Synthesis of Au Nanorod@Amine-Modified Silica@Rare Earth Fluoride Nanodisk Core-Shell-Shell Heteronanostructures

(Supporting Information)

Chao Zhang and Jim Yang Lee*
Department of Chemical and Biomolecular Engineering
National University of Singapore
10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore
E-mail: cheleejy@nus.edu.sg

List of Figures

Figure S1. TEM image of 20% Yb^{3+}, 2% Er^{3+} co-doped LaF_{3} NDs.

Figure S2. XRD pattern of 20% Yb^{3+}, 2% Er^{3+} co-doped LaF_{3} NDs.

Figure S3. TEM images of as-prepared Au NRs.

Figure S4. Fourier transform IR spectrum of amine-modified Au NR@A-silica nanostructures.

Figure S5. TEM image of A-silica@Ce_{0.9},Tb_{0.1}F_{3} NNs without internal Au NRs.
Figure S1. TEM image of 20% Yb$^{3+}$, 2% Er$^{3+}$ co-doped LaF$_3$ NDs.
Figure S2. XRD pattern of 20% Yb$^{3+}$, 2% Er$^{3+}$ co-doped LaF$_3$ NDs.
Figure S3. TEM images of as-prepared Au NRs.
Figure S4. Fourier transform IR spectrum of amine-modified Au NR@A-silica nanostructures.
Figure S5. TEM image of A-silica@Ce$_{0.9}$Tb$_{0.1}$F$_3$ NNs without internal Au NRs.
Table S1. Enhancement factors of all emission bands in Au NR@A-silica@CeF\(_3\):Tb and Au NR@A-silica@LaF\(_3\):Yb,Er.

<table>
<thead>
<tr>
<th>Transition</th>
<th>Enhanced Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^5\text{D}_4 \rightarrow ^7\text{F}_6)</td>
<td>2.3</td>
</tr>
<tr>
<td>(^5\text{D}_4 \rightarrow ^7\text{F}_5)</td>
<td>3.7</td>
</tr>
<tr>
<td>(^5\text{D}_4 \rightarrow ^7\text{F}_4)</td>
<td>1.9</td>
</tr>
<tr>
<td>(^5\text{D}_4 \rightarrow ^7\text{F}_3)</td>
<td>1.8</td>
</tr>
<tr>
<td>(^2\text{H}{11/2}, ^4\text{S}{3/2} \rightarrow ^4\text{I}_{15/2})</td>
<td>6.5</td>
</tr>
<tr>
<td>(^4\text{F}{9/2} \rightarrow ^4\text{I}{15/2})</td>
<td>6.2</td>
</tr>
</tbody>
</table>