Highly Enantioselective Ruthenium/PNNP-Catalyzed Imine Aziridination:
Evidence of Carbene Transfer from a Diazoester Complex

Joël Egloff, Marco Ranocchiari, Amata Schira, Christoph Schotes, and Antonio Mezzetti*

Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland

SUPPORTING INFORMATION

Table of Contents

Low-Temperature NMR Spectra of [RuCl(OEt₂)(PNNP)]Y (Y = PF₆, BF₄, or SbF₆) S2
Synthesis of ¹³C- and ¹⁵N-Labeled EDA S8
NMR Spectroscopic Studies: Experiment 1 S9
Experiment 2 S11
Experiment 3 S13
Experiment 4 S18
Experiment 5 S19
Experiment 6 S21
Summary of NMR Spectroscopic Data S23
Optimization of the Asymmetric Aziridination with Selected Imines and Catalysts S25
(2R,3R)-Ethyl 1-Benzhydryl-3-phenylaziridine-2-carboxylate (6a) S26
Ethyl 1-Benzhydryl-3-(4-chlorophenyl)aziridine-2-carboxylate (6b) S27
Ethyl 1-Benzhydryl-3-(4-fluorophenyl)aziridine-2-carboxylate (6c) S29
Ethyl 1-Benzhydryl-3-(4-(methoxycarbonyl)phenyl)aziridine-2-carboxylate (6d) S31
Ethyl 1-Benzhydryl-3-(3-bromophenyl)aziridine-2-carboxylate (6e) S33
Ethyl 1-Benzhydryl-3-(2-naphthalene-2-yl)aziridine-2-carboxylate (6f) S35
Ethyl 1-Benzhydryl-3-(4-isopropylphenyl)aziridine-2-carboxylate (6g) S37
Ethyl 1-Benzhydryl-3-(p-tolyl)aziridine-2-carboxylate (6h) S39
Synthesis of Racemic Aziridines 6a-6g S40
(Z)-Ethyl 3-(Benzhydrylamino)-3-phenylacrylate (12) S40

S1
Low-Temperature NMR Spectra of [RuCl(OEt₂)(PNNP)]Y (Y = PF₆, BF₄, or SbF₆).

As previously reported, [RuCl(OEt₂)(PNNP)]PF₆ (4PF₆) gives a broad 31P NMR signal at δ 41 at room temperature, which decoalesces upon cooling and eventually gives a sharp AX system (δ 55.5 and 36.9) at low temperature.¹ This behavior has been explained with the dissociation of [RuCl(OEt₂)(PNNP)]⁺ to give OEt₂ and the 16-electron species [RuCl(PNNP)]⁺ (2), which is a fast equilibrium on the NMR time scale at room temperature and is frozen out at –40 °C (Scheme 3 of main paper):

The low-temperature 31P NMR spectra of the BF₄⁻ and SbF₆⁻ salts of 4 contain an additional, broad signal at ca. δ 49, which is nearly indistinguishable in the spectrum of 4PF₆. Interestingly, the nature of the counterion affects the temperature at which this signal appears (–80, –60, and –20 °C for 4PF₆, 4BF₄, and 4SbF₆, respectively), as well as its intensity at –80 °C (5, 26, and 45% of the total integrated intensity, see Figures S1-S4). The chemical shift of this signal (δ 49) is indicative of an octahedral complex of the type trans-[RuCl(Y)(PNNP)],¹ in which the counterion Y (Y = BF₄⁻ or SbF₆⁻) is associated with the 16-electron complex.
[RuCl(PNNP)]⁺ in the low-polar CD₂Cl₂ solvent. We have previously suggested⁴ that the inequivalent phosphines of complexes of the type trans-[RuCl(Y)(PNNP)] resonate in a δ region centered at about δ 48, which is the chemical shift of trans-[RuCl₂(PNNP)],² because they are trans to the same donor type, that is, imine. Therefore, these complexes typically give relatively tight AB spin systems. An example thereof is the alkyl complex trans-[RuCl(CH₂COOEt)(PNNP)] (11) (see Figure S6 below). In contrast, in cis-β complexes such as [RuCl(OEt₂)(PNNP)]⁺ (4), one of the phosphines resonates at a much higher frequency (ca. δ 63) than the other one (ca. δ 45). This indicates that these P donors are trans to ligands with a largely different trans influence, such as aqua and imine.¹ The same pattern has been observed for the ³¹P NMR chemical shifts in [Ru(OH₂)₂(PNNP)]²⁺.³

As the signal at δ 49 observed in the low-temperature spectra of [RuCl(OEt₂)(PNNP)]Y is broad even at −80 °C, which prevents further studies by 2D NMR spectroscopy, the formulation of the corresponding species as trans-[RuCl(Y)(PNNP)] remains tentative. Furthermore, the low-temperature ¹⁹F NMR spectra show the essentially unperturbed signals of the free anions at δ −73 (PF₆⁻) and −152 (BF₄⁻) (unsurprisingly, no signal was observed for SbF₆⁻).⁴ Overall, the low-temperature NMR spectra suggest that the dissociation of the Et₂O adduct 4 into five-coordinate 2 and Et₂O is the main dynamic process in solution and fail to give conclusive evidence of the cation/anion interactions evoked by the counterion effect observed in catalysis.
Figure S1. Effect of the counterion Y on the NMR spectra of [RuCl(OEt$_2$)(PNNP)]Y (Y = PF$_6$, 4PF$_6$; BF$_4$, 4BF$_4$; or SbF$_6$, 4SbF$_6$) at –80 °C (202 MHz, CD$_2$Cl$_2$). In the spectra of 4BF$_4$ and 4SbF$_6$, “A” denotes the unknown signal at δ 49. The signals of the aqua complex $trans$-[RuCl(OH$_2$)(PNNP)]$^-$ (present in traces in 4PF$_6$ and 4SbF$_6$) are marked "*". The other signals belong to unknown impurities.
Figure S2. 31P NMR spectra of $[\text{RuCl(OEt}_2\text{)(PNP)}]\text{PF}_6$ (4PF$_6$) at different temperatures (202 MHz, CD$_2$Cl$_2$). The signals of the aqua complex $\text{trans-}[\text{RuCl(OH}_2\text{)(PNP)}]^+$ (traces) are marked "*". The other signals belong to unknown impurities.
Figure S3. 31P NMR spectra of [RuCl(OEt$_2$)(PNNP)]BF$_4$ (4BF$_4$) at different temperatures (202 MHz, CD$_2$Cl$_2$). "A" denotes the unknown signal at δ 49. The other signals belong to unknown impurities.
Figure S4. 31P NMR spectra of [RuCl(OEt$_2$)(PNNP)]SbF$_6$ (4SbF$_6$) at different temperatures (202 MHz, CD$_2$Cl$_2$). "A" denotes the unknown signal at δ 49. The signals of the aqua complex trans-[RuCl(OH$_2$)(PNNP)]$^+$ (traces) are marked "*". The other signals belong to unknown impurities.
Synthesis of 13C- and 15N-Labeled EDA

Ethyl 2-13C-Glycine Hydrochloride. 5 2-13C-glycine (98% 13C, 0.50 g, 4.85 mmol) was suspended in ethanol, and the mixture cooled down to −20 °C (ice-salt bath). SOCl$_2$ (0.58 mL, 8.00 mmol) was added, the temperature raised to room temperature, and another equivalent of solid 2-13C-glycine (0.50 g, 4.85 mmol) was slowly added. The mixture was refluxed for 2 h. After cooling the colorless solution to room temperature, the solvent was evaporated under reduced pressure. The resulting white solid was dried in high vacuum for 2 h and recrystallized from ethanol. Yield: 1.10 g, 95 %. m.p. = 145–147 °C.

Synthesis of N$_2^{13}$CHCO$_2$Et (13C-EDA). 6 Ethyl 2-13C-glycine hydrochloride (1.00 g, 7.1 mmol) was mixed with H$_2$O (2 mL) and CH$_2$Cl$_2$ (4 mL) in a two-necked flask equipped with septum, argon inlet, and internal thermometer. The colorless mixture was cooled down to −5 °C, and an ice-cold solution of NaNO$_2$ (0.59 g, 8.5 mmol) in H$_2$O (2 mL) was added. The resulting mixture was cooled to −9 °C, and a 5% (w/w) H$_2$SO$_4$ solution (0.679 g) was slowly added. As higher temperature might decrease the yield, the temperature was never let to above +1 °C during the addition. Thereafter, the mixture was stirred for 20 min between −9 °C and +1 °C, and then poured into an ice-cold separating funnel. The yellow organic layer was recovered, and the water phase was extracted with CH$_2$Cl$_2$ (2 × 3 mL). The combined organic phase was washed with a 5% ice-cold NaHCO$_3$ solution (6 mL), the organic phase was separated, and the water phase was extracted with CH$_2$Cl$_2$ (2 × 3 mL). The combined organic phase was dried over Na$_2$SO$_4$, filtered, and the solvent was removed under reduced pressure. The resulting yellow oil was dried in vacuum for 15 min, and the product distilled with cold distillation under high vacuum. Yield: g (0.74 g, 81%). 1H NMR (500 MHz, CD$_2$Cl$_2$, 25 °C): δ 4.80 (d, 1H, $^1J_{CH} = 205$ Hz, N$_2^{13}$CH), 4.23
(q, \(^2J_{HH'} = 7.1\), 2H, OCH\(_2\)CH\(_3\)), 1.30 (t, \(^2J_{HH'} = 7.1\), 3H, OCH\(_2\)CH\(_3\)). C NMR (126 MHz, CD\(_2\)Cl\(_2\), 25 °C): δ 46.3 (s, N\(_2\)CH). Low-temperature data: \(^1H\) NMR (500 MHz, CD\(_2\)Cl\(_2\), –78 °C): δ 5.01 (d, 1H, \(^1J_{CH} = 205\) Hz, N\(_2\)CH), 4.72 (d, 1H, \(^1J_{CH} = 205\) Hz, N\(_2\)CH), 4.20 (q, \(^2J_{HH'} = 7.1\), 2H, OCH\(_2\)CH\(_3\)), 4.17 (q, \(^2J_{HH'} = 7.1\), 2H, OCH\(_2\)CH\(_3\)), 1.29 (t, \(^2J_{HH'} = 7.1\), 3H, OCH\(_2\)CH\(_3\)), 1.25 (t, \(^2J_{HH'} = 7.1\), 3H, OCH\(_2\)CH\(_3\)).

13\(^C\) NMR (126 MHz, CD\(_2\)Cl\(_2\), –78 °C): δ 47.5 (s, N\(_2\)CH), 46.5 (s, N\(_2\)CH).

Synthesis of \(^{15}\)NNCHCO\(_2\)Et. (\(^{15}\)N-EDA).\(^6\) Terminally \(^{15}\)N-labeled \(^{15}\)N-EDA was prepared analogously to \(^{13}\)C-EDA from ethyl glycine hydrochloride (1.00 g, 7.1 mmol) and Na\(^{15}\)NO\(_2\) (98% \(^{15}\)N, 0.60 g, 8.5 mmol). \(^1H\) NMR (500 MHz, CD\(_2\)Cl\(_2\), 25 °C): δ 4.80 (br s, 1H, N\(_2\)CH), 4.23 (q, \(^2J_{HH'} = 7.1\), 2H, OCH\(_2\)CH\(_3\)), 1.30 (t, \(^2J_{HH'} = 7.1\), 3H, OCH\(_2\)CH\(_3\)). \(^{15}\)N NMR (50.7 MHz, CD\(_2\)Cl\(_2\), 25 °C): δ 4.05 (br s, 1\(^{15}\)N, \(^{15}\)NC). Low-temperature data: \(^1H\) NMR (500 MHz, CD\(_2\)Cl\(_2\), –78 °C): δ 5.04 (s, 1H, N\(_2\)CH), 4.74 (s, 1H, N\(_2\)CH), 4.20 (q, \(^2J_{HH'} = 7.1\), 2H, OCH\(_2\)CH\(_3\)), 4.17 (q, \(^2J_{HH'} = 7.1\), 2H, OCH\(_2\)CH\(_3\)), 1.29 (t, \(^2J_{HH'} = 7.1\), 3H, OCH\(_2\)CH\(_3\)), 1.25 (t, \(^2J_{HH'} = 7.1\), 3H, OCH\(_2\)CH\(_3\)). \(^{15}\)N NMR (50.7 MHz, CD\(_2\)Cl\(_2\), –78 °C): δ 7.6 (s, 1\(^{15}\)N, \(^{15}\)NC), –1.29 (s, 1\(^{15}\)N, \(^{15}\)NC).

NMR Spectroscopic Studies: General. The reactions described below were run under argon in NMR tubes fitted with serum septa and were monitored by NMR spectroscopy as detailed below. Additions of reagents were performed by microsyringe. A 2-PrOH bath at the appropriate temperature was used to keep the sample temperature at the values indicated below during all manipulations and transfers from and to the spectrometer.

Experiment 1: [RuCl(OEt\(_2\))(PNNP)]PF\(_6\) (4PF\(_6\)) + EDA, then imine 5a (1:1:1). Complex 4PF\(_6\) was prepared by treating [RuCl\(_2\)(PNNP)] (1) (28.0 mg, 0.034 mmol) with (Et\(_3\)O)PF\(_6\) (8.4 mg, 0.034 mmol) in CD\(_2\)Cl\(_2\) (0.5 mL). After stirring the solution at room temperature overnight, the formation of 4PF\(_6\) was confirmed by the \(^31\)P and \(^1H\) NMR spectra at 298 and –78 °C. Then, EDA (3.7 µL, 0.034 mmol) was added at –78 °C, and quantitative
conversion of 4PF_6 to give the carbene complex $\text{trans-[RuCl(CHCOOEt)(PNNP)]}^+$ (10) (71%, δ: 39.8 and 27.0, $^2J_{P,P'} = 29.8$ Hz),\(^7\) dinitrogen complex 9 (15%, δ 49.2, see below), and the AB pattern (marked "*"\) of an unknown impurity (14%, δ 42.3 and 36.3 (d, $^2J_{P,P'} = 24.8$ Hz)) was observed (Figure S5).

Figure S5. 31P NMR spectrum (202 MHz, CD$_2$Cl$_2$, -78 °C) immediately after the addition of EDA (1 equiv) to 4PF_6 at -78 °C, showing carbene complex 10 (71%) along with dinitrogen complex 9 (15%) and an unknown species (14%) whose signals are marked "*".

After adding imine 5a (0.0091 g, 0.034 mmol) to this solution at -78 °C, the 31P NMR spectrum remained unchanged in the temperature range between -78 °C and room temperature. After 4 h at room temperature, a (13C,1H)-HMQC experiment showed that no aziridine had formed. The 31P NMR spectrum of the reaction solution shows no signals attributable to the
carbene complex 10 (Figure S6). The newly appeared tight AB pattern at δ 47.9 (d, J = 28.2 Hz) and 47.8 (d, J = 28.2 Hz) (202 MHz, CD₂Cl₂, 25 °C) was assigned to the alkyl complex trans-[RuCl(CH₂COOEt)(PNNP)] (11) on the basis of the ¹H NMR signals of the RuCH₂COOEt moiety, which were identified by means of (³¹P,¹H)-HMOC and (¹³C,¹H)-HMOC experiments: ¹H NMR (500 MHz, CD₂Cl₂, 25 °C): δ 3.79 (d, 1H, J = 11.2 Hz, RuC₄H₅COOEt), 3.36 (d, 1H, J = 11.2 Hz, RuCH₄COOEt).

Figure S6. ³¹P NMR spectrum (202 MHz, CD₂Cl₂, 25 °C) of the same reaction solution after 4 h at 25 °C showing the signals of trans-[RuCl(CH₂COOEt)(PNNP)] (11), the decay product of 10, and of the N₂ complex 9.

Experiment 2: [RuCl(OEt₂)(PNNP)]PF₆ (4PF₆) + imine 5a, then EDA (1:1:1).

Complex 4PF₆ was prepared by treating [RuCl₂(PNNP)] (1) (30.0 mg, 0.036 mmol) with (Et₂O)PF₆ (9.0 mg, 0.036 mmol) in CD₂Cl₂ (0.5 mL). After stirring the solution at room temperature overnight, the formation of 4PF₆ was confirmed by the ³¹P and ¹H NMR spectra at 298 and −78 °C. Imine 5a (9.8 mg, 0.036 mmol) was added to the mixture at room temperature,
and the 31P and 1H NMR spectra were recorded at 25 °C and at −78 °C. Along with unreacted 4PF$_6$, the signals (marked "*") of the unknown product described above were observed (Figure S7). This species is not an imine complex, as confirmed by (1H,1H)-NOESY analysis and by the observation that it is formed in small amounts also in the reaction of 4PF$_6$ with EDA, that is, in the absence of imine (see Experiment 1, Figure S5). After extracting the sample from the NMR spectrometer, EDA (9.0 mL, 0.036 mmol) was added by microsyringe to the solution at −78 °C. The sample was transferred immediately to the precooled NMR spectrometer (−78 °C) and the 31P and 1H NMR spectra were recorded.

Figure S7. 31P NMR spectrum (202 MHz, CD$_2$Cl$_2$, −78 °C) of the reaction solution of 4PF$_6$ with imine 5a (1 equiv). Unreacted 4PF$_6$ is the main species in solution, along with the unknown species marked "*".
The 31P NMR spectrum of the reaction solution (not shown) indicates that 4PF_6 was quantitatively converted to the carbene complex $\text{trans-[RuCl(CHCOOEt)(PNNP)]}^+$ (10) (74%) and to the dinitrogen complex 9 (15%). Upon warming to room temperature in 20 °C steps, the composition of the solution did not change, and no aziridine was formed, as indicated by (13C,1H)-HMOCQ experiments. The signals of impurity (signal "**", 11%) remained unchanged up to room temperature and disappeared within 4 h time. After 4 h at room temperature, all the species had converted to dinitrogen complex 9 (60%) and to the alkyl complex $[\text{RuCl(CH}_2\text{COOEt})(\text{PNNP})]$ (11, 40%, δ 47.8, AB system) already observed in Experiment 1.

Experiment 3: $[\text{RuCl(OEt}_2(\text{PNNP})]\text{PF}_6$ (4PF_6) + imine 5a, then 13C-EDA (1:1:10).

Complex 4PF_6 was prepared by treating $[\text{RuCl}_2(\text{PNNP})]$ (1) (24.3 mg, 0.029 mmol) with (Et$_3$O)PF$_6$ (7.3 mg, 0.029 mmol) in CD$_2$Cl$_2$ (0.5 mL). After stirring the solution at room temperature overnight, the formation of 4PF_6 was confirmed by the 31P and 1H NMR spectra at 25 °C and −78 °C. Then, imine 5a (7.9 mg, 0.029 mmol) was added to the solution, which was cooled again. EDA (32.2 µL, 0.293 mmol) was added at −78 °C, and the 13C, 1H, and 31P NMR spectra were run at the same temperature, as well as a (13C,1H)-HMOCQ experiment. The (13C,1H)-HMOCQ correlation showed the signals of unreacted 13C-EDA as major product (Figure S8).

The signal (marked "†") of an additional 13C-containing species with a $J_{C,H}$ comparable to that of 13C-EDA was present, but disappeared after heating to −20 °C. As this signal has never been observed at temperatures higher than −20 °C, we deem it immaterial for the further discussion. The 31P NMR spectrum showed the quantitative conversion of the Et$_2$O adduct 4PF_6 to several unknown species. Outside the spectral range shown in Figure S8, traces of $\text{trans-[RuCl}^{(13}\text{CHCOOEt)(PNNP)]}^+$ (10) and of 13C-labeled dietyl maleate (7) were detected.
Figure S8. Section of a (13C,1H)-HMQC experiment after EDA addition (10 equiv) to a solution containing complex 4PF₆ and imine 5a (1 equiv) at −78 °C (500 MHz (1H), CD₂Cl₂). The signal marked "†" belongs to an unknown species (see footnote 25 of paper).

As no aziridine 6a was observed at −80 °C, the sample was carefully warmed up to −20 °C. At this temperature, a (13C,1H)-HMQC correlation experiment indicated that a small amount of 13C-aziridine had formed. To slow down the reaction, the sample was cooled to −60 °C, at which temperature a (13C,1H)-HMQC experiment revealed new signals that we assign to coordinated 13C-EDA in [RuCl(13C-EDA)(PNNP)]PF₆ (8) (see Figure 2 of main paper). At the same temperature, the 31P NMR spectrum shows the signals of the dinitrogen complex 9 (31%) and the same AB system observed in Experiment 2 upon addition of imine to the Et₂O adduct 4PF₆ (signal marked "*", 9%) (see Figure 3 of main paper). The main feature of the spectrum consists of two AB patterns in equal ratio, 8a (31%) and 8b (31%) (δ(8a) 42.4 (d, $^2J_{P,P'} = 25.3$ Hz) and 35.8 (d, $^2J_{P,P'} = 25.2$ Hz); δ(8b) 41.1 (d, $^2J_{P,P'} = 25.3$ Hz), 34.8 (d, $^2J_{P,P'} = 25.4$ Hz)), which we assign to the diazoester complex trans-[RuCl(N₂13CHCOOEt)(1a)]⁺ (13C-8).
Figure S9. Section of (31P,1H)-HMOC NMR spectrum of EDA complex 13C-8 (500 MHz (1H), CD$_2$Cl$_2$, -60 °C). The signals of 13C-8 are labeled "8a" and "8b", those marked with "*" belong to the impurity seen in Figures S5 and S7.

Despite the fact that no NOESY contacts were detected between the sp^2 diazoester proton (N$_2$-13C-H) and any other signal of the PNNP ligand, the diazoester complex 8 was identified unambiguously by (31P,1H)-HMOC and by the use of 15N labeled EDA (see Experiment 4 below). The (31P,1H)-HMOC spectrum showed cross peaks between the 31P signals and the N$_2$-13C-H proton of the coordinated diazoester in 8a and 8b, which had been previously identified by the (13C,1H)-HMOC spectrum of 8 at -60 °C (Figure S9). Additionally, this spectrum shows a $^4J_{P,H}$ coupling constant of about 18 Hz for both imine H atoms (despite their signals are overlapped with those of the other Ru/PNNP complexes in solution (Figure S10). This is diagnostic of two trans-P–Ru–N moieties and hence of the trans configuration.\(^1\) Finally, (1H-1H)-NOESY and (31P,1H)-HMOC experiments indicate that the species giving signals 8a and 8b are exchanging...
with each other even at −40 °C. Again, we attribute this observation to the interconversion between the s-cis and s-trans isomers of the CHCOOEt moiety of complex 8 (see above).

Figure S10. Section of the \(^{(31}P,^1H\)-HMQC spectrum of trans-[RuCl(EDA)(PNNP)]\(^+\) (8) (500 MHz, CD\(_2\)Cl\(_2\), −60 °C) showing coupling of both imine H atoms to phosphorus.

Upon raising the temperature in 20 °C-steps, the \(^{31}\)P NMR signals of the rotamers of the EDA complex 8 coalesced at −20 °C to give the a single well-resolved AB system at 20 °C (8, \(\delta_{42.1} (d, \ ^{2}J_{P,P'} = 24.2\) Hz), \(\delta_{36.9} (d, \ ^{2}J_{P,P'} = 24.2\) Hz)) (see Figure 4 of paper). In the temperature interval between 253 and 20 °C, imine 5a was fully converted to aziridine 6a, and the signals of free \(^{13}\)C-EDA disappeared from the \(^1H\) and \(^{13}\)C NMR spectra. After few minutes at 20 °C, the \(^{13}\)C-EDA complex 8 was converted to the carbene complex trans-[RuCl(\(^{13}\)CHCOOEt)(PNNP)]\(^+\) (\(^{13}\)C-10) (Figure S11).
Figure S11. 31P NMR spectrum of the reaction solution of 4PF_6 with imine 5a (1 equiv) and 13C-EDA (10 equiv) after few minutes at room temperature (202 MHz, CD$_2$Cl$_2$, 25 °C). The main species in solution is the carbene complex 13C-10. The other signals belong to the EDA complex 13C-8 (in the fast exchange regime), dinitrogen complex 9, and to the unknown impurity "*" (see Figures S5 and S7).

The 31P and 13C NMR spectra indicated that the conversion of 8 to 10 begins after the disappearance of free 13C-EDA from the reaction solution and is quantitative after 15 min. Then, the trans-carbene complex 10 decomposes within 4 h to the alkyl derivative [RuCl(13CH$_2$COOEt)(PNNP)] (11). The main signals in the 31P NMR spectrum after 10 h at 20 °C are those of the dinitrogen complex 9 (55%) at δ 49.2 and of alkyl complex 11 at ca. δ 47.9 (45%, AB part of an ABX system, where X is 13C) (Figure S12). As previously observed in Experiment 1, the alkyl complex 10 was detected as the main product after 3 days at 25 °C. At present, we have no explanation for its formation from trans-carbene 9.
Figure S12. 31P NMR spectrum of the reaction solution in Figure S11 after 4 h at room temperature (202 MHz, CD$_2$Cl$_2$, 25 °C) showing the signals of alkyl complex 11 and of the N$_2$ complex 12.

Experiment 3 was repeated three times with essentially the same results. In the last run, the 13C NMR signals of the coordinated diazoester of the EDA adduct 8 at δ 58.0 were irradiated at 0 °C, which left the intensity of the signal of free N$_2^{13}$CHCOOEt unchanged, indicating that the exchange between free and coordinated EDA is slow on the NMR time scale at this temperature.

Experiment 4: [RuCl(OEt$_2$)(PNNP)]PF$_6$ (4PF$_6$) + imine 5a, then 15N-EDA (1:1:10). To prove the coordination of EDA to ruthenium, the former experiment was repeated with 15N-labeled EDA (10 equiv) instead of 13C-EDA. The Ru:imine:15N-EDA ratio was 1:1:10. [RuCl$_2$(PNNP)] (1) (21.5 mg, 0.026 mmol) and (Et$_3$O)PF$_6$ (6.4 mg, 0.026 mmol) were dissolved in CD$_2$Cl$_2$ (0.5 mL) and stirred overnight at room temperature, and 31P and 1H NMR spectra were recorded at 25 °C and −78 °C. Imine 5a (7.0 mg, 0.026 mmol) was added to the solution at room
temperature. Then, after cooling the sample to –78 °C, \(^{15}\text{N}-\text{EDA}\) (28.4 µL, 0.259 mmol) was added at –78 °C, and the sample was transferred to the precooled NMR spectrometer.

After warming to –20 °C for 15 min to ensure aziridine formation, the sample was cooled at –60 °C. A \((^{13}\text{C},^{1}\text{H})\)-HMQC experiment confirmed the formation of the aziridine. The \(^{31}\text{P}\) NMR spectrum at the same temperature (–60 °C) showed that the Et\(_2\)O adduct \(4\text{PF}_6\) was quantitatively converted to the diazoeaster complex \(8\) (signals \(8\text{a}+8\text{b}\)), the unknown impurity at \(\delta\) 42.3 and 36.3, and to the dinitrogen complex \(9\) with the same pattern observed in Experiment 3. As no P,N coupling was detected, the sample was further cooled down to –80 °C. At this temperature, the high-frequency \(^{31}\text{P}\) NMR signals of trans-[RuCl\((^{15}\text{N}_2\text{CHCOOEt})(\text{PNNP})]\)\(^{+}\) (\(^{15}\text{N}-8\)) showed coupling to \(^{15}\text{N}\) (\(\delta\) 42.4 and 41.1, \(^2J_{\text{P,P}} = 25.3, ^2J_{\text{P,N}} = 2.4\) Hz for both) (see Figure 5 of paper). Additionally, the \(^{15}\text{N}\) NMR spectrum at –60 °C showed two broad signals corresponding to the two isomers of \(^{15}\text{N}-8\) along with free \(^{15}\text{N}-\text{EDA}, ^{15}\text{NN},\) and coordinated \(^{15}\text{NN}\) (see Figure 6 of paper).

Experiment 5: [RuCl(OEt\(_2\))(PNNP)]PF\(_6\) (4PF\(_6\)) + \(^{13}\text{C}\)-EDA, then 5a (1:10:1). The goal of this experiment was to check whether aziridine \(5\text{a}\) is formed in the presence of the diazoeaster complex \(8\) after quantitative consumption of EDA. [RuCl\(_2\)(PNNP)] (1) (21.8 mg, 0.026 mmol) and (Et\(_3\)O)PF\(_6\) (6.5 mg, 0.026 mmol) were dissolved in CD\(_2\)Cl\(_2\) (0.5 mL) and stirred at room temperature overnight. The formation of \(4\text{PF}_6\) was confirmed by \(^{31}\text{P}\) and \(^{1}\text{H}\) NMR spectroscopy at 25 °C and –78 °C. Then, \(^{13}\text{C}\)-EDA (28.8 µL, 0.262 mmol) was added at –78 °C, and the mixture was warmed to 0 °C. After 30 min, the \(^{1}\text{H}\) and \(^{13}\text{C}\) NMR signals of free EDA had disappeared. Then, the mixture was cooled to –78 °C, and \(^{31}\text{P}\) NMR spectrum showed the signals of the EDA adduct \(8\) (\(8\text{a}+8\text{b}\)), N\(_2\) complex \(9\), and of the unknown impurity (marked "*"Star") (Figure S13), with the same pattern observed in the presence of imine \(5\text{a}\) (see Experiment 2).
Figure S13. 31P NMR spectrum (202 MHz, CD$_2$Cl$_2$, –78 °C) recorded just after the addition of 13C-EDA (10 equiv) to 4PF$_6$ showing the signals of the EDA complex 13C-8 (8a and 8b). The other signals are those of the dinitrogen complex 9 and of the unknown impurity (marked "*", see Figure S5).

Then, imine 5a (7.1 mg, 0.026 mmol) was added to the solution at –78 °C. The sample temperature was increased in 20 °C-steps. At –20 °C, a (13C,^1H)-HMQC experiment (Figure S14) indicated the formation of aziridine 6a and the decomposition of the diazoester complex 8 to the carbene complex 10 as usually observed after the consumption of free EDA.
Figure S14. Section of the (13C,1H)-HMOC experiment after addition of imine 5a (1 equiv) to a solution containing the EDA adduct 8 at −78 °C (500 MHz (1H), CD$_2$Cl$_2$).

Experiment 6: Non-labeled [RuCl(CHOOEt)(PNNP)]$^+$ (10) + 13C-EDA (1:2). [RuCl$_2$(PNNP)] (1) (19.8 mg, 0.024 mmol) and TlPF$_6$ (8.3 mg, 0.024 mmol) were dissolved in CD$_2$Cl$_2$ (0.5 mL) and stirred overnight at room temperature, The 31P and 1H NMR spectra at 25 °C showed the formation of the five-coordinate complex [RuCl(PNNP)]PF$_6$ (2). Then, EDA (5.2 µL, 0.024 mmol) was added at room temperature, and the mixture was cooled down to −78 °C. The 31P and 1H NMR spectra showed full conversion of [RuCl(PNNP)]PF$_6$ (2) to [RuCl(CHCOOEt)(1a)]$^+$ (10) (85%) and to the dinitrogen complex 9 (15%) (Figure S15).

Upon addition of 13C-EDA (10.4 µL, 0.048 mmol) at −78 °C, the (13C,1H)-HMOC and 1H NMR spectra showed the signals of the diazoester complex [RuCl(N$_2$13CHCOOEt)(PNNP)]$^+$ (8), traces of [RuCl(13CHCOOEt)(PNNP)]$^+$ (13C-10), and the signals of different isotopomers of diethyl maleate. The isotopic distribution, as determined by integration of the 1H NMR spectrum, was 41% diethyl 2-(13C)-maleate, 52% diethyl 2,3-bis(13C)-maleate, and 7% diethyl maleate.
Upon increasing the temperature, the ratio between labeled \([\text{RuCl}^{13}\text{CHCOOEt}(\text{PNNP})]\text{PF}_6^{13}\text{C-10})\) and the nonlabeled analogue \([\text{RuCl(CHCOOEt)(PNNP)}]\text{PF}_6\text{ (10)}) gradually increased.

Figure S15. ^{31}P NMR spectrum of the reaction solution of \([\text{RuCl}(\text{PNNP})]\text{PF}_6\text{ (2)}) with EDA (1 equiv) at room temperature (202 MHz, CD$_2$Cl$_2$, –78 °C). The products are the carbene complex 10 (84%) and the dinitrogen complex 9 (16%).
Summary of NMR Spectroscopic Data

cis-\(\beta\)-[RuCl(OEt\(_2\))(PNNP)]\(^+\) (4PF\(_6\)):

\(\text{\(^{31}\)P NMR}\) (202 MHz, CD\(_2\)Cl\(_2\), –78 °C): \(\delta\) 55.5 \((d, \text{\(^2\)}J\(_{P,P'}\) = 29.5 Hz), 36.9 \((d, \text{\(^2\)}J\(_{P,P'}\) = 29.5 Hz).

Diethylmaleate (7):

\(\text{\(^1\)H NMR}\) (500 MHz, CD\(_2\)Cl\(_2\), –78 °C): \(\delta\) 6.29 \((s, 2\text{H})\).

\(\text{\(^2\)C-diethylmaleate}\):

\(\text{\(^1\)H NMR data}\) (500 MHz, CD\(_2\)Cl\(_2\), –78 °C): \(\delta\) 6.29 \((\text{\(^DD\)}\), 1H, \(\text{\(^2\)}J\(_{C,H}\) = 2.0 Hz, \(\text{\(^2\)}J\(_{H,H'}\) = 11.9 Hz, H\(^1\)).

\(2,3\)-bis\(\text{\(^13\)C-diethylmaleate}\)

\(\text{\(^1\)H NMR data}\) (500 MHz, CD\(_2\)Cl\(_2\), –78 °C): \(\delta\) 6.29 \((\text{AA' of an AA'XX' system, 2H, \(\text{\(^1\)}J\(_{C,H}\) = 166 Hz, \(\text{\(^2\)}J\(_{C,H}\) = 16.7 Hz, \(\text{\(^3\)}J\(_{C,H}\) = 6.81)}\).

trans-[RuCl(N\(_2\)CHCOOEt)(PNNP)]\(^+\) (\(\text{\(^13\)C-8}\)):

\(\text{\(^{31}\)P NMR}\) (202 MHz, CD\(_2\)Cl\(_2\), –60 °C): \(\delta\) 42.4 \((d, \text{\(^2\)}J\(_{P,P'}\) = 25.3 Hz), 41.1 \((d, \text{\(^2\)}J\(_{P,P'}\) = 25.3 Hz), 35.8 \((d, \text{\(^2\)}J\(_{P,P'}\) = 25.2 Hz), 34.8 \((d, \text{\(^2\)}J\(_{P,P'}\) = 25.4 Hz). 25 °C: \(\delta\) 42.1 \((d, \text{\(^2\)}J\(_{P,P'}\) = 24.2 Hz), 36.9 \((d, \text{\(^2\)}J\(_{P,P'}\) = 24.2 Hz).

\(\text{\(^1\)H NMR}\) (500 MHz, CD\(_2\)Cl\(_2\), –60 °C): \(\delta\) 3.97 \((\text{\(^DD\)}\), 1H, \(\text{\(^1\)}J\(_{C,H}\) = 203 Hz, RuN\(_2\)C\(_H\)COOEt) 3.72 \((\text{\(^DD\)}\), 1H, \(\text{\(^1\)}J\(_{C,H}\) = 205 Hz, RuN\(_2\)C\(_H\)COOEt).

\(\text{\(^{13}\)C NMR}\) (126 MHz, CD\(_2\)Cl\(_2\), –60 °C): \(\delta\) 58.1 \((s, \text{RuN\(_2\)C\(_H\)COOEt}), 58.0 \((s, \text{RuN\(_2\)C\(_H\)COOEt})\).

trans-[RuCl(\(\text{\(^{15}\)NCHCOOEt})\)\(\text{(PNNP)}\)]\(^+\) (\(\text{\(^{15}\)N-8}\)):

\(\text{\(^{15}\)N NMR}\) (50.7 MHz, CD\(_2\)Cl\(_2\), –60 °C): \(\delta\) –24.9 \((s, 1\text{N}, \text{\(^{15}\)NNC}), –25.3 \((s, 1\text{N}, \text{\(^{15}\)NNC}).

\(\text{\(^{31}\)P NMR}\) (202 MHz, CD\(_2\)Cl\(_2\), –80 °C): \(\delta\) 42.4 \((dd, \text{\(^2\)}J\(_{P,P'}\) = 25.3 Hz, \text{\(^2\)}J\(_{P,N}\) = 2.4 Hz), 41.1 \((\text{\(^2\)}J\(_{P,P'}\) = 25.3 Hz, \text{\(^2\)}J\(_{P,N}\) = 2.4 Hz), 35.8 \((d, \text{\(^2\)}J\(_{P,P'}\) = 25.2 Hz), 34.8 \((d, \text{\(^2\)}J\(_{P,P'}\) = 25.4 Hz).

Dinitrogen Complex [RuCl\(\text{(N\(_2\)PNNP)}\)] (9):

\(\text{\(^{31}\)P NMR}\) (202 MHz, CD\(_2\)Cl\(_2\), –78 °C): \(\delta\) 49.2 \((s). 20 °C: \(\delta\) 49.2 \((br s).\)

\(\text{\(^{15}\)N NMR}\) (50.7 MHz, CD\(_2\)Cl\(_2\), –60 °C): \(\delta\) –89.9 \((br, 1\text{N, Ru–\(^{15}\)NN}), –40.2 \((s, 1\text{N, Ru–\(^{15}\)N}).\)
trans-[RuCl(CH\textsubscript{2}COOEt)(PNNP)]+ (13C-10):

31P NMR (202 MHz, CD\textsubscript{2}Cl\textsubscript{2}, 25 °C): 38.3 (dd, 2J\textsubscript{P,C} = 13.9 Hz, 2J\textsubscript{PP} = 30.4 Hz), 28.7 (dd, 2J\textsubscript{P,C} = 13.9 Hz, 2J\textsubscript{PP} = 30.4 Hz).

trans-[RuCl(CH\textsubscript{2}COOEt)(PNNP)] (11):

31P NMR (202 MHz, CD\textsubscript{2}Cl\textsubscript{2}, 25 °C): 47.9 (d, 2J\textsubscript{PP} = 28.2 Hz), 47.8 (d, 2J\textsubscript{PP} = 28.2 Hz).

1H NMR (500 MHz, CD\textsubscript{2}Cl\textsubscript{2}, 25 °C): \delta 3.79 (d, 1H, 1J\textsubscript{HH} = 11.2 Hz, RuCH\textsubscript{H}COOEt), 3.36 (d, 1H, 1J\textsubscript{HH} = 11.2 Hz, RuCHH+COOEt).

13C-Labeled Unknown Species containing a X=C(H)Y moiety observed below −20 °C (see Figure S8 and footnote 25 of main paper):

1H NMR (500 MHz, CD\textsubscript{2}Cl\textsubscript{2}, −78 °C): \delta 4.21 (d, 1H, 1J\textsubscript{CH} = 206 Hz), 4.21 (d, 1H, 1J\textsubscript{CH} = 213 Hz).

13C NMR (126 MHz, CD\textsubscript{2}Cl\textsubscript{2}, −78 °C): \delta 55.4 (s), 54.6 (s).
Table S1. Optimization of the Asymmetric Aziridination with Selected Imines and Catalysts.\(^a\)

<table>
<thead>
<tr>
<th>entry</th>
<th>Y</th>
<th>imine</th>
<th>EDA (equiv)</th>
<th>crude 6(^b) yield (%)</th>
<th>cis:trans</th>
<th>isolated cis-6 yield (%)(^c)</th>
<th>ee (%)(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PF(_6)</td>
<td>5a</td>
<td>1</td>
<td>22</td>
<td>77:23</td>
<td>13</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>PF(_6)</td>
<td>5a</td>
<td>4</td>
<td>35</td>
<td>79:21</td>
<td>30</td>
<td>53(^e)</td>
</tr>
<tr>
<td>3</td>
<td>BF(_4)</td>
<td>5a</td>
<td>1</td>
<td>32</td>
<td>78:22</td>
<td>24</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>BF(_4)</td>
<td>5a</td>
<td>4</td>
<td>53</td>
<td>81:19</td>
<td>20</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>SbF(_6)</td>
<td>5a</td>
<td>1</td>
<td>32</td>
<td>85:15</td>
<td>24</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td>SbF(_6)</td>
<td>5a</td>
<td>4</td>
<td>58</td>
<td>78:22</td>
<td>40</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td>BF(_4)</td>
<td>5b</td>
<td>1</td>
<td>36</td>
<td>86:14</td>
<td>23</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>BF(_4)</td>
<td>5b</td>
<td>4</td>
<td>50</td>
<td>74:26</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>SbF(_6)</td>
<td>5b</td>
<td>1</td>
<td>18</td>
<td>85:15</td>
<td>14</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>BF(_4)</td>
<td>5c</td>
<td>1</td>
<td>24</td>
<td>79:21</td>
<td>16</td>
<td>68</td>
</tr>
<tr>
<td>11</td>
<td>BF(_4)</td>
<td>5c</td>
<td>4</td>
<td>20</td>
<td>65:35</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>SbF(_6)</td>
<td>5c</td>
<td>1</td>
<td>16</td>
<td>84:16</td>
<td>9</td>
<td>75</td>
</tr>
<tr>
<td>13</td>
<td>SbF(_6)</td>
<td>5d</td>
<td>1</td>
<td>30</td>
<td>cis only</td>
<td>24</td>
<td>79</td>
</tr>
<tr>
<td>14</td>
<td>SbF(_6)</td>
<td>5e</td>
<td>1</td>
<td>46</td>
<td>93:7</td>
<td>34</td>
<td>83</td>
</tr>
<tr>
<td>15</td>
<td>BF(_4)</td>
<td>5f</td>
<td>1</td>
<td>32</td>
<td>81:19</td>
<td>24</td>
<td>70</td>
</tr>
<tr>
<td>16</td>
<td>BF(_4)</td>
<td>5f</td>
<td>4</td>
<td>53</td>
<td>77:23</td>
<td>38</td>
<td>60</td>
</tr>
<tr>
<td>17</td>
<td>SbF(_6)</td>
<td>5f</td>
<td>1</td>
<td>40</td>
<td>90:10</td>
<td>33</td>
<td>93</td>
</tr>
<tr>
<td>18</td>
<td>SbF(_6)</td>
<td>5g</td>
<td>1</td>
<td>11</td>
<td>cis only</td>
<td>4</td>
<td>57</td>
</tr>
<tr>
<td>19</td>
<td>SbF(_6)</td>
<td>5h</td>
<td>1</td>
<td>25</td>
<td>90:10</td>
<td>17</td>
<td>63</td>
</tr>
</tbody>
</table>

\(^a\) Reaction conditions: EDA (0.48 mmol, 1 equiv, or 1.92 mmol, 4 equiv, neat) was added in one portion to a CH\(_2\)Cl\(_2\) solution (3 mL) containing the imine (0.48 mmol) and the catalyst (10 mol%) prepared by activation of [RuCl\(_2\)(PNNP)] \((1)\) (0.048 mmol) with (Et\(_3\)O)Y (0.048 mmol). The total reaction time was 24 h at 0 °C. \(^b\) Based on the imine, determined by \(^1\)H NMR spectroscopy. \(^c\) Isolated yield. \(^d\) The absolute configuration of 6b-6h was not assigned. \(^e\) The isolated aziridine was contaminated with variable amounts of diethyl maleate.
(2R,3R)-Ethyl 1-Benzhydryl-3-phenylaziridine-2-carboxylate (6a). The reaction of 5a and EDA gave aziridine 6a as a white solid after workup (see above). 1H NMR and 13C NMR spectroscopic data are in agreement with published values. 8 1H NMR (CDCl$_3$, 300.2 MHz): δ 1.00 (t, 3H, $J= 7.11$ Hz, CH$_3$), 2.71 (d, 1H, $J= 6.84$ Hz, NCHCOOEt), 3.96 (q, 2H, $J= 7.14$ Hz, COOCH$_3$), 3.99 (s, 1H, CHPh$_2$), 7.18 – 7.64 (m, 14H, H$_{arom}$). 13C NMR (CDCl$_3$, 125.8 MHz): δ 14.0, 46.5, 48.1, 60.6, 77.8, 127.3 – 128.6, 135.1, 134.0, 142.5, 142.6, 167.8. Chiral HPLC: IB column, 3 μm, eluent: hexane/2-propanol (95:5), flow rate 2.0 mL/min, R_t (min) = 1.8 (minor, (2S,3S)-6a), 2.8 (major, (2R,3R)-6a). $[\alpha]_D^{20} = 22.9 \pm 1$ (c = 1.5, CHCl$_3$) @ 93% ee (Table S1, entry 5). Absolute configuration assigned on the basis of the sign of the reported optical rotation. 8 HRMS (MALDI): Calcd. for C$_{24}$H$_{24}$NO$_2$ m/z 358.1802 found m/z 358.1801.

Figure S16. HPLC traces of 6a.

Catalysis Product

Racemate
Ethyl 1-Benzhydryl-3-(4-chlorophenyl)aziridine-2-carboxylate (6b). The reaction of 5b and EDA gave 6b as a white solid after workup (see above). 1H NMR (CDCl$_3$, 500.2 MHz): δ 1.06 (t, 3H, J= 6.95 Hz, H13), 2.72 (d, 1H, J= 6.35 Hz, H1), 3.20 (d, 1H, J= 6.45 Hz, H2), 3.97 (s, 1H, H15), 3.99 (q, 2H, J= 6.55 Hz, H12), 7.22 – 7.62 (m, 14H, H$_{arom}$). 13C NMR (CDCl$_3$, 125.8 MHz): δ 14.4, 46.9, 47.7, 61.1, 78.1, 127.6 – 129.6, 133.6, 134.0, 142.6, 142.8, 167.9. Chiral HPLC: IB column, 3 μm; eluent: hexane/2-propanol (95:5); flow rate: 2.0 mL/min; R_t (min) = 1.9 (minor), 2.8 (major), 91% ee (Table S1, entry 9). [α]$_{D}^{20}$ = 21.4 ± 0.1 @ 91% ee (c = 0.368, CHCl$_3$). The absolute configuration was not assigned. HRMS (MALDI): Calcd. for C$_{24}$H$_{23}$ClN$_2$O$_2$ m/z 392.1412 found m/z 392.1412.

Figure S17. HPLC traces of 6b.

Catalysis Product

Racemate
Figure S18. 1H NMR Spectrum of 6b (500.2 MHz, CDCl$_3$).

Figure S19. 13C NMR Spectrum of 6b (125.8 MHz, CDCl$_3$).
Ethyl 1-Benzhydryl-3-(4-fluorophenyl)aziridine-2-carboxylate (6c). The reaction of 5c and EDA gave 6c as a white solid after workup (see above). 1H NMR (CDCl$_3$, 500.2 MHz): δ 1.05 (t, 3H, J= 7.10 Hz, H13), 2.71 (d, 1H, J= 6.80 Hz, H1), 3.22 (d, 1H, J= 6.85 Hz, H2), 3.97 (s, 1H, H15), 3.99 (q, 2H, J= 6.60 Hz, H12), 6.96 – 7.64 (m, 14H, H$_{arom}$). 13C NMR (CDCl$_3$, 125.8 MHz): δ 14.4, 46.8, 47.7, 61.1, 78.1, 115.0, 115.2, 127.9 – 129.0, 142.7, 142.9, 161.7, 163.6, 168.0. Chiral HPLC: IB column, 3 μm; eluent: hexane/2-propanol (95:5); flow rate: 2.0 mL/min; R_t (min) = 1.8 (minor); 2.9 (major), 75% ee (Table S1, entry 12). $[\alpha]_{D}^{20}$ = 39 ± 0.1 @ 75% ee (c = 0.232, CHCl$_3$). The absolute configuration was not assigned. HRMS (MALDI): Calcd. for C$_{24}$H$_{23}$FN$_2$O$_2$ m/z 376.1707 found m/z 376.1707.

Figure S20. HPLC traces of 6c.

Catalysis Product

![HPLC trace of Catalysis Product](image)

Racemate

![HPLC trace of Racemate](image)
Figure S21. 1H NMR Spectrum of 6c (500.2 MHz, CDCl$_3$).

Figure S22. 13C NMR Spectrum of 6c (125.8 MHz, CDCl$_3$).
Ethyl 1-Benzhydryl-3-(4-(methoxycarbonyl)phenyl)aziridine-2-carboxylate (6d). The reaction of 5d and EDA gave 6d as a white solid after workup (see above). 1H NMR (CDCl$_3$, 400 MHz): δ 1.02 (t, $J = 7.2$ Hz, 3H, H17), 2.77 (d, $J = 6.8$ Hz, 1H, H1), 3.26 (d, $J = 6.8$ Hz, 1H, H2), 3.91 (s, 3H, H10), 3.96 (qd-like, AB part of ABX$_3$ system, 2H, $^3J = 7.2$, 2H, H16), 4.00 (s, 1H, H19), 7.18 – 7.64 (m, 12H, H$_{arom}$), 7.97 (m, 2H, H$_{arom}$). 13C NMR (CDCl$_3$, 101 MHz): δ 14.02, 46.72, 47.62, 52.02, 60.76, 77.62, 127.17, 127.34, 127.44, 127.53, 127.89, 128.56, 129.12, 129.23, 140.31, 142.15, 142.30, 166.96, 167.32. Chiral HPLC: IB column, 3 μm; eluent: hexane/2-propanol (95:5); flow rate: 2.0 mL/min; R_t (min) = 2.9 (minor); 4.2 (major), 79% ee (Table S1, entry 13). $[\alpha]_{D}^{20} = 7.7 \pm 0.1$ @ 79% ee (c = 1.16, CHCl$_3$). The absolute configuration was not assigned. HRMS (MALDI): Calcd. for C$_{26}$H$_{26}$NO$_4$ m/z 416.1856 found m/z 416.1857.

Figure S23. HPLC traces of 6d.

Catalysis Product

Racemate
Figure S24. 1H NMR Spectrum of 6d (400 MHz, CDCl$_3$).

Figure S25. 13C NMR Spectrum of 6d (101 MHz, CDCl$_3$).
Ethyl 1-Benzhydryl-3-(3-bromophenyl)aziridine-2-carboxylate (6e). The reaction of 5e and EDA gave 6e as a white solid after workup (see above). ¹H NMR (CDCl₃, 500.2 MHz): δ 1.08 (t, 3H, J= 7.1 Hz, H14), 2.75 (d, 1H, J= 6.8 Hz, H1), 3.20 (d, 1H, J= 6.8 Hz, H2), 4.0 (s, 1H, H1), 4.02 (qd like, AB part of ABX₃ system, 2H, 3J= 7 Hz, H13), 7.14 – 7.66 (m, 14H, H_arom). ¹³C NMR (CDCl₃, 125.8 MHz): δ 14.05, 46.63, 47.20, 60.80, 77.66, 121.91, 126.59, 127.21, 127.35, 127.51, 127.58, 128.57, 129.42, 130.54, 130.90, 137.51, 142.16, 142.33, 167.45.

Chiral HPLC: IB column, 3μm; eluent: hexane/2-propanol (95:5); flow rate: 2.0 mL/min; R_t (min) = 1.9 (minor); 3.1 (major), 83% ee (Table S1, entry 14). [α]_D²⁰ = 30.4 ± 0.2 @ 83% ee (c = 1.44, CHCl₃). The absolute configuration was not assigned. HRMS (MALDI): Calcd. for C₂₄H₂₃BrNO₂ m/z 436.0907 found m/z 436.0906.

Figure S26. HPLC traces of 6e.

Catalysis Product

![UV_VIS_2 WVL:230 nm](image1)

Racemate

![UV_VIS_2 WVL:230 nm](image2)
Figure S27. 1H NMR Spectrum of 6e (500.2 MHz, CDCl$_3$).

Figure S28. 13C NMR Spectrum of 6e (125.8 MHz, CDCl$_3$).
Ethyl 1-Benzhydryl-3-(2-naphthalene-2-yl)aziridine-2-carboxylate (6f). The reaction of 5f and EDA gave 6f as a white solid after workup (see above). \(^{1}\)H NMR (CDCl\(_3\), 500.2 MHz): δ 0.98 (t, 3H, J = 7.4 Hz, H13), 2.80 (d, 1H, J = 6.85 Hz, H1), 3.40 (d, 1H, J = 6.80 Hz, H2), 3.94 (q, 2H, J = 7.50 Hz, H12), 4.06 (s, H15) 7.19 – 7.92 (m, 14H, H\(_{arom}\)). \(^{13}\)C NMR (CDCl\(_3\), 125.8 MHz): δ 14.1, 46.9, 48.4, 60.8, 77.9, 125.8 – 128.7, 132.8, 133.0, 133.1, 142.5, 142.6, 167.9. Chiral HPLC: IB column, 3μm; eluent: hexane/2-propanol (95:5); flow rate: 2.0 mL/min; R, (min) = 2.7 (minor), 3.2 (major), 93% ee (Table S1, entry 17). \([\alpha]_D^{20} = 10.0 \pm 0.3 @ 93\% \text{ ee (c = 0.81, CHCl}_3)\). The absolute configuration was not assigned. HRMS (MALDI): Calcd. for C\(_{28}\)H\(_{26}\)NO\(_2\) m/z 408.1958 found m/z 408.1958.

Figure S29. HPLC traces of 6f.

Catalysis Product

![HPLC traces of 6f](image)

Racemate

![HPLC traces of 6f](image)
Figure S30. 1H NMR Spectrum of 6f (500.2 MHz, CDCl$_3$).

Figure S31. 13C NMR Spectrum of 6f (125.8 MHz, CDCl$_3$).
Ethyl 1-Benzhydryl-3-(4-isopropylphenyl)aziridine-2-carboxylate (6g). The reaction of 5g and EDA gave 6g as a white solid after workup (see above). \(^1\)H NMR (CDCl\(_3\), 500.2 MHz): \(\delta\) 0.99 (\(t\), 3H, \(J= 6.95\) Hz, H13), 1.24 (\(d\), 6H, \(J= 6.95\) Hz, H29 and H30), 2.67 (\(d\), 1H, \(J= 6.75\) Hz, H1), 2.88 (sep, 1H, \(J= 6.90\) Hz, H28), 3.23 (\(d\), 1H, \(J= 6.85\) Hz, H2), 3.99 (\(q\), 2H, \(J= 7.3\) Hz, H12), 3.97 (s, 1H, H15), 7.13 – 7.64 (\(m\), 14H, \(H_{arom}\)). \(^{13}\)C NMR (CDCl\(_3\), 125.8 MHz): \(\delta\) 14.30, 24.3, 24.4, 34.2, 46.7, 48.4, 60.9, 77.9, 126.3 - 128.9, 132.8, 143.0, 148.3, 168.3. Chiral HPLC: IB column, 3\(\mu\)m; eluent: hexane/2-propanol (95:5); flow rate: 2.0 mL/min; \(R\) \(\tau\) (min) = 1.6 (minor); 3.4 (major), 57% ee (Table S1, entry 18). The absolute configuration was not assigned. HRMS (MALDI): Calcd. for C\(_{27}\)H\(_{30}\)NO\(_2\) \(m/z\) 400.2271 found \(m/z\) 400.2271.

Figure S32. HPLC traces of 6g.

Catalysis Product

Racemate
Figure S33. 1H NMR Spectrum of 6g (500.2 MHz, CDCl$_3$).

![Figure S33](image)

Figure S34. 13C NMR Spectrum of 6g (125.8 MHz, CDCl$_3$).

![Figure S34](image)
Ethyl 1-Benzhydryl-3-(p-tolyl)aziridine-2-carboxylate (6h). The reaction of 5g and EDA gave 6g as a white solid after workup (see above). \(^1\)H NMR and \(^{13}\)C NMR spectroscopic data are in agreement with published values.\(^{9}\) \(^1\)H NMR (CDCl\(_3\), 300.2 MHz): \(\delta\) 1.00 (t, 3H, \(J = 7.1\) Hz, COOCH\(_2\)CH\(_3\)), 2.27 (s, 3H, PhCH\(_3\)), 2.63 (d, 1H, \(J = 6.8\) Hz, NCHPh), 3.17 (d, 1H, \(J = 6.84\) Hz, NCHCOOEt), 3.93 (s, 1H, CHPh\(_2\)), 3.94 (q, \(J = 7.1\) Hz, COOCH\(_2\)CH\(_3\)), 7.03 – 7.60 (m, 14H, \(\text{H}_{\text{arom}}\)). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta\) 14.06, 21.20, 46.42, 48.11, 60.59, 77.83, 127.23, 127.30, 127.42, 127.60, 127.73, 128.52, 132.06, 136.96, 142.51, 142.62, 167.88. Chiral HPLC: IB column, 3 \(\mu\)m, eluent: hexane/2-propanol (95:5), flow rate 2.0 mL/min, \(R_t\) (min) = 1.7 (minor), 3.0 (major), 63 % ee (Table S1, entry 19). \([\alpha]_D^{20} = 23.6 \pm 0.3\) @ 63% ee (c = 0.364, CHCl\(_3\)). The absolute configuration was not assigned. HRMS (MALDI): Calcd. for C\(_{25}\)H\(_{26}\)NO\(_2\) \(m/z\) 372.1958 found \(m/z\) 372.1958.

Figure S35. HPLC traces of 6h.

Catalysis Product

Racemate

S39
Synthesis of Racemic Aziridines 6a-6h. The racemic aziridines 6a-6h were prepared according to a published procedure and used as references for the chiral HPLC determination of the enantiomeric purity of the catalysis products. The corresponding HPLC traces are shown above. Boron trifluoride ethyl etherate (0.11 mmol, 0.1 equiv) was added to a CH$_2$Cl$_2$ solution (10 ml) of the imine 5a-5h (1.1 mmol, 1 equiv) and EDA (1 equiv), and the mixture was stirred for 2 h. The solvent was evaporated under reduced pressure, and the oily residue was subject to flash chromatography on silica (hexane/ethyl acetate 95:5) and crystallized from hexane. Yields were in the range 70–90%.

(Z)-Ethyl 3-(Benzhydrylamino)-3-phenylacrylate (12). The title compound was prepared as authentic sample to rule out its formation in imine aziridination with catalyst 4PF$_4$ following a published procedure. Diphenylmethaneamine (7.5 mL, 43.2 mmol, 5 equiv), ethyl 3-oxo3-phenylpropanoate (1.5 mL, 8.6 mmol, 1 equiv) and glacial acetic acid (2.5 mmol, 43.2 mmol, 5 equiv) were mixed at room temperature. Immediately, a light yellow precipitate formed. The identity of 12 was confirmed by the 1H NMR spectrum, which showed the diagnostic broad doublet of the NH group. 1H NMR (CDCl$_3$, 300.1 MHz): δ 5.61 (d, 1H, J= 10.06 Hz, CHPh$_2$), 9.42 (bd, 1H, J= 10.08 Hz, NH).
References

