Supporting Information

Sn-Doped V$_2$O$_5$ Film with Enhanced Lithium-Ion Storage Performance

Yanwei Li†,‡, Jinhuan Yao‡, Evan Uchaker†, Ming Zhang†, Jianjun Tian†, Xiaoyan Liu†, and Guozhong Cao**,†

† Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA

‡ Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China

* Corresponding author: E-mail: gzcao@u.washington.edu (G. Cao); Tel: 206 616 9084

Figure S1

Figure S1. Comparison of XPS spectra of (a) pure V$_2$O$_5$ film and (b) Sn-doped V$_2$O$_5$ film. The inset in Figure S1(b) is XPS spectrum of high-resolution scan on the Sn3d$_{5/2}$ core peaks performed on Sn-doped V$_2$O$_5$ film.