Supporting Information

for

N-heteroarylation of chiral α-aminoesters by means of Palladium-Catalyzed Buchwald-Hartwig Reaction

Hassan Hammoud, Martine Schmitt*, Emilie Blaise, Frédéric Bihel and Jean-Jacques Bourguignon

Laboratoire d’Innovation Thérapeutique, Faculté de pharmacie, Université de Strasbourg, 67401 Illkirch, France

mschmitt@unistra.fr

Contents

Influence of acid catalysis S2

1H and 13C NMR Spectra S4-S59

Optical purity studies (1H NMR of 2a-g, 3, 4, 5, 6, 7, 8, 14, 17) S60-79
Influence of acid catalysis in N-heteroarylilation of \(\alpha \)-aminoesters.

Typical procedure: reaction of 4-methyl-2-chloroquinoline with ethylglycinate.

A 5 ml microwave tube was charged with 4-methyl-2-chloroquinoline 1 (1mmol), ethyl glycinate (2mmol), increasing amount of Et\(_3\)N (0, 2 or 4 eq) and EtOH (2ml). The tube was sealed and the mixture was allowed to stir at 140°C under argon atmosphere. After 2, 4, 6 and 8 hours an aliquot of the resulting mixture was taken and analyzed by HPLC in order to determine the amount of starting material 1 (Figure 1), N-quinoline glycinester 2 (Figure 2), and also the corresponding acid 18 (Figure 3).

Figure 1. Consumption of 2-chloroquinoline 1 (yields after 2, 4, 6 and 8 hours)

Figure 2. Formation of 2-quinolineglycine ester 2 (yields after 2, 4, 6 and 8 hours)
Figure 3. Formation of 2-quinolineglycine 18 (yields after 2, 4, 6 and 8 hours)
1H and 13C spectra of compound 2a (Method A)
1H spectra of compound 2a (Method B)
13C spectra of compound 2a (Method B)
1H spectra of compound 2a (prepared by N-Boc deprotection)
1H and 13C spectra of compound 2b (Method A)
1H spectra of compound 2b (Method B)
^{13}C spectra of compound 2b (Method B)
1H spectra of compound 2b (prepared by N-Boc deprotection)
1H and 13C spectra of compound 2c (Method A)
1H spectra of compound 2c (Method B)
13C spectra of compound 2c (Method B)
1H and 13C spectra of compound 2d (Method A)
1H spectra of compound 2d (Method B)
13C spectra of compound 2d (Method B)
1H spectra of compound 2e

![Diagram of 1H spectra of compound 2e]
13C spectra of compound 2e

![Chemical structure of compound 2e](image)
1H spectra of compound 2f
13C spectra of compound 2f
1H spectra of compound 2g
13C spectra of compound 2g
1H spectra of compound 3
13C spectra of compound 3

![Chemical structure of compound 3]
1H spectra of compound 4
13C spectra of compound 4
1H spectra of compound 5

![Chemical structure of compound 5](attachment:structure.png)
13C spectra of compound 5
1H spectra of compound 6
13C spectra of compound 6

\[
\text{MeO} \quad \text{Nil} \quad \text{Nil} \quad \text{OEt}
\]
1H spectra of compound 7
13C spectra of compound 7
1H spectra of compound 8
13C spectra of compound 8
1H spectra of compound 10a
13C spectra of compound 10a
1H spectra of compound 10b
13C spectra of compound 10b
1H spectra of compound **11a**
13C spectra of compound 11a
1H spectra of compound 11b
13C spectra of compound 11b
1H spectra of compound 12
13C spectra of compound 12

![Chemical Structure of Compound 12](image)
1H spectra of compound 13
13C spectra of compound 13

H$_2$N

O

O

H
1H spectra of compound 14
13C spectra of compound 14

\[\text{Diagram of compound 14} \]
1H spectra of compound 15
13C spectra of compound 15

![Compound 15 Structure]
1H spectra of compound 16
13C spectra of compound 16

![Chemical structure of compound 16](image_url)

Diagram Description
- The spectrum shows the carbon signals of compound 16.
- Peaks at specific ppm values indicate the carbon atoms in different environments.
- The chemical structure includes a primary amine group, an ester group, and aromatic rings.

Notes
- ppm values are listed on the right side of the spectrum.
- The spectrum is used to identify the carbon atoms and their environments in the compound.
1H spectra of compound 17
13C spectra of compound 17
1H spectra of compound 20
13C spectra of compound 20
1H spectra of compound 22
13C spectra of compound 22
Optical purity studies (1H NMR of 2a, 2b, 2c, 2d, 2e, 2f, 2g, 3, 4, 5, 6, 7, 8)

A- Use of S-Mosher acid for characterization of optical purity of \(\alpha \)-aminoester derivatives.

\[
\begin{align*}
&\text{(S)} & &\text{R} & &\text{R'} & &\text{Et} & &\text{MeO} & &\text{CF}_3 & &\text{COOH} & &\text{N} & &\text{H} & &\text{COO}^- \\
\rightarrow &\text{(S)} & &\text{R} & &\text{R'} & &\text{Et} & &\text{F}_3\text{C} & &\text{O} & &\text{Me} & &\text{N} & &\text{H} & &\text{COO}^-
\end{align*}
\]

Pure diastereomeric salts

\[
\begin{align*}
&\text{(R*,S*)} & &\text{R} & &\text{R'} & &\text{Et} & &\text{MeO} & &\text{CF}_3 & &\text{COOH} & &\text{N} & &\text{H} & &\text{COO}^- \\
\rightarrow &\text{S} & &\text{R} & &\text{R'} & &\text{Et} & &\text{F}_3\text{C} & &\text{O} & &\text{Me} & &\text{N} & &\text{H} & &\text{COO}^-
\end{align*}
\]

Racemic diastereomeric salts
Zoom 0.5-5.0 ppm
Zoom 0.5-5.0 ppm
Zoom 0.5-5.0 ppm
Zoom 0.5-6.0 ppm
Zoom 0.5-5.0 ppm
Zoom 0.5-6.0 ppm
B- Use of diastereomeric esters for characterization of optical purity of α-aminoester derivatives. (1H NMR of 14 and 17)