Supporting Information

Rational Design and Binding Mode Duality of the MDM2-p53 Inhibitors

Department of Therapeutic Discovery, Pharmacokinetics and Drug Metabolism, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA, 94080, USA.

Department of Therapeutic Discovery, and Oncology Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.

Department of Therapeutic Discovery, Amgen Inc., 360 Binney Street Cambridge, MA 02142, USA.

*Corresponding Author. Telephone: 650-244-2195; Fax: 650-837-9369;
E-mail: daqings@amgen.com

Table of Contents

(i) In vitro biological assays S2
(ii) In vivo study protocols S4
(iii) Theoretical and experimental VCD and optical rotation data for (10) and (11), C2-allyl precursor of (26), and C3-allyl precursors of (34) and (35) S6
(iv) Determination of co-crystal structures of 9, 10, 16, 17 and 28 with MDM2 S11
(i) In vitro biological assays

Biochemical MDM2 (HTRF) assay. Materials: Human MDM2 (GST-thrombin-hMDM2(1-188)) was produced in house. It was expressed in E. coli and purified by Glutathione Sepharose 4B, Q-HP and Superdex 200 column. Human p53 (Avi-TrxA-6His-Thrombin-S-tag-EK-p53(1-83)) was expressed in E. coli and passed though Ni-NTA, Hydroxyapatite, Superdex 75 columns to reach purity over 80%. Human serum was from Bioreclamation (HMSRM, non-filtered). Monoclonal anti GST antibody labeled with europium cryptate (Eu-anti-GST, 61GSTLB) and SA-Xlent (611SAXLB) were from Cisbio. DTT, BSA, KH$_2$PO$_4$, Na$_2$HPO$_4$, DMSO, NaCl and KF were all from Sigma. The serum-free reaction buffer is composed of 1.06 mM KH$_2$PO$_4$, 2.96 mM Na$_2$HPO$_4$, 0.155 M NaCl, 0.1% BSA and 1 mM DTT. HTRF assay in serum used reaction buffer added with 15% human serum. The assay plate for HTRF was White 384 Opti plates from Perkin Elmer (6007299). The Envision (Perkin Elmer) was set at excitation 320 nm. Emissions were measured at 665 and 615 nm and the ratio of Em665/Em615 represented the interaction of MDM2-p53. Time-resolved fluorescence was measured 50 flashes for both detectors with 60 µs delay after each excitation. The reading time was 300 µs. Vprep was a product from Velocity11. Wellmate microplate dispenser was from Thermo Scientific. Serial Killer was made in house. **Methods (Determination of inhibitor potency in HTRF assay):** 20 µL 1.5 mM inhibitor was serial diluted to 20 µL DMSO for 22 points by Serial Killer. 1 µL of such diluted inhibitor was transferred to reaction plate with 9 µL reaction buffer by Vprep. 10 µL 1 nM of MDM2 was dispensed to reaction plate and incubated with inhibitor for 20 minutes before 20 µL 1.25 nM of p53 was added. After 60 minutes, the detection mixture (10 µL, 1 nM SA-Xlent, 3 nM Eu-anti-GST and 0.5 M KF) was dispensed to the reaction mixture and the plate was read on Envision after 18 hrs incubation. Total reaction volume is 50 µL. MDM2, p53 and detection were delivered to assay plates by Wellmate. IC$_{50}$ was determined from duplicate data. **For HTRF assay in 15% serum:** the sequence of addition was the same as serum-free assay. 10 µL of 12.5 nM MDM2 diluted in reaction buffer containing 30% human serum was added to 10 µL of buffer and compound mixture to generate serum at 15%. 20 nM p53 was diluted in buffer with 15% human serum. The detection buffer was in 15% serum with 10 nM SA-Xlent, 3 nM Eu-anti-GST and 0.5 M KF.

Biochemical MDMX (HTRF) assay. This assay was performed exactly as described above for the MDM2 HTRF assay in 0% serum, with the following exceptions except: 10 µL 1 nM of MDMX was dispensed to reaction plate and incubated with inhibitor for 20 minutes before 20 µL 1.25 nM of p53 was added.
Functional p21 induction assay (SJSA-1 p21 TaqMan® assay). In order to assess the potency of MDM2 inhibitors, quantitative reverse transcription polymerase chain reaction (qRT-PCR or TaqMan®) was used to measure the levels of p21 transcript in compound-treated cells relative to dimethyl sulfoxide (DMSO)-treated control cells. SJSA-1 cells were plated at a density of 2×10^4 cells/well in 96-well cell culture plates in 100 µl of growth medium (RPMI 1640, 10 mM HEPES, 1 mM sodium pyruvate, 1X Penicillin-Streptomycin-Glutamine (PSQ), and 10% fetal bovine serum (all components from Invitrogen)). The cells were cultured overnight at 37 °C and 5% CO₂. The following day, MDM2 inhibitors were serially diluted in DMSO (Sigma #D2650), then diluted again in assay medium (RPMI 1640, 10 mM HEPES, 1 mM sodium pyruvate, and 1X PSQ) containing 10% human serum (Bioreclamation #HMSRM) with a final DMSO concentration of 1%. The cells were incubated in the presence of inhibitor at 37 °C and 5% CO₂ for 7 hours. Total RNA was purified from the inhibitor- and DMSO-treated SJSA-1 cells using the Qiagen BioRobot Universal workstation following the RNeasy 96 BioRobot 8000 kit (Qiagen #967152) protocol from the manufacturer, with the following exceptions: the protocol began with RLT lysis buffer addition, omitted DNase treatment, omitted addition of Top Elute fluid, and changed the final elution volume to 120 µl. To measure the levels of p21 transcript present, qRT-PCR was used. The levels of both p21 and the housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were assayed from total RNA from each inhibitor- or DMSO-treated well using the TaqMan® One-Step RT-PCR Master Mix Reagents Kit (Invitrogen #4309169); p21 20X TaqMan® Gene Expression Assay (Invitrogen #Hs00355782_m1) or GAPDH 20X TaqMan® Gene Expression Assay (Invitrogen #Hs99999905_m1). The qRT-PCR reactions were assayed on the Applied Biosystems Prism 7900HT instrument, using the relative quantification (ΔΔCt) method. The data were analyzed with Applied Biosystems SDS2.2 software, using GAPDH as the endogenous control and DMSO-treated samples as the calibrator. The SDS2.2 software calculated relative quantification (RQ) or fold increase of p21 levels relative to DMSO control for each treated sample. Dose-response curves were generated using XLFit software to calculate IC₅₀ values for each inhibitor tested.

SJSA-1 cell proliferation assay (Click-iT EdU HCS assay). SJSA-1 cells were plated at a density of 2.8×10^3 cells/well in 384-well cell culture plates (Perkin Elmer, #6007460) in 40 µl of growth medium (RPMI 1640 supplemented with 10 mM HEPES, 1 mM sodium pyruvate, 1X Penicillin-Streptomycin, 2 mM Glutamine, and 10% fetal bovine serum). The cells were cultured for 24 hours at 37 °C and 5% CO₂. The next day, cells were treated with MDM2 inhibitors for 16 hours in the presence of 10% human serum. On day 3, Click-iT EdU assay procedures were performed according to the manufacturer's instructions with assay volumes reduced to 25 µL to adjust for 384 well formats (Invitrogen,
In short, EdU (5-ethynyl-2’-deoxyuridine) was added to cells to a final concentration of 10
µM and incubated for 1 hour. After labeling, cells were fixed with 4% formaldehyde and permeabilized
with 0.1% Triton-X 100. After washing, cells were incubated with Click-iT reaction buffer and then
with nuclear stain. Cells were then washed and imaged using Opera High Content Screening System
(Perkin Elmer). Percentage of EdU incorporation was calculated and used for IC₅₀ calculations. IC₅₀
values were determined using a four-parameter logistical (4PL) Hill model.

BrdU proliferation assay (HCT116 specificity assay). The potency of MDM2 inhibitors was
also determined by assaying the effect on cell proliferation by quantifying the amount of 5-bromo-2-
deoxyuridine (BrdU) incorporation in compound-treated cells vs. DMSO-treated control cells. HCT116
p53^{WT} or p53^{−/−} cells were plated at a density of 6 × 10³ cells/well in 96-well cell culture plates in 100
µl of growth medium (McCoy’s 5A, 1X PSQ, and 10% fetal bovine serum (all components from Invitrogen)). The cells were initially cultured for 24 hours at 37°C and 5% CO₂ before addition of com-

pound. The MDM2 inhibitors were serially diluted in DMSO (Sigma #D2650), then diluted again in
assay medium (McCoy’s 5A, 1X PSQ, 10% human serum (Bioreclamation #HMSRM)) with a final
DMSO concentration of 1%. The cells were incubated in the presence of inhibitor at 37°C and 5% CO₂
for 16 hours and then pulsed with diluted BrdU labeling reagent (1:100 final dilution, Invitrogen #00-0103) for 1 hour at 37°C and 5% CO₂. Following the BrdU pulse, the medium was removed and the
cells were fixed and stained for BrdU incorporation. The amount of BrdU incorporation was assayed
using either flow cytometry or the Cellomics Array Scan Vti plate reader with the Target Activation bi-
application. The percentage of BrdU-positive cells in the DMSO-treated control wells was used to
normalize the signal and calculate percent inhibition for each of the compound-treated wells. Dose-
response curves were generated using XLFit software to calculate IC₅₀ values for each inhibitor tested.

HCT116 p21 TaqMan[®] assay (HCT116 specificity assay). This assay was performed exactly
as described above for the SJSA-1 p21 TaqMan[®] Assay, with the following exceptions: growth medi-
um for both HCT116 p53^{WT} or p53^{−/−} cells was composed of McCoy’s 5A, 1X PSQ, and 10% fetal bo-
vine serum (all components from Invitrogen).

(ii) In vivo study protocols

All animal experimental procedures were conducted in accordance with the guidelines of the
Amgen Animal Care and Use Committee and the Association for Assessment and Accreditation of La-
boratory Animal Care standards. All studies utilized 4-6 week old female athymic nude mice (Harlan
Laboratories, Hsd:Athymic Nude-Foxn1nu). The mice were housed five per filter-capped cage in sterile housing in an environmentally controlled room (temperature 23 ± 2°C, relative humidity 50 ± 20%) on a 12-hour light/dark cycle. The mice were fed commercial rodent chow (Harlan Laboratories, #2020SX) and received filter-purified tap water ad libitum. The mice were individually identified by microchips (Bio Medic Data Systems) which were implanted subcutaneously at least two days prior to the study.

SJSA-1 Pharmacodynamic assay In order to evaluate the pharmacodynamics (PD) of MDM2 inhibitors in vivo, the levels of p21 transcript were examined in SJSA-1 tumor xenografts, a human osteosarcoma model. On Day 0, 5 × 10^6 SJSA-1 cells in 0.2 ml of Matrigel mixture (1 part Matrigel™ (BD Biosciences #354234) and 2 parts RPMI 1640 (Invitrogen #11875)) were implanted subcutaneously in the right flank. Approximately 11 days post-implantation, when the average tumor volume reached ~150 mm^3, the tumor-bearing mice were randomized into various treatment groups (n = 5/group). Each group was dosed QD with the inhibitor or vehicle control per os (p.o.) of varying concentrations. At selected time points following the initial dose, the mice were sacrificed, and the tumor and the plasma were harvested for PD (p21 mRNA levels) and pharmacokinetic (PK) analysis, respectively. In order to perform qRT-PCR analysis of p21 transcripts, total RNA was purified from each of the snap-frozen tumors. Tumors were placed into microcentrifuge tubes each containing a stainless steel bead (Qiagen #69989) and Buffer RLT containing β-mercaptoethanol (β-ME, 1:100 dilution, Sigma #M7522) and lysed using the Qiagen TissueLyser for 3 minutes at a frequency of 30/second. The lysates were centrifuged at 13,000 rpm for 5 minutes in a microcentrifuge, and a portion of the supernatant was used for the total RNA extraction procedure on the Qiagen BioRobot Universal workstation following the RNaseasy 96 BioRobot 8000 kit (Qiagen #967152) protocol from the manufacturer, with the following exceptions: excluded DNase treatment, omitted the Top Elute Fluid addition, and changed the final elution volume to 100 µl. To measure the levels of p21 transcript present in each of the tumor samples, qRT-PCR was used. The levels of both p21 and the housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were assayed from total RNA from each sample using the TaqMan® One-Step RT-PCR Master Mix Reagents Kit (Invitrogen #4309169); p21 20X TaqMan® Gene Expression Assay (Invitrogen #Hs00355782_m1) or GAPDH 20X TaqMan® Gene Expression Assay (Invitrogen #Hs99999905_m1). A known amount of plasmid containing p21 or GAPDH cDNA was used to generate a standard curve. The qRT-PCR reactions were assayed on the Applied Biosystems Prism 7900HT instrument, using the absolute quantification method. The data were analyzed with Applied Biosystems SDS2.2 software. The SDS2.2 software calculated the p21 and GAPDH copy number in each of the tumor samples. The copy number of p21 was normalized to the copy number of GAPDH,
and the fold increase of normalized p21 levels were calculated relative to vehicle control for each sample. Statistical significance was determined by ANOVA (Kruskal-Wallis) followed by Dunnett’s post-hoc analysis using JMP software v8.

(iii) Theoretical and experimental VCD and optical rotation data for (10) and (11), C2-allyl precursor of (26), and C3-allyl precursors of (34) and (35)

General methodology:

Theoretical VCD or optical rotation. Initial conformational ensembles of a specified enantiomer were obtained via molecular mechanics-based stochastic search (MMFF94 force field, Molecular Operating Environment (MOE); Chemical Computing Group Inc., Montreal, Canada; http://www.chemcomp.com) with relatively exhaustive search and retention criteria (20 kcal/mol energy window and 0.08 Å RMSD cutoff.) The resultant conformers were subjected to full geometry optimization with the B3LYP functional and 6-31G* basis set, followed by harmonic frequency, VCD rotational strength, and optical rotation (static polarizability model) determination of all resultant, structurally unique conformers within a specified energy window with respect to the global minimum. The predicted IR and VCD line spectra for each unique conformer were convolved using a Lorentzian function ($\gamma = 4.0 \ \text{cm}^{-1}$), followed by Boltzmann weighting based on the predicted B3LYP/6-31G* relative free energies (298.15 K) of each conformation and summed to yield final predicted IR and VCD spectra and Boltzmann-averaged optical rotation at 589 nm. Predicted vibrational frequencies were scaled by 0.96 for purposes of spectra generation. All quantum mechanical calculations were performed with the Gaussian 03 program system.

Experimental VCD spectra. VCD spectra were acquired on a BioTools Dual PEM ChiralIR instrument. Samples were prepared in CDCl$_3$ and 4 cm$^{-1}$ resolution at concentrations and acquisition times of $\sim 50 \ \text{mg/mL}$ and ~ 8 h, respectively and are solvent subtracted. In the case of 10 and 11 and 34 and 35, the experimental VCD represent the half-difference spectra of the individual enantiomers.

VCD and optical rotation-based stereochemical determination for (10) and (11). The predicted optical rotation was determined from the free energy-weighted values predicted for each conformer of the (2S,5R,6S) stereoisomer. The theoretical and experimental VCD and aligned IR plots are shown below.
Theoretical VCD plots for (2S,5R,6S) and (2R,5S,6R) enantiomers of 7. Middle: experimental VCD spectra of 10 (red) and 11 (blue). Bottom: alignment of experimental and theoretical achiral IR plots for 10.

<table>
<thead>
<tr>
<th>Conformer</th>
<th>ΔG_{rel} (kcal/mol)</th>
<th>Boltzmann pop. (298.15 K)</th>
<th>α_D (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+ 0.0</td>
<td>0.628</td>
<td>+127.63</td>
</tr>
<tr>
<td>2</td>
<td>+ 0.31</td>
<td>0.371</td>
<td>+314.41</td>
</tr>
<tr>
<td>3</td>
<td>+ 5.85</td>
<td>negligible</td>
<td>-145.02</td>
</tr>
<tr>
<td>4</td>
<td>+ 6.55</td>
<td>negligible</td>
<td>-125.96</td>
</tr>
</tbody>
</table>

Boltzmann-weighted, predicted α_D for (2S,5R,6S) stereoisomer: +197.0°
Boltzmann-weighted, predicted α_D for (2R,5S,6R) stereoisomer: -197.0°
Experimental optical rotation (c = 0.65, DCM) measured for 10: +166.2°
Experimental optical rotation (c = 1.0, DCM) measured for 11: -157.4°

(b) VCD and optical rotation-based stereochemical determination for C2-allyl precursor of (26). The predicted VCD and optical rotations for the C2-allyl precursor of 26 were based on an ensemble of 63 structurally unique conformations located within a free energy window of 5 kcal/mol. The theoretical and experimental VCD and aligned IR plots are shown below.

Boltzmann-weighted, predicted α_D for (2R,5S,6R) stereoisomer: -177.6°
Boltzmann-weighted, predicted α_D for (2S,5R,6S) stereoisomer: +177.6°
Experimental optical rotation (data below, CDCl$_3$) measured for C2-allyl precursor of 26: -170.3°

<table>
<thead>
<tr>
<th>Time</th>
<th>Sample ID</th>
<th>Conc. [g/100]</th>
<th>WL [nm]</th>
<th>Arc [°]</th>
<th>SROT</th>
<th>Sample Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blank</td>
<td>0.000</td>
<td>509</td>
<td>0.000</td>
<td>-170.2</td>
<td>2295585</td>
</tr>
<tr>
<td>2</td>
<td>12:32:38</td>
<td>2295585</td>
<td>589</td>
<td>-0.851</td>
<td>-170.2</td>
<td>2295585</td>
</tr>
<tr>
<td>3</td>
<td>12:32:48</td>
<td>2295585</td>
<td>589</td>
<td>-0.850</td>
<td>-170.0</td>
<td>2295585</td>
</tr>
<tr>
<td>4</td>
<td>12:32:58</td>
<td>2295585</td>
<td>589</td>
<td>-0.853</td>
<td>-170.6</td>
<td>2295585</td>
</tr>
<tr>
<td>5</td>
<td>12:33:08</td>
<td>2295585</td>
<td>589</td>
<td>-0.851</td>
<td>-170.2</td>
<td>2295585</td>
</tr>
<tr>
<td>6</td>
<td>Mean</td>
<td></td>
<td></td>
<td>0.851</td>
<td>-170.3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>StdDev[%]</td>
<td></td>
<td></td>
<td>0.148</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) VCD and optical rotation-based stereochemical determination for C3-allyl precursors of (34) and (35). The predicted VCD and optical rotations for the C3-allyl precursors of 34 and 35 were based on an ensemble of 79 structurally unique conformations located within a free energy window of 2.5 kcal/mol. The theoretical and experimental VCD and aligned IR plots are shown below.
Boltzmann-weighted, predicted α_D for (3S,5R,6S) stereoisomer: +149.0°

Boltzmann-weighted, predicted α_D for (3R,5S,6R) stereoisomer: -149.0°

Experimental optical rotation (data below, CDCl$_3$) measured for C3-allyl precursor of 34: +147.5°
Experimental optical rotation (data below) measured for C3-allyl precursor of \(35\): \(-85.1^\circ\)
(lower magnitude due to some sample loss upon recovery from VCD cell)

<table>
<thead>
<tr>
<th>Time</th>
<th>Sample ID</th>
<th>Conc. [g/100]</th>
<th>WL [nm]</th>
<th>Arc [°]</th>
<th>SROT</th>
<th>Sample Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20:02</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>10:20:22</td>
<td>97351-7-3</td>
<td>0.53</td>
<td>589</td>
<td>-0.450</td>
<td>-84.91</td>
<td>97351-7-3</td>
</tr>
<tr>
<td>10:20:31</td>
<td>97351-7-3</td>
<td>0.53</td>
<td>589</td>
<td>-0.452</td>
<td>-85.28</td>
<td></td>
</tr>
<tr>
<td>10:20:33</td>
<td>97351-7-3</td>
<td>0.53</td>
<td>589</td>
<td>-0.452</td>
<td>-85.28</td>
<td></td>
</tr>
<tr>
<td>10:20:42</td>
<td>97351-7-3</td>
<td>0.53</td>
<td>589</td>
<td>-0.450</td>
<td>-84.91</td>
<td></td>
</tr>
</tbody>
</table>

(iv) Determination of co-crystal structures of 9, 10, 16, 17 and 28 with MDM2

Human MDM2 (17–111) with a cleavable N-terminal GST tag was expressed in \textit{E. Coli} and purified using glutathione affinity chromatography. The N-terminal GST tag was then cleaved by thrombin and the untagged MDM2 was further purified by cation exchange chromatography. Crystals of MDM2 with 9 and 10 were obtained at 4 °C in hanging drops with 100 mM Heps pH 7.0, 2.1–2.6 M (NH₄)₂SO₄. These crystals belong to the space group P4₁2₁2 with unit cell parameters of \(a = 59.85\), \(b = 59.85\), \(c = 75.28\) Å. Crystals of MDM2 with 16 were obtained at 4 °C in hanging drops with 100 mM
Bicine pH 9.0, 0.8–1.6 M (NH$_4$)$_2$SO$_4$. These crystals belong to the spacegroup P4$_1$2$_1$2 with unit cell parameters of a = 42.01, b = 42.01, c = 119.42 Å. Crystals of MDM2 with 17 and 28 were obtained at 4 °C in hanging drops with 100 mM citrate pH 5.0, 2.0–2.7 M (NH$_4$)$_2$SO$_4$. These crystals belong to the spacegroup C2$_1$2$_1$2$_1$ with unit cell parameters of a = 56.77, b = 97.89, c = 105.59 Å. Paratone-N mineral oil was used as cryo protectant. Diffraction data for all crystals in this work were collected on beamline 21-ID-F at the Advanced Photon Source (APS) and processed and scaled with HKL 2000. The co-crystal structures were solved by molecular replacement with AMoRe using PDB entry code 1YCR as the template. Model building was carried out with QUANTA and refinement was done using CNS.