Supporting Information

Steroids Glycosylated with Both D- and L-Arabinoses from the South China Sea Gorgonian Dichotella gemmacea

Mei Jiang, Peng Sun, Hua Tang, Bao-Shu Liu, Tie-Jun Li, Cui Li, and Wen Zhang*
Research Center for Marine Drugs, and Department of Pharmacology, School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, P. R. China

Corresponding Author
*Tel/Fax: 86 21 81871257. E-mail: wenzhang1968@163.com
<table>
<thead>
<tr>
<th>Section</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Table of contents</td>
</tr>
<tr>
<td>2</td>
<td>Spectra for compound 1</td>
</tr>
<tr>
<td></td>
<td>HRESIMS spectrum for compound 1</td>
</tr>
<tr>
<td></td>
<td>1H NMR spectrum for compound 1 in CDCl$_3$</td>
</tr>
<tr>
<td></td>
<td>13C NMR spectrum for compound 1 in CDCl$_3$</td>
</tr>
<tr>
<td></td>
<td>HSQC spectrum for compound 1 in CDCl$_3$</td>
</tr>
<tr>
<td></td>
<td>1H-1H COSY spectrum for compound 1 in CDCl$_3$</td>
</tr>
<tr>
<td></td>
<td>HMBC spectrum for compound 1 in CDCl$_3$</td>
</tr>
<tr>
<td></td>
<td>NOESY spectrum for compound 1 in CDCl$_3$</td>
</tr>
<tr>
<td></td>
<td>1H NMR spectrum for compound 1 in pyridine-d_5</td>
</tr>
<tr>
<td></td>
<td>13C NMR spectrum for compound 1 in pyridine-d_5</td>
</tr>
<tr>
<td></td>
<td>HSQC spectrum for compound 1 in pyridine-d_5</td>
</tr>
<tr>
<td>3</td>
<td>Spectra for compound 2</td>
</tr>
<tr>
<td></td>
<td>HRESIMS spectrum for compound 2</td>
</tr>
<tr>
<td></td>
<td>1H NMR spectrum for compound 2 in pyridine-d_5</td>
</tr>
<tr>
<td></td>
<td>13C NMR spectrum for compound 2 in pyridine-d_5</td>
</tr>
<tr>
<td></td>
<td>DEPT spectrum for compound 2 in pyridine-d_5</td>
</tr>
<tr>
<td></td>
<td>HSQC spectrum for compound 2 in pyridine-d_5</td>
</tr>
<tr>
<td></td>
<td>1H-1H COSY spectrum for compound 2 in pyridine-d_5</td>
</tr>
<tr>
<td></td>
<td>HMBC spectrum for compound 2 in pyridine-d_5</td>
</tr>
<tr>
<td></td>
<td>NOESY spectrum for compound 2 in pyridine-d_5</td>
</tr>
<tr>
<td>4</td>
<td>Spectra for compound 3</td>
</tr>
<tr>
<td></td>
<td>HRESIMS spectrum for compound 3</td>
</tr>
<tr>
<td></td>
<td>1H NMR spectrum for compound 3 in pyridine-d_5</td>
</tr>
<tr>
<td></td>
<td>13C NMR spectrum for compound 3 in pyridine-d_5</td>
</tr>
<tr>
<td></td>
<td>DEPT spectrum for compound 3 in pyridine-d_5</td>
</tr>
<tr>
<td></td>
<td>HSQC spectrum for compound 3 in pyridine-d_5</td>
</tr>
<tr>
<td></td>
<td>1H-1H COSY spectrum for compound 3 in pyridine-d_5</td>
</tr>
</tbody>
</table>
HMBC spectrum for compound 3 in pyridine-d_5
NOESY spectrum for compound 3 in pyridine-d_5
Spectra for compound 4
HRESIMS spectrum for compound 4
1H NMR spectrum for compound 4 in CDCl$_3$
13C NMR spectrum for compound 4 in CDCl$_3$
DEPT spectrum for compound 4 in CDCl$_3$
HSQC spectrum for compound 4 in CDCl$_3$
1H NMR spectrum for compound 4 in pyridine-d_5
13C NMR spectrum for compound 4 in pyridine-d_5
DEPT spectrum for compound 4 in pyridine-d_5
HSQC spectrum of compound 4 in pyridine-d_5
HPLC spectra for thiocarbamoyl-thiazolidine derivatives of acid hydrolysates of compounds 1-4 and of authentic L- and D-arabinoses.
HPLC spectra for the thiocarbamoyl-thiazolidine derivatives of L- and D-arabinoses.
HPLC spectra for the thiocarbamoyl-thiazolidine derivatives of the acid hydrolysates of compound 1 and 2
HPLC spectra for the thiocarbamoyl-thiazolidine derivatives of the acid hydrolysates of compound 3 and 4
Table S1 NMR data for compounds 1 and 4 (in CDCl$_3$)
Table S2 Cytotoxic assays towards different tumor cell lines
HRESIMS spectrum for compound 1

1H NMR spectrum for compound 1 in CDCl₃
13C NMR spectrum for compound 1 in CDCl$_3$

HSQC spectrum for compound 1 in CDCl$_3$
1H - 1H COSY spectrum for compound 1 in CDCl$_3$

HMBC spectrum for compound 1 in CDCl$_3$
NOESY spectrum for compound 1 in CDCl₃

¹H NMR spectrum for compound 1 in pyridine-d₅
13C NMR spectrum for compound 1 in pyridine-d_5

HSQC spectrum for compound 1 in pyridine-d_5
HRESIMS spectrum for compound 2

\[^1H \text{ NMR spectrum for compound 2 in pyridine-}d_5 \]
13C NMR spectrum for compound 2 in pyridine-d_5
HSQC spectrum for compound 2 in pyridine-d_5

1H - 1H COSY spectrum for compound 2 in pyridine-d_5
HMBC spectrum for compound 2 in pyridine-d_5

NOESY spectrum for compound 2 in pyridine-d_5
HRESIMS spectrum for compound 3

Elemental Composition Report

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0
Selected filters: None

Monoisotopic Mass, Even Electron Ions
20 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 10-38 H: 10-60 O: 5-10 Na: 1-1

SIPi
JM136 M.W=590
WQ12-443H 34 (1.178) AM (Cen,4, 80.00, Ar,500.0,0.620,31.0,70); Sm (82, 241.00); Cm (27.39)
613.3719

04-Nov-2012 12:22:43
TOF MS ES+
2.57e3

Minimum: 65.00
Maximum: 100.00
Mass RA Calc. Mass mDa PPM DBE i-FTT Formula
613.3719 100.00 613.3716 0.3 0.5 7.5 36.8 C34 H54 O8 Na

1H NMR spectrum for compound 3 in pyridine-d_5
13C NMR spectrum for compound 3 in pyridine-d_5

DEPT spectrum for compound 3 in pyridine-d_5
HSQC spectrum for compound 3 in pyridine-d_5

$^1\text{H} - ^1\text{H}$ COSY spectrum for compound 3 in pyridine-d_5
HMBC spectrum for compound 3 in pyridine-d_5

NOESY spectrum for compound 3 in pyridine-d_5
HRESIMS spectrum for compound 4

Tolerance = 30.0 PPM / DBE: min = -1.5, max = 50.0
Selected filters: None

Monoisotopic Mass, Even Electron ions
9 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 10-38 H: 10-60 O: 5-10 N: 1-1

1H NMR spectrum for compound 4 in CDCl3
13C NMR spectrum for compound 4 in CDCl$_3$

DEPT spectrum for compound 4 in CDCl$_3$
HSQC spectrum for compound 4 in CDCl₃

¹H NMR spectrum for compound 4 in pyridine-d₅

¹³C NMR spectrum for compound 4 in pyridine-d₅
DEPT spectrum for compound 4 in pyridine-d_5

HSQC spectrum for compound 4 in pyridine-d_5
HPLC spectra for thiocarbamoyl-thiazolidine derivative of L-arabinose.

HPLC spectra for thiocarbamoyl-thiazolidine derivative of D-arabinose.
HPLC spectra for thiocarbamoyl-thiazolidine derivative of compound 1 acid hydrolysate.

HPLC spectra for the thiocarbamoyl-thiazolidine derivative of compound 2 acid hydrolysate.
HPLC spectra for the thiocarbamoyl-thiazolidine derivative of compound 3 acid hydrolysate.

HPLC spectra for the thiocarbamoyl-thiazolidine derivative of compound 4 acid hydrolysate.
Table S1. NMR data for compounds 1 and 4 (in CDCl₃).

<table>
<thead>
<tr>
<th>Position</th>
<th>δc, type</th>
<th>δH (J in Hz)</th>
<th>1</th>
<th>δc, type</th>
<th>δH (J in Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1α</td>
<td>33.4, CH₂</td>
<td>1.96, ov</td>
<td>33.3, CH₂</td>
<td>1.96, ov</td>
<td></td>
</tr>
<tr>
<td>1β</td>
<td>1.05, ov</td>
<td>1.07, ov</td>
<td>1.07, ov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2α</td>
<td>29.7, CH₂</td>
<td>1.88, ov</td>
<td>29.7, CH₂</td>
<td>1.88, ov</td>
<td></td>
</tr>
<tr>
<td>2β</td>
<td>1.51, ov</td>
<td>1.52, ov</td>
<td>1.52, ov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>77.8, CH</td>
<td>3.52, m</td>
<td>77.0, CH</td>
<td>3.48, m</td>
<td></td>
</tr>
<tr>
<td>4α</td>
<td>38.5, CH₂</td>
<td>2.20, m</td>
<td>38.5, CH₂</td>
<td>2.15, d(11.5)</td>
<td></td>
</tr>
<tr>
<td>4β</td>
<td>2.43, m</td>
<td>2.33, dd(13.0, 2.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>135.8, C</td>
<td>135.0, C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>126.8, CH</td>
<td>5.66 br, s</td>
<td>127.8, CH</td>
<td>5.74 br, s</td>
<td></td>
</tr>
<tr>
<td>7α</td>
<td>31.5, CH₂</td>
<td>2.00, ov</td>
<td>31.2, CH₂</td>
<td>2.00, ov</td>
<td></td>
</tr>
<tr>
<td>7β</td>
<td>1.50, ov</td>
<td>1.50, ov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>33.2, CH</td>
<td>1.80, m</td>
<td>33.4, CH</td>
<td>1.83, m</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>50.5, CH</td>
<td>0.90, m</td>
<td>50.4, CH</td>
<td>0.93, m</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>41.6, C</td>
<td>41.7, C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11α</td>
<td>21.8, CH₂</td>
<td>1.53, m</td>
<td>21.8, CH₂</td>
<td>1.53, m</td>
<td></td>
</tr>
<tr>
<td>11β</td>
<td>1.60, m</td>
<td>1.63, m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12α</td>
<td>40.2, CH₂</td>
<td>1.15, ov</td>
<td>40.0, CH₂</td>
<td>1.15, ov</td>
<td></td>
</tr>
<tr>
<td>12β</td>
<td>2.04, ov</td>
<td>2.04, ov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>42.6, C</td>
<td>42.6, C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>57.6, CH</td>
<td>0.90, m</td>
<td>57.6, CH</td>
<td>0.88, m</td>
<td></td>
</tr>
<tr>
<td>15α</td>
<td>24.2, CH₂</td>
<td>1.53, m</td>
<td>24.1, CH₂</td>
<td>1.53, m</td>
<td></td>
</tr>
<tr>
<td>15β</td>
<td>1.06, m</td>
<td>1.07, m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16α</td>
<td>28.8, CH₂</td>
<td>1.80, m</td>
<td>28.2, CH₂</td>
<td>1.75, m</td>
<td></td>
</tr>
<tr>
<td>16β</td>
<td>1.25, m</td>
<td>1.20, m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>56.3, CH</td>
<td>1.06, m</td>
<td>56.2, CH</td>
<td>1.08, m</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>12.2, CH₃</td>
<td>0.73, m</td>
<td>12.3, CH₃</td>
<td>0.73, m</td>
<td></td>
</tr>
<tr>
<td>19α</td>
<td>62.9, CH₂</td>
<td>3.83, m</td>
<td>62.1, CH₂</td>
<td>3.83, m</td>
<td></td>
</tr>
<tr>
<td>19β</td>
<td>3.58, m</td>
<td>3.61, m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>35.8, CH</td>
<td>1.38, m</td>
<td>35.7, CH</td>
<td>1.36, m</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>18.6, CH₃</td>
<td>0.91, d(6.6)</td>
<td>18.7, CH₃</td>
<td>0.91, d(6.6)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>36.2, CH₂</td>
<td>1.00, 1.37, m</td>
<td>36.2, CH₂</td>
<td>1.00, 1.37, m</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>20.6, CH₂</td>
<td>1.17, 1.37, m</td>
<td>20.5, CH₂</td>
<td>1.15, 1.35, m</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>41.2, CH₂</td>
<td>1.65, 1.72, m</td>
<td>41.2, CH₂</td>
<td>1.63, 1.72, m</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>82.5, C</td>
<td>82.6, C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>26.0, CH₃</td>
<td>1.41, s</td>
<td>26.0, CH₃</td>
<td>1.41, s</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>26.0, CH₃</td>
<td>1.41, s</td>
<td>26.0, CH₃</td>
<td>1.41, s</td>
<td></td>
</tr>
<tr>
<td>25-OAc</td>
<td>170.6, C</td>
<td>1.96, s</td>
<td>170.6, C</td>
<td>1.96, s</td>
<td></td>
</tr>
<tr>
<td>22.5, CH₃</td>
<td>22.5, CH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S24
Table S2. Cytotoxic assays towards different tumor cell lines (IC\textsubscript{50} µM).

<table>
<thead>
<tr>
<th>No.</th>
<th>A549</th>
<th>MG63</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.4</td>
<td>17.2</td>
</tr>
<tr>
<td>2</td>
<td>>50</td>
<td>>50</td>
</tr>
<tr>
<td>3</td>
<td>>50</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>13.9</td>
<td>23</td>
</tr>
<tr>
<td>Adriamycin</td>
<td>2.8</td>
<td>3.4</td>
</tr>
</tbody>
</table>