Supporting Information

For

“Sensitivity of nanostructure in charged cubosomes to phase changes triggered by ionic species in solution”

Qingtao Liu,† Yao-Da Dong,† Tracey L. Hanley,‡ and Ben J. Boyd*†

†Drug Delivery, Disposition and Dynamics - Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria, 3052, Australia.

‡Bragg Institute, Australian Nuclear Science and Technology Organization, Menai, New South Wales, 2234, Australia.

*Corresponding author: email: Ben.Boyd@monash.edu
Figure S1. Optical images of the viscosity of mixed lipid dispersions of PHYT + ionic surfactants. The samples in the upper six vials are DDAB+PHYT dispersions in water, with DDAB concentration in total lipid at A = 1%, B = 3%, C = 13%, D = 23%, E = 29% and F = 33.3%. The samples in lower six vials are AOT+PHYT dispersions in water, with AOT concentration in total lipid at G = 1%, H = 3%, I = 13%, J = 23%, K = 29% and L = 33.3%.

Figure S2. a)-n) the cross polarized light microscopic images of DDAB-PHYT dispersion with 10% lipid concentration. The DDAB content from a) to n) was 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 20, 23, 29 and 33.3% (w/w) in total lipid.
Figure S3. The zeta potential of particles of AOT-PHYT and DDAB-PHYT dispersion in water. The grey dotted line represents the potential of phytantriol cubosome particles without any charged additive in water.