Supporting Information

Crystalline structure of injection molded β-isotactic polypropylene: Analysis of the oriented shear zone

Xianhu Liua,b, Kun Daia, Guoqiang Zhenga,*, Chuntai Liua,*, Dirk W. Schubertb, Changyu Shena

aCollege of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P.R. China

bInstitute of Polymer Materials, Friedrich-Alexander University Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen, Germany

Figure S1. SEM micrographs for raw rare earth β-Nucleating Agent (β-NA).

As shown in Figure S1, the single crystal diameter is about tens of nanometers and most of the agglomerates consist of several crystals.

* Correspondence author. Tel.: +86 371 63887600.
Electronic mail: gqzheng@zzu.edu.cn (G. Zheng) and ctliu@zzu.edu.cn (C. Liu)
Figure S2. Schematic of the sample preparation for 2D-SAXS/WAXS measurements. FD: flow direction; RD: wall direction.

Before 2D SAXS/WAXS measurement, a segment with 10 mm length along the flow direction (FD) is cut in the middle of the part, from which a board of 1 mm thickness was grinded along FD-wall direction (RD) plane, which is schematically illustrated in Figure S2. The X-ray beam is perpendicular to FD-RD plane. To determine the position of shear zone for X-ray measurement, the macroscopic hierarchical structure was studied, and a typical example of POM micrograph in thickness direction is shown in Figure S3. Obviously, zones that can be recognized from skin surface to the core of the part are a thin skin zone (1), a shear zone (2) and the core zone. It is clearly that the width of skin zone is about 30 µm for iPP-0 and that of shear zone (2) is about 110µm. For the β-iPP, the nucleating agent lowers the free energy barrier. Thus, it is understandable that the thickness of shear zone is thickening. The details about shear stress and β-iPP influence the thickness of the shear zone can be found in the Ref. [1,2]. Therefore, the shear zone is easily to locate (the scan steps is 100µm from the skin surface) during 2D SAXS/WAXS measurements.
Figure S3 POM micrographs of hierarchical structure of (a) iPP-0, (b) iPP-0.2 and (c) iPP-1.0.

Distinguished zones are the skin zone (1) and shear zone (2).

The random distribution of β-NA by comparison molding has been report in the Ref. [3-6]. In the case of this study, β-NA is oriented parallel to flow direction with the aid of shear flow. To prove this, the ultrathin slices (ca.10µm) were cut from the middle of parts along flow direction; and then they were inserted between two microscope cover-glasses. The morphology of β-NA in the shear zone was investigated by a POM (Leica DMLP) equipped with a hot-stage (Linkam). According to Ref. [3], β-NA cannot be dissolved at 200˚C in the polymer melt and therefore its solid structure cannot be easily destroyed during the process of melting and recrystallization. Figure S4 shows a typical example of POM photographs for iPP-0.2 during the recrystallization. Obviously, β-NA is oriented parallel to flow direction in the melt as shown by the arrows.

Figure S4 The typical POM photographs of β-NA in iPP-0.2.

References

