOSO_4 \cdot H_2O + 2H_2O(g)$	2	19.8	0.2	64.3	149
$PrCl_3 \cdot 7H_2O = PrCl_3 \cdot 6H_2O + H_2O(g)$	1	19.8	0.3	64.4	150
$LiCl \cdot H_2O = LiCl + H_2O(g)$	1	19.6	0.3	62.9	145
$Zn(NO_3)_2 \cdot 4H_2O = Zn(NO_3)_2 \cdot 2H_2O + 2H_2O(g)$	2	19.6	0.3	52.6	111
$CaBr_2 \cdot 6H_2O = CaBr_2 + 6H_2O(g)$	6	19.5	0.3	61.9	142
$MgSO_3 \cdot 3H_2O = MgSO_3 + 3H_2O(g)$	3	19.5	0.3	64.1	150
$NiCl_2 \cdot 2H_2O = NiCl_2 + 2H_2O(g)$	2	19.1	0.3	62.2	145
$MnCl_2 \cdot 2H_2O = MnCl_2 \cdot H_2O + H_2O(g)$	1	19.0	0.3	63.6	150
$RbOH \cdot 2H_2O = RbOH \cdot H_2O + H_2O(g)$	1	18.9	0.4	62.8	147
$CaSeO_4 \cdot 2H_2O = CaSeO_4 + 2H_2O(g)$	2	18.7	0.4	56.8	128
$Cs_2CO_3 \cdot 3.5H_2O = Cs_2CO_3 + 3.5H_2O(g)$	3.5	18.6	0.4	64.5	154
$CaSO_3 \cdot 0.5H_2O = CaSO_3 + 0.5H_2O(g)$	0.5	18.4	0.5	62.8	149
$UF_4 \cdot 2.5H_2O = UF_4 + 2.5H_2O(g)$	2.5	18.1	0.5	61.1	144
$Ca(H_2PO_4)_2 \cdot H_2O = Ca(H_2PO_4)_2 + H_2O(g)$	1	17.8	0.6	53.2	119
CrCl2·3H2O = CrCl2·2H2O + H2O(g)	1	17.8	0.6	62.4	150
$Ni(NO_3)_2 \cdot 6H_2O = Ni(NO_3)_2 + 6H_2O(g)$	6	17.7	0.6	58.2	136
$CrCl_2 \cdot 2H_2O = CrCl_2 + 2H_2O(g)$	2	17.7	0.6	62.2	149
$H_3PO_4 \cdot 0.5H_2O = H_3PO_4 + 0.5H_2O(g)$	0.5	17.6	0.6	62.8	152
$Ra(BrO_3)_2 \cdot H_2O = Ra(BrO_3)_2 + H_2O(g)$	1	17.6	0.6	60.2	143
$CdSO_4 \cdot H_2O = CdSO_4 + H_2O(g)$	1	17.6	0.6	64.6	158
$LiClO_4 \cdot 3H_2O = LiClO_4 \cdot H_2O + 2H_2O(g)$	2	17.4	0.7	60.9	146
$Ba(OH)_2 \cdot H_2O = Ba(OH)_2 + H_2O(g)$	1	17.4	0.7	60.6	145
$K_2CO_3 \cdot 1.5H_2O = K_2CO_3 \cdot 0.5H_2O + H_2O(g)$	1	17.3	0.7	63.6	155
$Mg(NO_3)_2 \cdot GH_2O = Mg(NO_3)_2 \cdot 2H_2O + 4H_2O(g)$	4	17.3	0.7	58.6	139
$MgTeO_3 \cdot 5H_2O = MgTeO_3 + 5H_2O(g)$	5	17.2	0.7	61.0	147
$MgCl_2 \cdot 6H_2O = MgCl_2 \cdot 4H_2O + 2H_2O(g)$	2	17.1	0.7	58.2	138
$PuCl_3 \cdot 6H_2O = PuCl_3 + 6H_2O(g)$	6	17.1	0.8	60.5	146
	2	16.9	0.8	61.6	
$CaHPO_4 \cdot 2H_2O = CaHPO_4 + 2H_2O(g)$		10.9	0.8	01.0	150

	1	I			
$NdCl_3 \cdot 6H_2O = NdCl_3 + 6H_2O(g)$	6	16.9	0.8	61.7	150
$K_4 Fe(CN)_6 \cdot 3H_2O = K_4 Fe(CN)_6 + 3H_2O(g)$	3	16.9	0.8	50.2	112
$K_4P_2O_7 \cdot 3H_2O = K_4P_2O_7 + 3H_2O(g)$	3	16.9	0.8	60.7	147
$PrCl_3 \cdot 6H_2O = PrCl_3 + 6H_2O(g)$	6	16.6	0.9	61.6	151
$FeCl_2 \cdot 2H_2O = FeCl_2 + 2H_2O(g)$	2	16.5	1.0	65.8	165
$LiClO_4 \cdot H_2O = LiClO_4 + H_2O(g)$	1	16.5	1.0	64.0	160
$KAI(SO_4)_2 \cdot 3H_2O = KAI(SO_4)_2 + 3H_2O(g)$	3	16.4	1.0	61.8	152
$LiOH \cdot H_2O = LiOH + H_2O(g)$	1	16.4	1.0	64.3	161
$FeCl_3 \cdot 6H_2O = FeCl_3 + 6H_2O(g)$	6	16.4	1.0	62.2	154
$UO_2Br_2 \cdot 3H_2O = UO_2Br_2 \cdot H_2O + 2H_2O(g)$	2	16.3	1.0	59.2	144
CeCl3·7H2O = CeCl3 + 7H2O(g)	7	16.3	1.1	61.0	150
$MgSO_4 \cdot 4H_2O = MgSO_4 \cdot 2H_2O + 2H_2O(g)$	2	16.3	1.1	58.8	143
$UO_2Cl_2 \cdot 3H_2O = UO_2Cl_2 \cdot H_2O + 2H_2O(g)$	2	16.2	1.1	60.7	149
$BeSO_4 \cdot 4H_2O = BeSO_4 \cdot 3H_2O + H_2O(g)$	1	16.1	1.1	61.5	152
CuCl2·2H2O = CuCl2 + 2H2O(g)	2	15.8	1.3	59.1	145
$AgF \cdot 2H_2O = AgF \cdot H_2O + H_2O(g)$	1	15.8	1.3	56.2	136
$H_2SO_4 \cdot 3H_2O = H_2SO_4 \cdot 2H_2O + H_2O(g)$	1	15.8	1.3	51.5	120
$Li_2SO_4 \cdot H_2O = Li_2SO_4 + H_2O(g)$	1	15.7	1.3	57.2	139
$UO_2(NO_3)_2 \cdot 3H_2O = UO_2(NO_3)_2 \cdot 2H_2O + H_2O(g)$	1	15.6	1.4	59.9	148
$Tc_2O_7 \cdot H_2O = Tc_2O_7 + H_2O(g)$	1	15.6	1.4	45.8	102
$Ca(NO_3)_2 \cdot 2H_2O = Ca(NO_3)_2 + 2H_2O(g)$	2	15.2	1.6	60.2	151
$CaCl_2 \cdot 4H_2O = CaCl_2 \cdot 2H_2O + 2H_2O(g)$	2	15.1	1.7	60.8	153
$SrBr_2 \cdot 6H_2O = SrBr_2 \cdot H_2O + 5H_2O(g)$	5	15.0	1.7	57.9	144
$NaOH \cdot H_2O = NaOH + H_2O(g)$	1	15.0	1.8	65.3	169
$ZnBr_2 \cdot 2H_2O = ZnBr_2 + 2H_2O(g)$	2	15.0	1.8	62.3	159
$Cd(NO_3)_2 \cdot 2H_2O = Cd(NO_3)_2 + 2H_2O(g)$	2	14.9	1.8	57.5	143
$LaCl_3 \cdot 7H_2O = LaCl_3 + 7H_2O(g)$	7	14.9	1.9	57.3	142
$Mnl_2 \cdot 4H_2O = Mnl_2 + 4H_2O(g)$	4	14.6	2.0	56.9	142
$ThF_4 \cdot 2.5H_2O = ThF_4 + 2.5H_2O(g)$	2.5	14.6	2.1	60.6	154
$Cd(NO_3)_2 \cdot 4H_2O = Cd(NO_3)_2 \cdot 2H_2O + 2H_2O(g)$	2	14.5	2.1	57.0	142
$K_2CuCl_4 \cdot 2H_2O = K_2CuCl_4 + 2H_2O(g)$	2	14.5	2.2	59.7	152
$CoBr_2 \cdot 6H_2O = CoBr_2 + 6H_2O(g)$	6	14.5	2.2	58.9	149
$MgSO_4 \cdot 5H_2O = MgSO_4 \cdot 4H_2O + H_2O(g)$	1	14.5	2.2	57.8	145
$Co(NO_3)_2 \cdot 6H_2O = Co(NO_3)_2 + 6H_2O(g)$	6	14.5	2.2	56.0	139
$CoCl_2 \cdot 2H_2O = CoCl_2 \cdot H_2O + H_2O(g)$	1	14.4	2.2	60.3	154
$Cu(IO_3)_2 \cdot H_2O = Cu(IO_3)_2 + H_2O(g)$	1	14.3	2.3	60.2	154
$Ba(OH)_2 \cdot 8H_2O = Ba(OH)_2 \cdot 3H_2O + 5H_2O(g)$	5	14.2	2.4	58.5	149
$PtCl_4 \cdot 5H_2O = PtCl_4 + 5H_2O(g)$	5	14.2	2.5	62.9	163
$KF \cdot 2H_2O = KF + 2H_2O(g)$	2	14.0	2.6	57.0	144
$Ca(NO_3)_2 \cdot 3H_2O = Ca(NO_3)_2 \cdot 2H_2O + H_2O(g)$	1	14.0	2.7	55.4	139
UOFOH·0.5H ₂ O = UOFOH + 0.5H ₂ O(g)	0.5	13.8	2.9	57.0	145
$CrCl_2 \cdot 4H_2O = CrCl_2 \cdot 3H_2O + H_2O(g)$	1	13.8	2.9	58.4	150
$MgSO_3 \cdot 6H_2O = MgSO_3 \cdot 3H_2O + 3H_2O(g)$	3	13.7	3.0	55.9	142
$RaBr_2 \cdot 2H_2O = RaBr_2 + 2H_2O(g)$	2	13.7	3.0	59.7	154
2 2- · 2 2-101					

CosO 6H 0 - CosO + 6H O(a)	6	13.6	3.1	57.5	147
$\cos O_4 \cdot 6H_2O = \cos O_4 + 6H_2O(g)$					
$CdCl_2 \cdot H_2O = CdCl_2 + H_2O(g)$	1	13.4	3.3	53.3	134
$BaBr_2 \cdot 2H_2O = BaBr_2 \cdot H_2O + H_2O(g)$	1	13.4	3.3	57.3	147
$H_2SO_4 \cdot 4H_2O = H_2SO_4 \cdot 3H_2O + H_2O(g)$	1	13.3	3.5	49.0	120
RbAl(SO ₄) ₂ ·12H ₂ O = RbAl(SO ₄) ₂ + 12H ₂ O(g)	12	13.3	3.5	57.7	149
$Cr_2(SO_4)_3 \cdot 14H_2O = Cr_2(SO_4)_3 \cdot 8H_2O + 6H_2O(g)$	6	13.2	3.6	57.7	149
$NiSO_4 \cdot 4H_2O = NiSO_4 \cdot H_2O + 3H_2O(g)$	3	13.2	3.6	57.7	149
$MgSeO_3 \cdot 6H_2O = MgSeO_3 + 6H_2O(g)$	6	13.1	3.8	58.4	152
$Na_2CO_3 \cdot H_2O = Na_2CO_3 + H_2O(g)$	1	13.0	4.0	59.4	156
$Ca(NO_3)_2 \cdot 4H_2O = Ca(NO_3)_2 \cdot 3H_2O + H_2O(g)$	1	12.9	4.1	52.5	133
$KOH \cdot 2H_2O = KOH \cdot H_2O + H_2O(g)$	1	12.9	4.2	56.7	147
$BaBr_2 \cdot H_2O = BaBr_2 + H_2O(g)$	1	12.9	4.2	57.8	151
$Sr(IO_3)_2 \cdot H_2O = Sr(IO_3)_2 + H_2O(g)$	1	12.9	4.2	52.0	131
$Cu(NO_3)_2 \cdot 6H_2O = Cu(NO_3)_2 + 6H_2O(g)$	6	12.7	4.5	58.0	152
$RaCl_2 \cdot 2H_2O = RaCl_2 + 2H_2O(g)$	2	12.6	4.7	57.7	151
$MgSeO_4 \cdot 4H_2O = MgSeO_4 \cdot H_2O + 3H_2O(g)$	3	12.5	4.8	56.4	147
$CuSO_4 \cdot 3H_2O = CuSO_4 \cdot H_2O + 2H_2O(g)$	2	12.5	4.8	57.3	150
$VOSO_4 \cdot 5H_2O(A) = VOSO_4 \cdot 3H_2O + 2H_2O(g)$	2	12.5	4.9	56.9	149
$Na_2CO_3 \cdot 10H_2O = Na_2CO_3 \cdot 7H_2O + 3H_2O(g)$	3	12.5	4.9	54.6	141
$Ba(OH)_2 \cdot 3H_2O = Ba(OH)_2 \cdot H_2O + 2H_2O(g)$	2	12.4	5.1	57.5	152
$NaHSO_4 \cdot H_2O = NaHSO_4 + H_2O(g)$	1	12.3	5.3	52.3	134
$Nal \cdot 2H_2O = Nal^{+2}H_2O(g)$	2	12.2	5.4	57.3	151
$Nal \cdot 2H_2O = Nal + 2H_2O(g)$	2	12.2	5.4	57.3	151
$AgF \cdot H_2O = AgF + H_2O(g)$	1	12.2	5.5	59.2	158
$Na_2SiO_3 \cdot 5H_2O = Na_2SiO_3 + 5H_2O(g)$	5	12.2	5.5	52.6	135
$Zn(NO_3)_2 \cdot 6H_2O = Zn(NO_3)_2 \cdot 4H_2O + 2H_2O(g)$	2	12.2	5.5	62.1	167
$KAI(SO_4)_2 \cdot 12H_2O = KAI(SO_4)_2 \cdot 3H_2O + 9H_2O(g)$	9	12.1	5.7	56.0	147
$NiCl_2 \cdot 4H_2O = NiCl_2 \cdot 2H_2O + 2H_2O(g)$	2	12.0	5.9	59.8	160
$MnCl_2 \cdot 4H_2O = MnCl_2 \cdot 2H_2O + 2H_2O(g)$	2	11.9	6.1	55.7	147
$Na_2CrO_4 \cdot 4H_2O = Na_2CrO_4 + 4H_2O(g)$	4	11.9	6.2	54.5	143
$FeCl_2 \cdot 4H_2O = FeCl_2 \cdot 2H_2O + 2H_2O(g)$	2	11.8	6.5	56.1	149
$CaSO_4 \cdot 2H_2O = CaSO_4 \cdot 0.5H_2O + 1.5H_2O(g)$	1.5	11.8	6.5	55.4	146
$UOF_2 \cdot H_2O = UOF_2 + H_2O(g)$	1	11.8	6.5	55.6	147
$CaCl_2 \cdot 6H_2O = CaCl_2 \cdot 4H_2O + 2H_2O(g)$	2	11.7	6.6	66.1	182
$CoCl_2 \cdot 6H_2O = CoCl_2 \cdot 2H_2O + 4H_2O(g)$	4	11.5	7.1	57.0	153
$Bal_2 \cdot 2H_2O = Bal_2 \cdot H_2O + H_2O(g)$	1	11.4	7.5	55.2	147
$H_2SO_4 \cdot 6.5H_2O = H_2SO_4 \cdot 4H_2O + 2.5H_2O(g)$	2.5	11.4	7.7	47.0	120
$CuSO_4 \cdot 5H_2O = CuSO_4 \cdot 3H_2O + 2H_2O(g)$	2.3	11.4	7.7	55.9	149
$NaClO_2 \cdot 3H_2O = NaClO_2 + 3H_2O(g)$	3	11.3	7.7	55.9	149
$VO_2(NO_3)_2 \cdot 6H_2O = VO_2(NO_3)_2 \cdot 3H_2O + 3H_2O(g)$	3	11.3	8.0	53.9	143
$Na_2WO_4 \cdot 2H_2O = Na_2WO_4 + 2H_2O(g)$	2	11.3	8.1	55.3	143
$Nd_2WO_4 \cdot 2H_2O = Nd_2WO_4 + 2H_2O(g)$ $SrCl_2 \cdot 6H_2O = SrCl_2 \cdot 2H_2O + 4H_2O(g)$	4	11.2	8.2	54.6	146
$LiNO_3 \cdot 3H_2O = LiNO_3 + 3H_2O(g)$	3	11.2	8.3	55.6	149
$UO_2(OH)_2 \cdot H_2O = UO_2(OH)_2 + H_2O(g)$	1	11.2	8.3	51.4	135

		Т	Г		
$NaCN \cdot 0.5H_2O = NaCN + 0.5H_2O(g)$	0.5	11.2	8.3	55.2	148
$Na_2B_4O_7 \cdot 10H_2O = Na_2B_4O_7 + 10H_2O(g)$	10	11.0	9.0	55.5	149
$CuSeO_3 \cdot 2H_2O = CuSeO_3 + 2H_2O(g)$	2	10.9	9.1	44.1	111
$Na_3PO_4 \cdot 12H_2O = Na_3PO_4 + 12H_2O(g)$	12	10.9	9.1	55.1	148
$Na_2HPO_4 \cdot 2H_2O = Na_2HPO_4 + 2H_2O(g)$	2	10.8	9.6	57.2	156
$CuBr_2 \cdot 4H_2O = CuBr_2 + 4H_2O(g)$	4	10.7	10.0	54.8	148
$Na_2S_2O_3 \cdot 5H_2O = Na_2S_2O_3 + 5H_2O(g)$	5	10.6	10.2	54.0	145
$ZnF_2 \cdot 4H_2O = ZnF_2 + 4H_2O(g)$	4	10.6	10.2	55.7	151
$Na_2SiO_3 \cdot 6H_2O = Na_2SiO_3 \cdot 5H_2O + H_2O(g)$	1	10.6	10.6	51.9	139
$ZnSO_4 \cdot 7H_2O = ZnSO_4 \cdot 6H_2O + H_2O(g)$	1	10.6	10.6	59.4	164
$Na_4P_2O_7 \cdot 10H_2O = Na_4P_2O_7 + 10H_2O(g)$	10	10.2	12.0	54.1	147
$AgF \cdot 4H_2O = AgF \cdot 2H_2O + 2H_2O(g)$	2	10.2	12.1	51.6	139
$MgSO_4 \cdot 7H_2O = MgSO_4 \cdot 6H_2O + H_2O(g)$	1	10.2	12.3	59.6	166
$CsAl(SO_4)_2 \cdot 12H_2O = CsAl(SO_4)_2 + 12H_2O(g)$	12	10.2	12.3	54.8	150
$FeSO_4 \cdot 7H_2O = FeSO_4 \cdot 4H_2O + 3H_2O(g)$	3	10.1	12.5	53.8	147
$NiCl_2 \cdot 6H_2O = NiCl_2 \cdot 4H_2O + 2H_2O(g)$	2	10.1	12.9	51.3	138
$U(SO_4)_2 \cdot 8H_2O = U(SO_4)_2 \cdot 4H_2O + 4H_2O(g)$	4	10.1	12.9	53.0	144
$NaBr \cdot 2H_2O = NaBr + 2H_2O(g)$	2	10.0	13.4	53.1	145
$ZnSO_4 \cdot 6H_2O = ZnSO_4 \cdot 2H_2O + 4H_2O(g)$	4	10.0	13.5	53.5	146
$Na_2SO_4 \cdot 10H_2O = Na_2SO_4 \cdot 7H_2O + 3H_2O(g)$	3	9.9	13.5	48.3	129
$Na_2SiO_3 \cdot 8H_2O = Na_2SiO_3 \cdot 6H_2O + 2H_2O(g)$	2	9.9	13.6	53.8	147
$NaCN \cdot 2H_2O = NaCN \cdot 0.5H_2O + 1.5H_2O(g)$	1.5	9.9	13.9	54.1	148
$Na_2HPO_4.7H_2O = Na_2HPO_4.2H_2O + 5H_2O(g)$	5	9.6	15.4	53.2	146
$FeSO_4 \cdot 4H_2O = FeSO_4 \cdot H_2O + 3H_2O(g)$	3	9.5	16.1	53.4	147
$UO_2SO_4 \cdot 3.5H_2O = UO_2SO_4 \cdot 3H_2O + 0.5H_2O(g)$	0.5	9.5	16.3	58.4	164
$ZnSO_4 \cdot 2H_2O = ZnSO_4 \cdot H_2O + H_2O(g)$	1	9.4	16.7	49.6	135
$NH_4(UO_2)_2F_5\cdot 4H_2O = NH_4(UO_2)_2F_5\cdot 3H_2O + H_2O(g)$	1	9.4	16.7	48.5	131
$CdCl_2 \cdot 2.5H_2O = CdCl_2 \cdot H_2O + 1.5H_2O(g)$	1.5	9.4	16.9	53.4	148
AuCl3·2H2O = AuCl3 + 2H2O(g)	2	9.3	17.3	56.5	158
$CoSO_4 \cdot 7H_2O = CoSO_4 \cdot 6H_2O + H_2O(g)$	1	9.3	17.4	54.2	150
$MgCO_3 \cdot 5H_2O = MgCO_3 \cdot 3H_2O + 2H_2O(g)$	2	9.3	17.4	53.0	146
$BeSO_4 \cdot 3H_2O = BeSO_4 \cdot 2H_2O + H_2O(g)$	1	9.3	17.4	55.7	155
$Na_2HPO_4:12H_2O = Na_2HPO_4:7H_2O + 5H_2O(g)$	5	9.3	17.6	53.7	149
$FePO_4 \cdot 2H_2O = FePO_4 + 2H_2O(g)$	2	9.0	19.6	53.8	150
$Na_2SO_4 \cdot 10H_2O = Na_2SO_4 + 10H_2O(g)$	10	9.0	19.9 (19.0)	52.1	145
$MgSeO_4 \cdot 6H_2O = MgSeO_4 \cdot 4H_2O + 2H_2O(g)$	2	8.9	20.7	52.7	147
$Na_2SO_3 \cdot 7H_2O = Na_2SO_3 + 7H_2O(g)$	7	8.9	21.1	52.1	145
$UO_2F_2 \cdot 3H_2O = UO_2F_2 + 3H_2O(g)$	3	8.8	21.2	51.8	144
$CdBr_2 \cdot 4H_2O = CdBr_2 + 4H_2O(g)$	4	8.7	22.3	52.1	145
$CdSO_4 \cdot 2.67H_2O = CdSO_4 \cdot H_2O + 1.67H_2O(g)$	1.67	8.7	22.6	51.5	144
$NiSO_4 \cdot 7H_2O = NiSO_4 \cdot 6H_2O + H_2O(g)$	1	8.7	22.9	51.7	144
$U(SO_4)_2 \cdot 4H_2O = U(SO_4)_2 + 4H_2O(g)$	4	8.6	23.2	51.6	144
$MgCO_3 \cdot 3H_2O = MgCO_3 + 3H_2O(g)$	3	8.6	23.3	51.9	145
$Na_2SO_4 \cdot 7H_2O = Na_2SO_4 + 7H_2O(g)$	7	8.6	23.4	53.7	151
		_			

$H_2O(s) = H_2O(g)^3$	1	8.1	23.8	50.0	141
$CaSO_3 \cdot 2H_2O = CaSO_3 \cdot 0.5H_2O + 1.5H_2O(g)$	1.5	8.6	23.8	52.4	147
$(UO_2)_3(PO_4)_2 \cdot 6H_2O = (UO_2)_3(PO_4)_2 \cdot 4H_2O + 2H_2O(g)$	2	8.4	24.8	52.8	149
$V_2O_5 \cdot H_2O = V_2O_5 + H_2O(g)$	1	8.2	26.9	52.2	147
$Sr(NO_3)_2 \cdot 4H_2O = Sr(NO_3)_2 + 4H_2O(g)$	4	8.0	29.9	51.3	145
$CaCl_2 \cdot 2H_2O = CaCl_2 \cdot H_2O + H_2O(g)$	1	8.0	30.0	51.2	145
$Na_2CO_3 \cdot 7H_2O = Na_2CO_3 \cdot H_2O + 6H_2O(g)$	6	8.0	30.3	51.6	146
$UO_2SO_4 \cdot 3H_2O = UO_2SO_4 \cdot 2.5H_2O + 0.5H_2O(g)$	0.5	7.6	35.1	47.2	133
$VOSO_4 \cdot 6H_2O = VOSO_4 \cdot 5H_2O(A) + H_2O(g)$	1	7.6	35.4	52.0	149
$MnSO_4 \cdot 4H_2O = MnSO_4 \cdot H_2O + 3H_2O(g)$	3	7.4	38.3	52.0	150
$UO_3 \cdot 2H_2O = UO_3 \cdot H_2O + H_2O(g)$	1	7.1	42.3	47.3	135
$Sr(IO_3)_2 \cdot 6H_2O = Sr(IO_3)_2 \cdot H_2O + 5H_2O(g)$	5	7.0	43.9	53.6	156
$NalO_3 \cdot 5H_2O = NalO_3 \cdot H_2O + 4H_2O(g)$	4	6.9	46.0	51.4	149
$Ba(N_3)_2 \cdot H_2O = Ba(N_3)_2 + H_2O(g)$	1	6.9	46.5	44.3	126
$MgSO_4 \cdot 6H_2O = MgSO_4 \cdot 5H_2O + H_2O(g)$	1	6.8	49.0	49.7	144
$MnF_2 \cdot 4H_2O = MnF_2 + 4H_2O(g)$	4	6.5	54.6	50.2	147
$SrCl_2 \cdot H_2O = SrCl_2 + H_2O(g)$	1	6.4	57.0	61.1	184
$YPO_4 \cdot 2H_2O = YPO_4 + 2H_2O(g)$	2	6.2	61.3	50.7	149
$K_3PO_4 \cdot 7H_2O = K_3PO_4 + 7H_2O(g)$	7	5.8	72.2	49.9	148
$As_2O_5 \cdot 4H_2O = As_2O_5 + 4H_2O(g)$	4	5.6	77.2	50.3	150
$Rb_2CO_3 \cdot 3.5H_2O = Rb_2CO_3 \cdot 1.5H_2O + 2H_2O(g)$	2	5.6	79.4	51.3	153
$Al_2O_3 \cdot 3H_2O = Al_2O_3 \cdot H_2O + 2H_2O(g)$	2	5.5	82.7	51.9	156
$CePO_4 \cdot 2H_2O = CePO_4 + 2H_2O(g)$	2	5.4	83.2	50.5	151
$Ra(IO_3)_2 \cdot H_2O = Ra(IO_3)_2 + H_2O(g)$	1	5.3	88.0	51.2	154
$NaClO_4 \cdot H_2O = NaClO_4 + H_2O(g)$	1	4.0	151.5	47.8	147
$PuO_2(OH)_2 \cdot H_2O = PuO_2(OH)_2 + H_2O(g)$	1	3.4	188.5	34.1	103
$EuPO_4 \cdot 2H_2O = EuPO_4 + 2H_2O(g)$	2	3.3	200.9	49.0	153
$Th(NO_3)_4 \cdot 5H_2O = Th(NO_3)_4 \cdot 4H_2O + H_2O(g)$	1	3.2	203.0	47.3	148
$MnBr_2 \cdot 4H_2O = MnBr_2 + 4H_2O(g)$	4	1.9	342.9	46.7	150
$K_2SO_3 \cdot H_2O = K_2SO_3 + H_2O(g)$	1	1.8	364.4	45.6	147
$LiBr \cdot 2H_2O = LiBr \cdot H_2O + H_2O(g)$	1	1.4	427.6	56.7	185
$Na_2SiO_3 \cdot 9H_2O = Na_2SiO_3 \cdot 8H_2O + H_2O(g)$	1	1.2	460.0	53.1	174
$Ca(IO_3)_2 \cdot 6H_2O = Ca(IO_3)_2 \cdot H_2O + 5H_2O(g)$	5	0.8	541.8	46.4	153

- 1. Outotec Research Oy, HSC Chemistry 7. HSC Chemistry 7 2009.
- 2. Lide, D. R., ed., *Handbook of Chemistry and Physics*. 87th ed.; CRC Press: Boca Raton, 2006-2007.
- 3. Glasser, L.; Jones, F., Systematic Thermodynamics of Hydration (and of Solvation) of Inorganic Solids. *Inorg. Chem.* **2009**, *48* (4), 1661-1665.
- 4. Halling, P. J., Salt hydrates for water activity control with biocatalysts in organic media. *Biotechnol. Tech.* **1992**, *6*, 271-6.