Supporting Information

Poly(ethylene oxide) and Polystyrene Encapsulated Quantum Dots: Highly Fluorescent, Functionalizable, and Ultra Stable in Aqueous Media

Hauke Klouส†, Christian Schmidtke‡, Jan-Philip Merkl†, Artur Feld‡, Theo Schotten‡, Ursula E. A. Fittschen§, Manuela Gehring‡, Johannes Ostermann‡, Elmar Pöselt‡, and Horst Weller*,†,‡,┴

† Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany. ‡ Center for Applied Nanotechnology, Grindelallee 117, 20146 Hamburg, Germany. § Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany. ¶ The Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg.
Empty particles can quantitatively be removed via sucrose gradient centrifugation for 24 h at 50000 g. Afterward the QDs are purified from sucrose using ultrafiltration. Figure S2 shows QDs after sucrose gradient centrifugation and ultrafiltration.

Figure S1. TEM micrograph of encapsulated QD-cluster (scale bar = 20 nm).

Figure S2. TEM micrograph of encapsulated QD after sucrose gradient centrifugation (scale bar = 20 nm).
Addition of methyl viologen to polystyrene encapsulated QDs resulted in a relative fluorescence quantum yield reduction by 23% (Figure S3).

Figure S3. Quenching of QDs by addition of methyl viologen

The absorption and emission spectra of the Rose Bengal functionalized QDs as well as the emission spectra of Rose Bengal and QDs solely are given in Figure S4.

Figure S4. Absorption (black) and emission (red) spectra of the encapsulated QDs with Rose Bengal (solid line), Rose Bengal (dotted line) and QDs (dashed line).
References with more than 10 authors:

