Endolytic, pH-Responsive HPMA-b-(L-Glu)
Copolymers Synthesized via Sequential Aqueous RAFT and Ring Opening Polymerizations

Andrew C. Holley1, Jacob G. Ray1, Wenming Wan1, Daniel A. Savin1, and Charles L. McCormick1,2

The Department of Polymer Science and Engineering and The Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg MS 39406

Determination of APMA Conjugation. A ninhydrin assay was utilized for the determination of APMA content conjugated to the ω-terminus of poly(HPMA220), and a standard literature procedure was followed.1 Briefly, the ninhydrin assay solution was prepared by mixing 5 mL of ninhydrin (200 mg) dissolved in ethylene glycol and 5 mL of SnCl2 • 2H2O (8 mg) dissolved in citrate buffer (pH 5). Poly(HPMA220)-NH2 (4.3 mg) was diluted with 45.5 µL of DI H2O to give a 3 mM polymer solution. The poly(HPMA220)-NH2 solution (6 µL of 3 mM stock) was diluted with 200 µL of ninhydrin assay solution; the solution was vortexed and heated at 100 °C for 20 minutes. The solution was then diluted to 600 µL using DI H2O, and the absorbance at 570 nm was recorded using a Perkin-Elmer spectrophotometer. To determine APMA functionalization, a calibration curve was constructed utilizing D-alanine. Five different aliquots of 3 mM D-alanine
were diluted with 200 µL of ninhydrin assay solution and heated to 100 °C for 20 minutes. Each solution was diluted to 600 µL using DI H₂O, and the absorbance at 570 nm was recorded to create a calibration curve.

![Graph showing absorbance of ninhydrin at 570 nm versus amine concentration for D-alanine (open squares) and poly(HPMA₂₂₀)-NH₂ (black circle).]

S1. Absorbance of ninhydrin at 570 nm versus amine concentration for D-alanine (open squares) and poly(HPMA₂₂₀)-NH₂ (black circle).
S2. Fluorescence intensity of fPOPC at pH 7.4. fPOPC was incubated with poly(HPMA$_{220}$) and poly[HPMA$_{220}$-b-(L-Glu)$_{33}$] copolymers. Triton-X100 was utilized as the positive control. No observable increase in fluorescein release was determined at pH 7.4 when incubated with poly[HPMA$_{220}$-b-(L-Glu)] copolymers.
S3. Percent hemolysis release as a function of concentration for poly(HPMA\(_{220}\)) and poly[HPMA\(_{220}\)-b-(L-Glu)] copolymers at pH 7.4. Triton-X100 was utilized as the positive control.
S4. 1H NMR deprotection of (A) poly[HPMA$_{220}$-b-(L-Glu$_{33}$)], (C) poly[HPMA$_{220}$-b-(L-Glu$_{56}$)], and (B) poly[HPMA$_{220}$-b-(L-Glu$_{78}$)]. The absence of the benzyl group at 7.5 – 7.1 ppm and 5.1 – 4.9 ppm confirms successful deprotection of glutamic acid.

REFERENCES