Supporting Information

Spectroelectrochemical probing of the strong interaction between platinum nanoparticles and graphitic domains of carbon

Jiwei Ma†, Aurélien Habrioux†, Cláudia Morais†, Adam Lewera‡, Walter Vogel§, Ysmael Verde-Gómez⊥, Guadalupe Ramos-Sanchez#, Perla B. Balbuena*#, and Nicolas Alonso-Vante*†

†IC2MP, UMR-CNRS 7285, University of Poitiers, 4 rue Michel Brunet, 86022 Poitiers, France.

‡Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland.

§Department of Chemistry, National Central University, No. 300 Jung-Da Rd., Chung-Li, Taoyuan 32001, Taiwan.

⊥Instituto Tecnologico de Cancun, Av. Kabah Km.3 s/n, CP 77500, Cancun, Q. Roo, Mexico.

#Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.

*E-mail: nicolas.alonso_vante@univ-poitiers.fr (N.A.V.); balbuena@tamu.edu (P.B.B.).
Figure S1. Bader charge analysis of Pt atoms, before (a) and after (b) the interaction of Pt$_{38}$ with the graphite surface.

Figure S2. CO adsorption on Pt$_{19}$ supported on graphite (top) and in gas phase (bottom). Adsorption energy (eV) is indicated below each figure. Pt-C and C-O distances (Å) are shown for comparison.
Figure S3. TGA curves for (a) Vulcan XC-72 and Pt/Vulcan XC-72, (b) MWCNT-m and Pt/MWCNT-m.

Figure S4. CO stripping in 0.5 M H$_2$SO$_4$ at 25 °C on electrocatalysts for 10 wt% Pt/Vulcan XC-72 and 20 wt% Pt/Vulcan XC-72 synthesized by carbonyl route. Scan rate 5 mV s$^{-1}$.