On the physical nature of halogen bonds:

A QTAIM study

Olga A. SYZGANTSEVA, Vincent TOGNETTI, and Laurent JOUBERT

Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière 76821 Mont St Aignan, Cedex, France

Supplementary information
Contents

Figure S1. Views of all optimized structures ... 3
Figure S2. View of the optimized 1Bu complex.. 4
Graph S1. Variation of primary exchange interaction energies with respect to the corresponding delocalization indexes... 5
Table S1. Values for the secondary and primary interactions (in kcal/mol) for all complexes. 6
Table S2. Main properties for all X…D bond critical points... 7
Figure S3. Atomic source contributions for all complexes.. 8
Graph S2. Variation of binding energies with respect to the BCP_{X…D} density laplacian values. 9
Graph S3. Variation of binding energies with respect to the BCP_{X…D} energy densities........10
Figure S1. Views of all optimized structures (at the ωB97XD/aug-cc-pVTZ level). Color code: H in white, C in grey, F in pastel blue, Cl in green, Br in dark red, N in bright blue, O in bright red, S in yellow.
Figure S2. View of the 1Bu optimized complex (at the ωB97XD/aug-cc-pVTZ level). Color code: H in white, C in grey, Br in dark red, N in bright blue.
Graph S1. Variation of primary exchange interaction energies (in kcal/mol) with respect to the corresponding delocalization indexes.
| Compounds | \(E_{\text{primary}}^{\text{QOA}}\) | \(E_{\text{primary}}^{\text{x}}\) | \(E_{\text{secondary}}^{\text{QOA}}\) | \(Df_{\text{primary}}\) | \(|\Delta q_{\text{CT}}|\) |
|-------------------|------------------------------------|----------------------------------|------------------------------------|--------------------------|--------------------------|
| CHBr···NH₃ | -41.1 | -14.9 | 19.3 | 0.148 | 0.028 |
| CHBr···OH₂ | -38.0 | -11.1 | 21.6 | 0.110 | 0.010 |
| CHBr···SH₂ | -10.5 | -9.4 | -3.4 | 0.109 | 0.008 |
| CHBr···OH⁻ | -143.1 | -68.1 | 43.6 | 0.568 | 0.064 |
| CHBr···OCH₂ | -35.2 | -10.3 | 17.8 | 0.100 | 0.007 |
| CHCl···NH₃ | -10.9 | -10.1 | -3.9 | 0.103 | 0.019 |
| CHCl···OH₂ | -6.8 | -7.1 | -3.4 | 0.073 | 0.006 |
| CHCl···SH₂ | -6.5 | -5.4 | -2.1 | 0.066 | 0.005 |
| CHCl···OH⁻ | -74.2 | -42.3 | 13.6 | 0.373 | 0.041 |
| CHCl···OCH₂ | -4.9 | -6.3 | -7.5 | 0.063 | 0.003 |
| CH₂Br···NH₃ | -9.2 | -10.6 | -6.5 | 0.111 | 0.016 |
| CH₂Br···OH₂ | 0.1 | -6.8 | -10.1 | 0.076 | 0.002 |
| CH₂Br···SH₂ | -7.6 | -5.5 | -3.5 | 0.069 | 0.008 |
| CH₂Br···OH⁻ | -91.2 | -50.3 | 18.3 | 0.443 | 0.162 |
| CH₂Br···OCH₂ | -0.2 | -5.3 | -12.8 | 0.057 | 0.007 |
| FBr···NH₃ | -135.0 | -60.0 | 57.7 | 0.498 | 0.160 |
| FBr···OH₂ | -107.7 | -31.7 | 66.3 | 0.282 | 0.057 |
| FBr···SH₂ | -42.7 | -44.1 | -9.3 | 0.426 | 0.131 |
| FBr···OH⁻ | -232.7 | -126.3 | 71.7 | 0.952 | 0.426 |
| FBr···Br | -107.3 | -93.3 | 19.9 | 0.873 | 0.419 |
| FCl···NH₃ | -108.5 | -56.2 | 38.6 | 0.459 | 0.167 |
| FCl···OH₂ | -83.5 | -26.5 | 50.1 | 0.235 | 0.052 |
| FCl···SH₂ | -33.6 | -35.5 | -8.4 | 0.345 | 0.131 |
| FCl···OH⁻ | -208.0 | -144.8 | 51.8 | 1.023 | 0.531 |
| FCl···Br | -101.6 | -101.9 | 11.5 | 0.912 | 0.502 |
| ClBr···NH₃ | -77.0 | -39.2 | 24.6 | 0.3436 | 0.110 |
| ClBr···OH₂ | -52.8 | -20.0 | 25.8 | 0.1858 | 0.032 |
| ClBr···SH₂ | -25.7 | -24.5 | -5.5 | 0.2528 | 0.074 |
| ClBr···OH⁻ | -235.8 | -136.4 | 62.6 | 1.0106 | 0.491 |
| ClBr···Br | -100.2 | -96.7 | 8.7 | 0.8899 | 0.066 |
Table S2. Main properties (in atomic units) for all X…D bond critical points.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>(\rho_c)</th>
<th>(\nabla^2 \rho_c)</th>
<th>(H_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHCBr···NH(_3)</td>
<td>0.0143</td>
<td>0.0470</td>
<td>0.0017</td>
</tr>
<tr>
<td>CHCBr···OH(_2)</td>
<td>0.0118</td>
<td>0.0459</td>
<td>0.0020</td>
</tr>
<tr>
<td>CHCBr···SH(_2)</td>
<td>0.0080</td>
<td>0.0242</td>
<td>0.0011</td>
</tr>
<tr>
<td>CHCBr···OH(^{-})</td>
<td>0.0642</td>
<td>0.1482</td>
<td>-0.0110</td>
</tr>
<tr>
<td>CHCBr···OCH(_2)</td>
<td>0.0120</td>
<td>0.0452</td>
<td>0.0019</td>
</tr>
<tr>
<td>CHCCI···NH(_3)</td>
<td>0.0102</td>
<td>0.0378</td>
<td>0.0020</td>
</tr>
<tr>
<td>CHCCI···OH(_2)</td>
<td>0.0079</td>
<td>0.0339</td>
<td>0.0019</td>
</tr>
<tr>
<td>CHCCI···SH(_2)</td>
<td>0.0048</td>
<td>0.0168</td>
<td>0.0011</td>
</tr>
<tr>
<td>CHCCI···OH(^{-})</td>
<td>0.0408</td>
<td>0.1360</td>
<td>0.0000</td>
</tr>
<tr>
<td>CHCCI···OCH(_2)</td>
<td>0.0080</td>
<td>0.0325</td>
<td>0.0017</td>
</tr>
<tr>
<td>CH(_2)CHBr···NH(_3)</td>
<td>0.0101</td>
<td>0.0328</td>
<td>0.0015</td>
</tr>
<tr>
<td>CH(_2)CHBr···OH(_2)</td>
<td>0.0070</td>
<td>0.0234</td>
<td>0.0010</td>
</tr>
<tr>
<td>CH(_2)CHBr···SH(_2)</td>
<td>0.0051</td>
<td>0.0153</td>
<td>0.0009</td>
</tr>
<tr>
<td>CH(_2)CHBr···OH(^{-})</td>
<td>0.0457</td>
<td>0.1301</td>
<td>-0.0024</td>
</tr>
<tr>
<td>CH(_2)CHBr···OCH(_2)</td>
<td>0.0067</td>
<td>0.0238</td>
<td>0.0011</td>
</tr>
<tr>
<td>FBr···NH(_3)</td>
<td>0.0549</td>
<td>0.1169</td>
<td>-0.0093</td>
</tr>
<tr>
<td>FBr···OH(_2)</td>
<td>0.0304</td>
<td>0.1113</td>
<td>0.0015</td>
</tr>
<tr>
<td>FBr···SH(_2)</td>
<td>0.0338</td>
<td>0.0699</td>
<td>-0.0028</td>
</tr>
<tr>
<td>FBr···OH(^{-})</td>
<td>0.1204</td>
<td>0.0937</td>
<td>-0.0607</td>
</tr>
<tr>
<td>FBr···Br(^{-})</td>
<td>0.0631</td>
<td>0.0630</td>
<td>-0.0145</td>
</tr>
<tr>
<td>FCl···NH(_3)</td>
<td>0.0546</td>
<td>0.1309</td>
<td>-0.0074</td>
</tr>
<tr>
<td>FCl···OH(_2)</td>
<td>0.0271</td>
<td>0.1095</td>
<td>0.0027</td>
</tr>
<tr>
<td>FCl···SH(_2)</td>
<td>0.0291</td>
<td>0.0711</td>
<td>-0.0009</td>
</tr>
<tr>
<td>FCl···OH(^{-})</td>
<td>0.1482</td>
<td>0.0597</td>
<td>-0.0788</td>
</tr>
<tr>
<td>FCl···Br(^{-})</td>
<td>0.0741</td>
<td>0.0738</td>
<td>-0.0182</td>
</tr>
<tr>
<td>ClBr···NH(_3)</td>
<td>0.0362</td>
<td>0.0968</td>
<td>-0.0014</td>
</tr>
<tr>
<td>ClBr···OH(_2)</td>
<td>0.0200</td>
<td>0.0749</td>
<td>0.0023</td>
</tr>
<tr>
<td>ClBr···SH(_2)</td>
<td>0.0196</td>
<td>0.0490</td>
<td>0.0004</td>
</tr>
<tr>
<td>ClBr···OH(^{-})</td>
<td>0.1309</td>
<td>0.0742</td>
<td>-0.0718</td>
</tr>
<tr>
<td>ClBr···Br(^{-})</td>
<td>0.0663</td>
<td>0.0614</td>
<td>-0.0157</td>
</tr>
</tbody>
</table>
Figure S3. Atomic source contributions for all complexes.
Graph S2. Variation of binding energies (in kcal/mol) with respect to the BCP$_{X...D}$ density laplacian values (in atomic units).

\[E_{\text{DFT}}^{\text{bind}} \quad v^2 \rho \quad E_{\text{IQA}}^{\text{inter}} \quad v^2 \rho \]
Graph S3. Variation of binding energies (in kcal/mol) with respect to the BCP_{X...D} density energies (in atomic units).