Supporting Information for

Uranium sorption with functionalized mesoporous carbon materials

Michaël Carboni,† Carter W. Abney,† Kathryn M. L. Taylor-Pashow,‡ Juan L. Vivero-Escoto,ζ and Wenbin Lin† *

†Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637
‡Savannah River National Laboratory, Aiken, SC 29808
ζDepartment of Chemistry, Burson 200, University of North Carolina at Charlotte, Charlotte, NC 28223

Table of Contents

1 – Characterization of materials (BET and TGA) Pages S1-S5
 1.1 - MC-Starting material Page S2
 1.2 - MC-CA Page S2
 1.3 - MC-Ph-AO Page S2
 1.4 - MC-PhCOOH Page S2
 1.5 - MC-Ph-AO/PhCOOH Page S3
 1.6 - MC-Ph-O-PO(OH)2 Page S3
 1.7 – MC-Ph-CH2-COOH Page S3
 1.8 - MC-CA/PhCOOH Page S3
 1.9 - MC-COOH Page S4
 1.10 - MC-O-PO(OH)2 Page S4
 1.11 – MC-bis(PO(OH)2) Page S4
 1.12 – MC-u-PO(OEt)2 Page S4
 1.13 - MC-u-PO(OH)2 Page S5
 1.14 – MC-PhOH Page S5
 1.15 – MC-Ph-PO(OEt)2 Page S5
 1.16 - MC-Ph-PO(OH)2 Page S5

2 – Composition of the artificial seawater Page S6
3 – U sorption capacity with respect to functional group loading Pages S6-S7
4 – Freundlich and Temkin isotherms Pages S7-S8
5 – Pseudo-first order kinetics of MC-O-PO(OH)2 Pages S8-S9
1. Characterization of materials (BET and TGA):

1.1 MC Starting Material:

1.2 MC-CA:

1.3 MC-Ph-AO:

1.4 MC-PhCOOH:
1.5 MC-Ph-AO/PhCOOH:

1.6 MC-Ph-O-PO(OH)₂:

1.7 MC-Ph-CH₂-COOH:

1.8 MC-CA/PhCOOH:
1.9 MC-COOH:

![Graphs and data plots for MC-COOH]

1.10 MC-O-PO(OH)_2:

![Graphs and data plots for MC-O-PO(OH)_2]

1.11 MC-bis(PO(OH))_2:

![Graphs and data plots for MC-bis(PO(OH))_2]

1.12 MC-u-PO(OEt)_2:

![Graphs and data plots for MC-u-PO(OEt)_2]
Figure S1: Thermogravimetric analysis curves, nitrogen adsorption isotherms, and pore size distributions of functionalized mesoporous carbon materials.
2. Composition of artificial seawater

Table S1: Composition of artificial seawater

<table>
<thead>
<tr>
<th>Salt</th>
<th>Molecular weight</th>
<th>Solution (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>58.44</td>
<td>23.926</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>142.04</td>
<td>4.008</td>
</tr>
<tr>
<td>KCl</td>
<td>74.55</td>
<td>0.738</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>84.01</td>
<td>0.196</td>
</tr>
<tr>
<td>MgCl₂.6H₂O</td>
<td>203.33</td>
<td>10.831</td>
</tr>
<tr>
<td>CaCl₂.2H₂O</td>
<td>147.02</td>
<td>1.519</td>
</tr>
</tbody>
</table>

3. U sorption capacity with respect to functional group loading

Table S2: Sorption capacity in mg of U/mmol of organic moiety

<table>
<thead>
<tr>
<th>Ligands</th>
<th>Acid Condition (mg/mmol)</th>
<th>Seawater Condition (mg/mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-CA</td>
<td>7.14</td>
<td>7.40</td>
</tr>
<tr>
<td>L-Ph-AO</td>
<td>7.22</td>
<td>2.40</td>
</tr>
<tr>
<td>L-CA/PhCOOH</td>
<td>34.6</td>
<td>9.60</td>
</tr>
<tr>
<td>L-Ph-AO/PhCOOH</td>
<td>35.4</td>
<td>4.83</td>
</tr>
<tr>
<td>L-Ph-COOH</td>
<td>48.9</td>
<td>31.9</td>
</tr>
<tr>
<td>L-Ph-CH₂-COOH</td>
<td>17.1</td>
<td>3.20</td>
</tr>
<tr>
<td>L-COOH</td>
<td>7.22</td>
<td>9.60</td>
</tr>
<tr>
<td>L-Ph-OH</td>
<td>4.21</td>
<td>1.31</td>
</tr>
<tr>
<td>L-Ph-O-PO(OH)₂</td>
<td>23.8</td>
<td>5.23</td>
</tr>
<tr>
<td>L-O-PO(OH)₂</td>
<td>228</td>
<td>178</td>
</tr>
<tr>
<td>L-bis(PO(OH)₂)</td>
<td>92.1</td>
<td>6.89</td>
</tr>
<tr>
<td>L-u-PO(OEt)₂</td>
<td>4.80</td>
<td>4.77</td>
</tr>
<tr>
<td>L-u-PO(OH)₂</td>
<td>18.4</td>
<td>6.40</td>
</tr>
<tr>
<td>L-Ph-PO(OEt)₂</td>
<td>12.3</td>
<td>10.76</td>
</tr>
<tr>
<td>L-Ph-PO(OH)₂</td>
<td>90.0</td>
<td>43.75</td>
</tr>
</tbody>
</table>
Figure S2: Sorption capacity in mg of U/mmol of organic moiety. Sorption in acidic water is in red, seawater simulant in blue.

4. Freundlich and Temkin Isotherms

Figure S3: Sorption isotherms displayed in their linearized format and fit by the Freundlich model.
Figure S4: Sorption isotherms displayed in their linearized format and fit by the Temkin model.

5. Pseudo-first order kinetics of MC-O-PO(OH)$_2$

In acidic water:

Figure S5: Pseudo-first order kinetics of MC-O-PO(OH)$_2$ in acidic water.

$R^2 = 0.94866$
Slope = -0.35259 ± 0.03088
Intercept = 4.50044 ± 0.21285
In artificial seawater:

Figure S6: Pseudo-first order kinetics of MC-O-PO(OH)$_2$ in seawater.

\[R^2 = 0 \]
\[\text{Slope} = -0.04296 \pm 0.06136 \]
\[\text{Intercept} = 0.7683 \pm 0.73173 \]