

An Efficient and Stereoselective Nitration of Mono- and Di-Substituted Olefins with AgNO₂ and TEMPO

Soham Maity,^a Srimanta Manna,^a Sujoy Rana,^a Togati Naveen,^a Arijit Mallick,^b and Debabrata Maiti^{a*}

^aDepartment of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India,

^bPhysical/Materials Chemistry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India

E-mail: dmaiti@chem.iitb.ac.in

Supporting Information

General Consideration:

Reagent Information. Unless otherwise stated, all reactions were carried out in screw cap reaction tubes. All the solvents were bought from Aldrich and were used as received. Silver Nitrite and TEMPO were purchased from Aldrich/Alfa Aesar and Spectrochem respectively. Molecular sieves (4Å; particle size 2–3 μ) were bought from Aldrich and were always kept in oven in small amount before use. Olefins corresponding to entries **4a**, **4c**, **4f**, **5h** and **5i** were bought from Alfa Aesar. Styrene and olefins corresponding to entries **4b**, **4d**, **4e**, **4g**, **4h**, **4j-4o**, **5a-5e** and **5g** were bought from Aldrich. Other olefins were synthesized from commercially available compounds by Wittig reaction, esterification, C-O coupling, amide synthesis etc following literature procedure. For column chromatography, silica gel (60–120 mesh or 100–200 mesh) obtained from SRL Co. was used. A gradient elution using pet ether and ethyl acetate was performed, based on Merck aluminium TLC sheets (silica gel 60F₂₅₄).
Analytical Information. All compounds are characterized by ¹H NMR, ¹³C NMR spectroscopy, Gas chromatography mass spectra (GC–MS) and HRMS. Copies of the ¹H NMR, ¹³C NMR can be found in the Supporting Information. Unless otherwise stated, all Nuclear Magnetic Resonance spectra were recorded on a Bruker 400 MHz instrument. All ¹H NMR experiments are reported

in units, parts per million (ppm), and were measured relative to the signals for residual chloroform (7.26 ppm) in the deuterated solvent, unless otherwise stated. All ^{13}C NMR spectra were reported in ppm relative to deuteriochloroform (77.23 ppm), unless otherwise stated, and all were obtained with ^1H decoupling. All GC analyses were performed on a Agilent 7890A GC system with an FID detector using a J & W DB-1 column (10 m, 0.1 mm I.D.) using *n*-decane as the internal standard. All GC-MS analyses were done by Agilent 7890A GC system connected with 5975C inert XL EI/CI MSD (with triple axis detector). High-resolution mass spectra (HRMS) were recorded on a micro-mass ESI TOF (time of flight) mass spectrometer. XPS measurements were performed on a V.G. Microtech Unit ESCA 3000 Spectrometer. Melting point of the compounds was determined using a Buchi B-545 melting point apparatus.

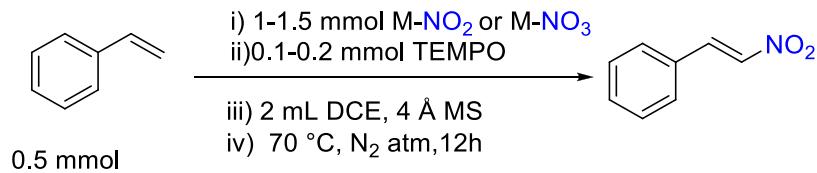

Description of Reaction Tube :

Fig. S1. Pictorial description of reaction tube for nitration of olefin: Fisherbrand Disposable Borosilicate Glass Tubes (16*125 MM) with Threaded End (Fisher Scientific Order No. 1495935A) [left]; Kimble Black Phenolic Screw Thread Closures with Open Tops (Fisher Scientific Order No. 033407E) [middle]; Thermo Scientific National PTFE/Silicone Septa for Sample Screw Thread Caps (Fisher Scientific Order No. 03394A) [right].

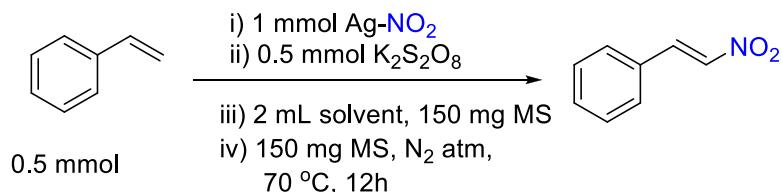

Optimization details for nitration of olefins:

Table S1: Optimization by varying different nitrating agent.

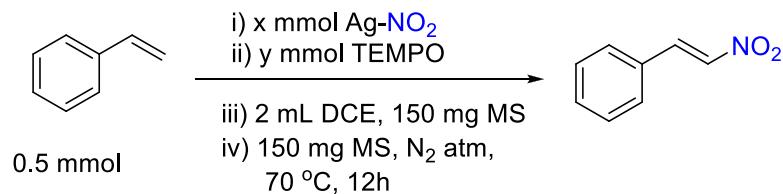

Entry	Nitrating Agents	TEMPO (mmol)	GC Yield (%)
1	AgNO_2	0.2	99
2	AgNO_2	0.1	92
3	$\text{Fe}(\text{NO}_3)_3 \cdot 5\text{H}_2\text{O}$	0.1	78
4	$\text{Bi}(\text{NO}_3)_3 \cdot 5\text{H}_2\text{O}$	0.1	74
5	$\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$	0.1	37
6	$\text{Na}_3\text{Co}(\text{NO}_2)_6$	0.1	22
7	NaNO_2	0.1	0
8	AgNO_3	0.1	0
9	$\text{Ni}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$	0.1	0

Table S2: Optimization by varying different Solvents.

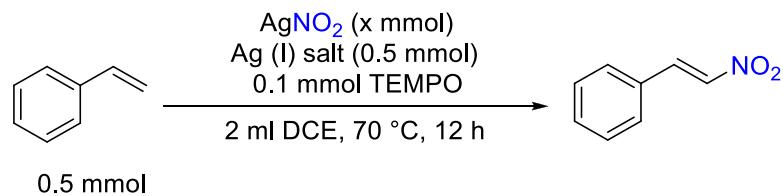
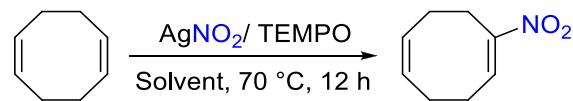

Entry	Solvents	GC Yield (%)
1	DCE	46
2	Benzene	45
3	DCM	44
4	DMSO	43
5	Acetonitrile	33
6	CHCl_3	29
7	Dioxane	12
8	<i>p</i> -Xylene	20
9	<i>o</i> -Xylene	19
10	THF	6
11	DMF	5
12	Toluene	15
13	Cyclohexane	11

Table S3: Optimization by varying amount of AgNO_2 and TEMPO.


Entry	AgNO_2 (mmol)	$\text{K}_2\text{S}_2\text{O}_8$ (mmol)	TEMPO (mmol)	GC Yield (%)
1	1.0	0.5	0.2	82
2	1.0	-	0.2	85
3	1.0	0.5	0.1	78
4	1.0	-	0.1	92
5	1.5	-	0.1	85
6	1.5	-	0.2	99

Table S4: Screening of Ag(I) salts as oxidizing agent

Entry	AgNO_2 (mmol)	Ag (I) salt (mmol)	Conv.	GC Yield (%)
1	1.0	-	99	93
2	0.5	-	91	72
3	0.5	AgOAc	94	89
4	0.5	AgNO_3	98	91
5	0.5	Ag_2CO_3	97	92
6	0.5	Ag_2O	96	89


Table S5: Comparative experiments with/ without MS

Entry	Without MS	With MS
1	80%	83%
2	78%	82%

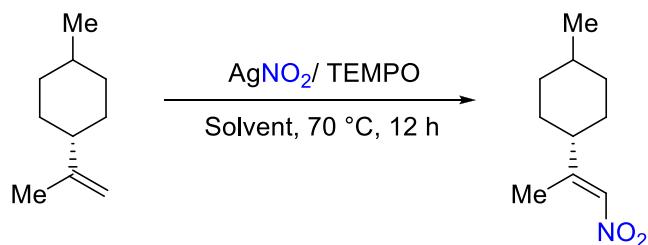

Optimization of aliphatic substrates:

Table S6: Optimization of COD by varying AgNO₂, TEMPO and Solvent

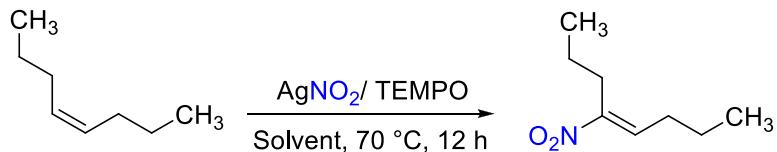
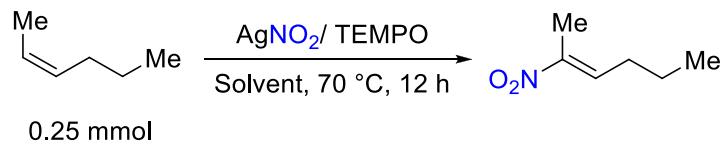

Entry	AgNO ₂ (mmol)	TEMPO (mmol)	Solvent	Conv.	GC Yield (%)
1	0.3	0.04	Dioxane	99	35
2	0.3	0.04	EtOAc	99	31
3	0.3	0.04	CHCl ₃	82	79
4	0.3	0.04	DCE	97	45
5	1.5	0.2	DCE	97	52
6	2.0	0.2	DCE	96	56
7	1.5	1.0	DCE	78	43
8	2.0	1.0	DCE	78	20

Table S7: Optimization of Limonene by varying AgNO₂, TEMPO



Entry	AgNO ₂ (mmol)	TEMPO (mmol)	Conv.	GC Yield (%)
1	1.5	0.2	99	75
2	2.0	0.2	99	75
3	1.5	1.0	-	23
4	2.0	1.0	-	22

Table S8: Optimization of trans-4-octene by varying Solvent

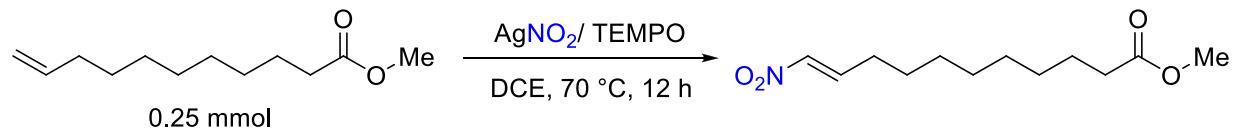

Entry	AgNO ₂ (mmol)	TEMPO (mmol)	Solvent	Conv.	GC Yield (%)
1	0.3	0.04	Dioxane	76	58
2	0.3	0.04	EtOAc	61	52
3	0.3	0.04	CHCl ₃	66	42
4	0.3	0.04	DCE	97	58

Table S9: Optimization of cis-2-hexene by varying Solvent

Entry	AgNO ₂ (mmol)	TEMPO (mmol)	Solvent	GC Yield (%)
1	0.75	0.1	DCE	44
2	1.0	0.1	DCE	56
3	0.75	0.5	DCE	58
4	1.0	0.5	DCE	74
5	0.75	0.1	CH ₃ CN	9
6	0.75	0.1	CHCl ₃	82
7	0.75	0.1	Dioxane	65
8	0.75	0.1	EtOAc	60

Table S10: Optimization of 10-bromo-1-decene by varying reagents

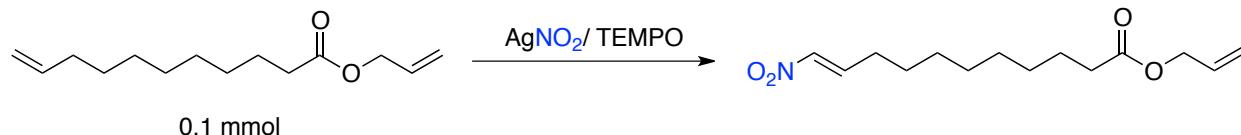

Entry	AgNO ₂ (mmol)	TEMPO (mmol)	Conv.	GC Yield (%)
1	0.75	0.1		55
2	1.0	0.1		77
3	0.75	0.5		41
8	0.75	0.5		73

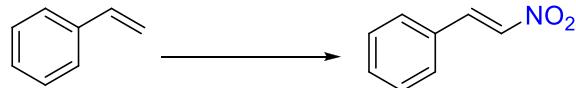
Table S11: Optimization of methyl-10-undecenoate by varying reagents

Entry	AgNO ₂ (mmol)	TEMPO (mmol)	GC Yield (%)
1	0.5	0.1	45
2	0.75	0.1	60

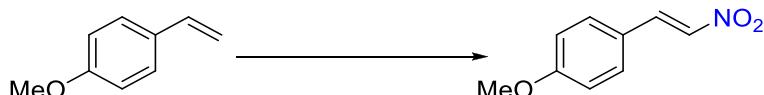
3	1.0	0.1	85
4	1.5	0.1	75
5	2.0	0.1	4
6	0.75	0.05	44
7	0.75	0.1	60
8	0.75	0.2	45
9	0.75	0.5	67
10	0.75	1.0	61
11	0.75	2.0	52

Table S12: Optimization of methyl-10-undecenoate by varying reagents

Entry	AgNO ₂ (mmol)	TEMPO (mmol)	Solvent	GC Yield (%)
1	0.2	0.04	DCE	45
2	0.3	0.04	DCE	51
3	0.4	0.04	DCE	43
4	0.3	0.08	DCE	37
5	0.3	0.04	CHCl ₃	55

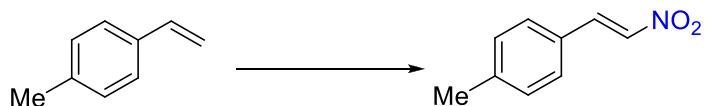

General Procedure A for nitration of olefins with AgNO₂ and TEMPO using DCE as the solvent

To an oven-dried screw cap test tube charged with a magnetic stir-bar was added AgNO₂ (3 equiv.), TEMPO (0.4 equiv.), olefin and oven-dried molecular sieves (4 Å, 150 mg). The olefin (if it was liquid) and solvent (DCE, 2 mL) were added by microliter syringe and laboratory syringe respectively. The tube was placed in a preheated oil bath at 70 °C and the reaction mixture was stirred vigorously for 12h. Then the reaction mixture was cooled to room temperature. The reaction mixture was filtered through a celite bed filter with ethyl acetate as the washing solvent. Finally organic extract was concentrated and was purified by column chromatography using silica gel (60-120/100-200 mesh size) and PET-ether / ethyl acetate as the eluent. All the reactions were carried out for 12 h unless otherwise stated and in no condition nitration of second or less reactive olefin has been observed.

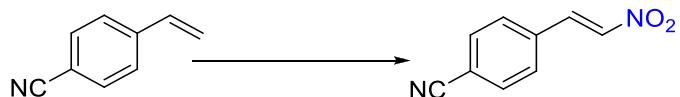

General Procedure B for synthesis of olefins from corresponding aldehydes and ketones by Wittig reaction

To an oven-dried two neck round bottom flask (100 mL) charged with a magnetic stir-bar was added Wittig salt (methyl)triphenylphosphonium iodide (3 mmol, approximately 1200 mg). Then the RB flask was fitted with a reflux condenser which was attached with a nitrogen balloon through a two way glass take-off. Under nitrogen atmosphere, 15-20 mL solvent (dry benzene) was added with a laboratory syringe and the system was kept in ice bath. Approximately, 700-800 mg of potassium *tert*-butoxide was added quickly and the system was allowed to come to room temperature and was refluxed for one hour. Formation of the ylide can be visibly observed by its persistent yellow color. After refluxing, the system was again allowed to come to room temperature and kept in an ice bath, followed by drop wise addition of the substrate dissolved in dry benzene. Then the system was kept in room temperature for 4-6 hours, and progress of the reaction was monitored by TLC and GC-MS analysis. Upon completion, the reaction was quenched by saturated solution of ammonium chloride and the organic layer was extracted with ethyl acetate several times. The organic layer was dried over oven-dried anhydrous sodium sulfate and evaporated under reduced pressure. The crude reaction mixture was purified with silica gel column chromatography (60-120 mesh) with PET-ether/ethyl acetate as the eluent.

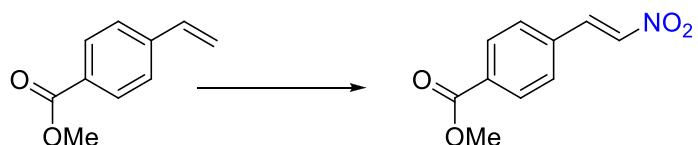
Characteristic Data of Synthesized Nitroolefins:

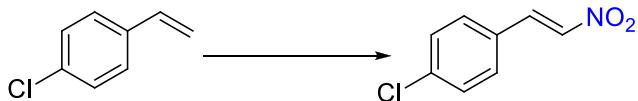


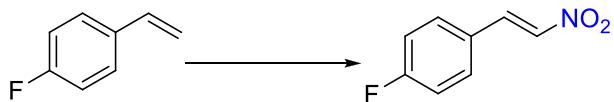
(E)-β-Nitrostyrene.¹ Nitration was done by general procedure A with styrene (0.5 mmol, 57 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (1:99 v/v); crystalline yellow solid; isolated yield: 95% (71 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 7.41 – 7.48 (m, 2H), 7.48 – 7.52 (m, 1H), 7.52 – 7.56 (m, 2H), 7.56 – 7.64 (dd, J = 13.7, 1.1 Hz, 1H), 7.95 – 8.05 (dd, J = 13.7, 1.8 Hz, 1H). **$^{13}\text{C NMR}$** (101 MHz, Chloroform-d) δ 129.29, 129.53, 130.17, 132.30, 137.22, 139.23. GC-MS (m/z): 149.1 [M]⁺. m. p. 57–58 °C.

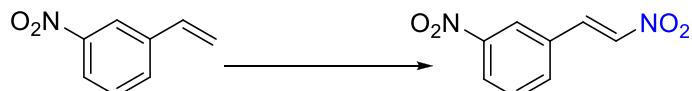


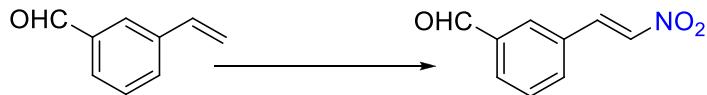
(E)-1-methoxy-4-(2-nitroviny)benzene (Scheme 4, 4a).² Nitration was done by general procedure A with 4-methoxystyrene (0.5 mmol, 67 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (1:99 v/v); crystalline yellow solid; isolated yield: 85% (76 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 3.52 – 4.21 (s, 3H), 6.83 – 7.00 (d, J = 8.8 Hz, 2H), 7.43 –

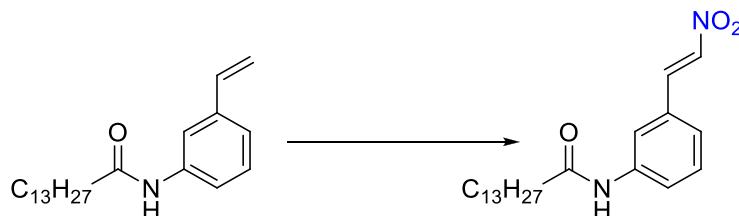

7.47 (d, $J = 2.0$ Hz, 1H), 7.47 – 7.50 (m, 1H), 7.50 – 7.54 (s, 1H), 7.85 – 8.01 (d, $J = 13.6$ Hz, 1H). ^{13}C NMR (101 MHz, Chloroform-d) δ 55.59, 114.97, 122.54, 131.28, 135.00, 139.13, 163.02. GC-MS (m/z): 179.1 [M] $^+$.

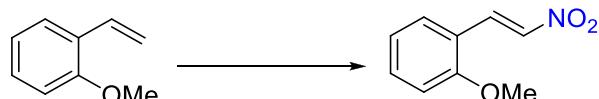

(E)-1-methyl-4-(2-nitrovinyl)benzene (Scheme 4, 4b).² Nitration was done by general procedure A with 4-methylstyrene (0.5 mmol, 66 μL) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (1:99 v/v); yellow solid; isolated yield: 96% (78 mg). ^1H NMR (400 MHz, Chloroform-d) δ 2.32 – 2.56 (s, 3H), 7.17 – 7.37 (m, 2H), 7.37 – 7.52 (m, 2H), 7.52 – 7.68 (d, $J = 13.7$ Hz, 1H), 7.92 – 8.07 (d, $J = 13.6$ Hz, 1H). ^{13}C NMR (101 MHz, Chloroform-d) δ 21.84, 127.41, 129.36, 130.30, 136.41, 139.35, 143.29. GC-MS (m/z): 163.1 [M] $^+$. m. p. 106–107 °C.


(E)-4-(2-nitrovinyl)benzonitrile (Scheme 4, 4c).³ Nitration was done by general procedure A with 4-vinylbenzonitrile (0.5 mmol, 65 μL) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (10:90 v/v); light yellow solid; isolated yield: 81% (71 mg). ^1H NMR (400 MHz, Chloroform-d) δ 7.58 – 7.65 (d, $J = 13.8$ Hz, 1H), 7.65 – 7.71 (m, 2H), 7.71 – 7.81 (m, 2H), 7.95 – 8.05 (d, $J = 13.7$ Hz, 1H). ^{13}C NMR (101 MHz, Chloroform-d) δ 115.38, 118.00, 129.59, 133.21, 134.52, 136.77, 139.63. GC-MS (m/z): 174.1 [M] $^+$. m. p. 186–187 °C.

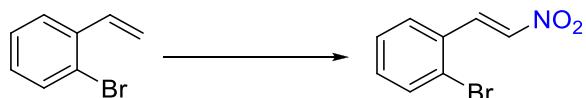

(E)-methyl 4-(2-nitrovinyl)benzoate (Scheme 4, 4d).⁴ Nitration was done by general procedure A with methyl 4-vinylbenzoate (0.5 mmol, 66 μL) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (5:95 v/v); yellow solid; isolated yield: 86% (89 mg). ^1H NMR (400 MHz, Chloroform-d) δ 3.30 – 4.47 (s, 3H), 7.60 – 7.62 (s, 1H), 7.62 – 7.65 (m, 2H), 7.97 – 8.06 (d, $J = 13.7$ Hz, 1H), 8.06 – 8.14 (m, 2H). ^{13}C NMR (101 MHz, Chloroform-d) δ 52.71, 129.16, 130.64, 133.19, 134.35, 137.77, 138.85, 166.17. GC-MS (m/z): 207.1 [M] $^+$. m. p. 176–178 °C.


(E)-1-chloro-4-(2-nitrovinyl)benzene (Scheme 4, 4e).² Nitration was done by general procedure A with 1-chloro-4-vinylbenzene (0.5 mmol, 63 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (2:98 v/v); crystalline light yellowish solid; isolated yield: 97% (89 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 7.38 – 7.45 (m, 2H), 7.45 – 7.53 (m, 2H), 7.53 – 7.64 (d, J = 13.7 Hz, 1H), 7.90 – 8.01 (d, J = 13.7 Hz, 1H). **$^{13}\text{C NMR}$** (101 MHz, Chloroform-d) δ 128.65, 129.87, 130.42, 137.53, 137.85, 138.43, 77.51, 77.20, 76.88. GC-MS (m/z): 183.1 [M] $^+$. m. p. 113–114 °C.

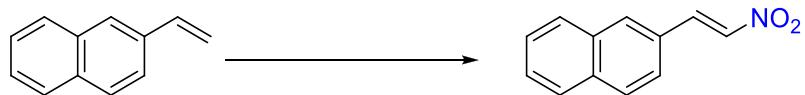

(E)-1-fluoro-4-(2-nitrovinyl)benzene (Scheme 4, 4f).² Nitration was done by general procedure A with 1-fluoro-4-vinylbenzene (0.5 mmol, 65 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (2:98 v/v); light yellow solid; isolated yield: 95% (79 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 7.09 – 7.21 (m, 2H), 7.51 – 7.55 (m, 1H), 7.55 – 7.60 (m, 2H), 7.88 – 8.22 (d, J = 13.7 Hz, 1H). **$^{13}\text{C NMR}$** (101 MHz, Chloroform-d) δ 116.90, 117.12, 131.53, 137.04, 138.04, 166.41. GC-MS (m/z): 167.1 [M] $^+$. m. p. 102–103 °C.


(E)-1-nitro-3-(2-nitrovinyl)benzene (Scheme 4, 4g).⁵ Nitration was done by general procedure A with 1-nitro-3-vinylbenzene (0.5 mmol, 70 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (3:97 v/v); isolated yield: 88% (86 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 7.65 – 7.70 (m, 1H), 7.70 – 7.72 (d, J = 3.4 Hz, 1H), 7.85 – 7.93 (dt, J = 7.9, 1.4, 1.4 Hz, 1H), 7.98 – 8.13 (d, J = 13.7 Hz, 1H), 8.30 – 8.39 (ddd, J = 8.2, 2.2, 1.0 Hz, 1H), 8.39 – 8.47 (dt, J = 2.2, 1.1, 1.1 Hz, 1H). **$^{13}\text{C NMR}$** (101 MHz, Chloroform-d) δ 123.65, 126.36, 130.79, 131.96, 134.67, 136.46, 139.42, 148.92. GC-MS (m/z): 194.1 [M] $^+$. m. p. 125–126 °C.

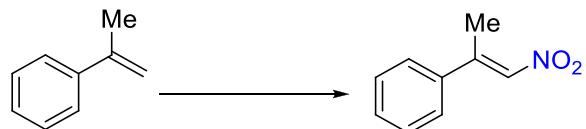
(E)-3-(2-nitroviny)benzaldehyde (Scheme 4, 4h). Nitration was done by general procedure A with 3-vinylbenzaldehyde (0.5 mmol, 64 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (10:90 v/v); light yellow solid; isolated yield: 82% (73 mg). ^1H NMR (400 MHz, Chloroform-d) δ 7.67 (m, 1H), 7.70–7.71 (d, J = 4 Hz 1H), 7.83 (dt, J = 8.0, 4 Hz, 1H), 7.87 – 7.95 (dt, J = 8.0, 4 Hz, 1H), 8.09 (d, J = 12 Hz, 1H), 10.08 (s, 1H). ^{13}C NMR (101 MHz, Chloroform-d) δ 129.73, 130.39, 131.26, 133.01, 134.54, 137.31, 137.60, 138.54, 191.26. GC-MS (m/z): 177.1 [M] $^+$. m. p. 91–92 $^{\circ}\text{C}$.

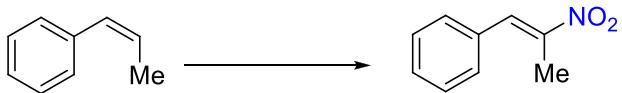


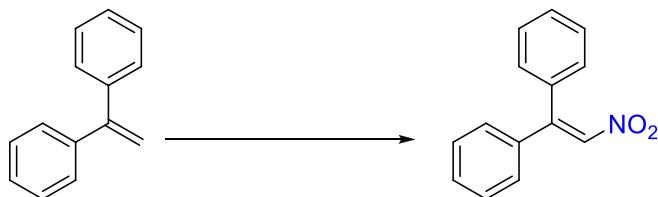
(E)-N-(3-(2-nitroviny)phenyl)tetradecanamide (Scheme 4, 4i). Nitration was done by general procedure A with *N*-(3-vinylphenyl)tetradecanamide (0.25 mmol, 80 mg), 4.8 equiv AgNO_2 and 0.6 equiv TEMPO. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (20:80 v/v); crystalline light creamy solid; isolated yield: 75% (70 mg). ^1H NMR (400 MHz, Chloroform-d) δ 0.80 – 0.95 (m, 3H), 1.07 – 1.54 (s, 20H), 1.68 – 1.80 (p, J = 7.6, 7.6, 7.5, 7.5 Hz, 2H), 2.31 – 2.44 (m, 2H), 7.27 – 7.29 (t, J = 1.3, 1.3 Hz, 1H), 7.30 – 7.34 (s, 1H), 7.35 – 7.43 (t, J = 7.9, 7.9 Hz, 1H), 7.46 – 7.54 (dd, J = 2.2, 1.1 Hz, 1H), 7.55 – 7.63 (d, J = 13.7 Hz, 1H), 7.91 – 8.00 (d, J = 13.8 Hz, 2H). ^{13}C NMR (101 MHz, Chloroform-d) δ 14.34, 22.90, 25.71, 29.47, 29.57, 29.59, 29.69, 29.83, 29.86, 29.89, 32.13, 37.99, 119.93, 123.16, 125.12, 130.14, 131.12, 137.76, 138.96, 139.21, 172.03. HRMS (ESI): calcd. for $\text{C}_{22}\text{H}_{35}\text{N}_2\text{O}_3$: 375.2648, found: 375.2630. m. p. 121–122 $^{\circ}\text{C}$.



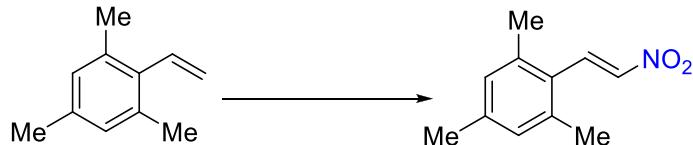
(E)-1-methoxy-2-(2-nitroviny)benzene (Scheme 4, 4j).² Nitration was done by general procedure A with 2-methoxystyrene (0.5 mmol, 66 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (3:97 v/v); yellow solid; isolated yield: 85% (76 mg). ^1H NMR (400 MHz, Chloroform-d) δ 3.47 – 4.33 (s, 3H), 6.88 – 7.09 (m, 2H), 7.36 – 7.53 (m, 2H), 7.77 –

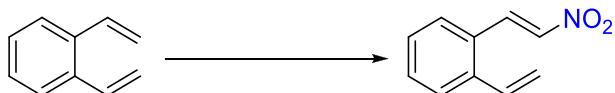

7.99 (d, $J = 13.6$ Hz, 1H), 8.07 – 8.19 (d, $J = 13.5$ Hz, 1H). ^{13}C NMR (101 MHz, Chloroform-d) δ 55.75, 111.47, 119.18, 121.20, 132.60, 133.61, 135.65, 138.32, 159.60. GC-MS (m/z): 179.1 [M] $^+$. m. p. 84 °C.

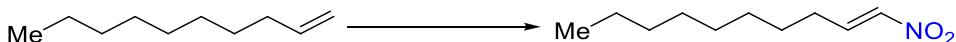

(E)-1-bromo-2-(2-nitrovinyl)benzene (Scheme 4, 4k).⁶ Nitration was done by general procedure A with 1-bromo-2-vinylbenzene (0.5 mmol, 65 μL) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (3:97 v/v); crystalline light yellowish solid; isolated yield: 92% (104 mg). ^1H NMR (400 MHz, Chloroform-d) δ 7.29 – 7.45 (m, 2H), 7.50 – 7.56 (d, $J = 13.6$ Hz, 1H), 7.56 – 7.60 (m, 1H), 7.63 – 7.75 (m, 1H), 8.33 – 8.45 (d, $J = 13.6$ Hz, 1H). ^{13}C NMR (101 MHz, Chloroform-d) δ 126.53, 128.27, 128.63, 130.43, 133.15, 134.16, 137.78, 138.95. GC-MS (m/z): 228.1 [M] $^+$. m. p. 88–89 °C.

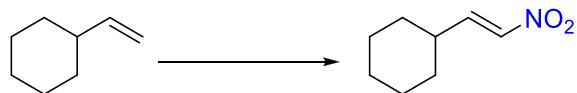

(E)-2-(2-nitrovinyl)naphthalene (Scheme 4, 4l).⁷ Nitration was done by general procedure A with 2-vinylnaphthalene (0.5 mmol, 77 mg) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (3:97 v/v); yellowish solid; isolated yield: 88% (88 mg). ^1H NMR (400 MHz, Chloroform-d) δ 7.41 – 7.63 (tdd, $J = 11.1, 11.1, 6.4, 1.7$ Hz, 3H), 7.63 – 7.76 (dd, $J = 13.6, 4.0$ Hz, 1H), 7.76 – 7.92 (m, 3H), 7.92 – 8.04 (d, $J = 6.6$ Hz, 1H), 8.04 – 8.18 (m, 1H). ^{13}C NMR (101 MHz, Chloroform-d) δ 76.91, 77.23, 77.54, 123.41, 127.40, 127.62, 128.06, 128.53, 128.96, 129.45, 132.45, 133.22, 135.00, 137.19, 139.35. GC-MS (m/z): 199.1 [M] $^+$. m. p. 128–130 °C.

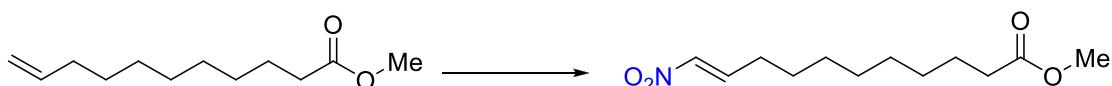
(E)-(1-nitroprop-1-en-2-yl)benzene (Scheme 4, 4m).⁸ Nitration was done by general procedure A with prop-1-en-2-ylbenzene (0.5 mmol, 65 μL) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (2:98 v/v); yellow solid; isolated yield: 84% (69 mg). ^1H NMR (400 MHz, Chloroform-d) δ 2.29 – 3.07 (d, $J = 1.5$ Hz, 3H), 7.29 – 7.33 (q, $J = 1.4, 1.4, 1.4$ Hz, 1H), 7.41 – 7.49 (m, 5H). ^{13}C NMR (101 MHz, Chloroform-d) δ 18.77, 127.00, 129.19, 130.55, 136.47, 138.43, 150.19. GC-MS (m/z): 163.1 [M] $^+$.

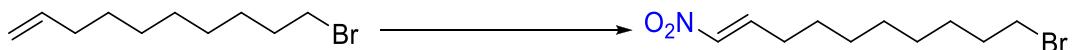

(Z)-(2-nitroprop-1-enyl)benzene (Scheme 4, 4n).⁸ Nitration was done by general procedure A with (Z)-prop-1-enylbenzene (0.5 mmol, 65 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (3:97 v/v); yellow liquid; isolated yield: 66% (54 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 2.42 – 2.51 (d, J = 1.1 Hz, 3H), 7.37 – 7.52 (m, 5H), 8.05 – 8.15 (m, 1H). **$^{13}\text{C NMR}$** (101 MHz, Chloroform-d) δ 14.25, 128.16, 129.10, 130.12, 132.61, 133.76, 147.94. GC-MS (m/z): 163.1 [M]⁺. HRMS (ESI): calcd. for $\text{C}_9\text{H}_{10}\text{NO}_2$: 164.0712, found: 164.0713.

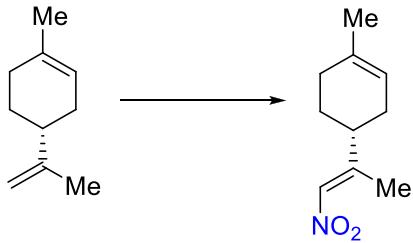

(2-nitroethene-1,1-diyldibenzene (Scheme 4, 4o).¹ Nitration was done by general procedure A with ethene-1,1-diyldibenzene as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (2:98 v/v); yellow liquid; isolated yield: 85% (95 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 7.19 – 7.25 (m, 2H), 7.27 – 7.32 (m, 2H), 7.36 – 7.40 (m, 1H), 7.40 – 7.50 (m, 6H). **$^{13}\text{C NMR}$** (101 MHz, Chloroform-d) δ 128.68, 128.98, 129.06, 129.10, 129.50, 131.09, 134.57, 135.71, 137.26, 150.68. GC-MS (m/z): 225.1 [M]⁺.

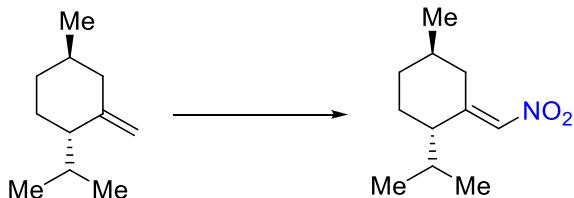

(E)-5-nitro-6-(2-nitrovinyl)benzo[d][1,3]dioxole (Scheme 4, 4p).⁹ Nitration was done by general procedure A with 5-nitro-6-vinylbenzo[d][1,3]dioxole (0.5 mmol, 96 mg) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (30:70 v/v); yellowish solid; isolated yield: 70% (83 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 6.15 – 6.30 (s, 2H), 6.88 – 6.98 (s, 1H), 7.31 – 7.43 (d, J = 13.4 Hz, 1H), 7.61 – 7.69 (s, 1H), 8.41 – 8.63 (d, J = 13.4 Hz, 1H). **$^{13}\text{C NMR}$** (101 MHz, Chloroform-d) δ 104.13, 106.61, 107.79, 122.51, 135.90, 139.41, 143.75, 150.56, 152.59. GC-MS (m/z): 238.1 [M]⁺. m. p. 110–111 °C. HRMS (ESI): calcd. for $\text{C}_9\text{H}_7\text{N}_2\text{O}_6$: 239.0304, found: 239.0307.

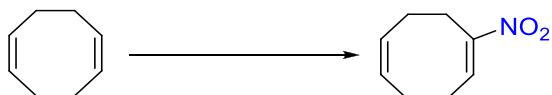

(E)-1,3,5-trimethyl-2-(2-nitroviny)benzene (Scheme 4, 4q). Nitration was done by general procedure A with 1,3,5-trimethyl-2-vinylbenzene (0.5 mmol, 80 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether; yellowish solid; isolated yield: 93% (89 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 2.25 – 2.35 (s, 3H), 2.35 – 2.47 (s, 6H), 6.83 – 7.06 (s, 2H), 7.28 – 7.39 (d, J = 13.9 Hz, 1H), 8.22 – 8.35 (d, J = 13.9 Hz, 1H). **$^{13}\text{C NMR}$** (101 MHz, Chloroform-d) δ 21.42, 21.75, 125.95, 130.09, 136.79, 138.67, 139.88, 141.07. GC-MS (m/z): 191.1 [M] $^+$. m. p. 123–124 $^{\circ}\text{C}$.


(E)-1-(2-nitroviny)-2-vinylbenzene (Scheme 4, 4r). Nitration was done by general procedure A with 1,2-divinylbenzene (0.23 mmol, 30 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: petroleum ether; yellowish oil; isolated yield: 70% (30 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 5.48 – 5.58 (dd, J = 11.0, 1.0 Hz, 1H), 5.62 – 5.71 (dd, J = 17.3, 1.0 Hz, 1H), 6.98 – 7.07 (dd, J = 17.3, 11.0 Hz, 1H), 7.30 – 7.40 (td, J = 7.5, 7.5, 1.4 Hz, 1H), 7.42 – 7.59 (m, 4H), 8.28 – 8.42 (d, J = 13.5 Hz, 1H). GC-MS (m/z): 175.1 [M] $^+$.

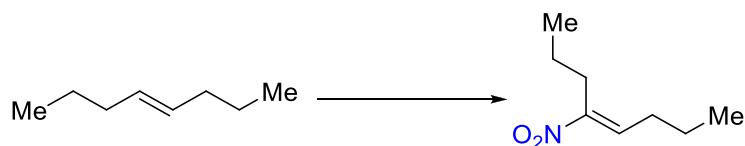

(E)-1-nitrodec-1-ene (Scheme 5, 5a).¹⁰ Nitration was done by general procedure A with dec-1-ene (0.5 mmol, 94 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (1:99 v/v); reddish orange liquid; isolated yield: 95% (88 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 0.81 – 0.95 (h, J = 3.5, 3.5, 3.5, 3.4, 3.4 Hz, 5H), 1.20 – 1.39 (m, 8H), 1.46 – 1.60 (dq, J = 14.9, 7.5, 7.2, 7.2 Hz, 2H), 2.22 – 2.31 (qd, J = 7.6, 7.6, 7.5, 1.6 Hz, 2H), 6.94 – 7.02 (dt, J = 13.4, 1.6, 1.6 Hz, 1H), 7.22 – 7.34 (m, 1H). **$^{13}\text{C NMR}$** (101 MHz, Chloroform-d) δ 14.24, 22.79, 27.87, 28.62, 29.25, 29.37, 31.94, 139.68, 143.04. HRMS (ESI): calcd. for $\text{C}_{10}\text{H}_{20}\text{NO}_2$: 186.1494, found: 186.1501.


(E)-(2-nitrovinyl)cyclohexane (Scheme 5, 5b).² Nitration was done by general procedure A with vinylcyclohexane (0.5 mmol, 68 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether; orange liquid; isolated yield: 90% (70 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 1.1–1.3 (m, 6H), 1.74–1.83 (m, 4H), 2.2–2.3 (m, 1H), 6.89 – 6.94 (m, 1H), 7.20 (m, 1H). **$^{13}\text{C NMR}$** (101 MHz, Chloroform-d) δ 25.59, 25.75, 31.56, 37.70, 138.39, 147.49.

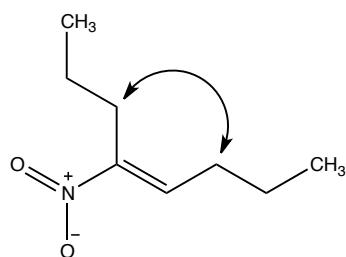

(E)-methyl 11-nitoundec-10-enoate (Scheme 5, 5c). Nitration was done by general procedure A using 4 equiv. AgNO_2 with methyl undec-10-enoate (0.5 mmol, 112 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 100–200). Eluent: ethyl acetate/ petroleum ether (1:99 v/v); orange liquid; isolated yield: 80% (97 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 1.22 – 1.42 (m, 14H), 1.57 – 1.75 (m, 4H), 2.11 – 2.47 (m, 5H), 2.49 – 2.67 (m, 1H), 3.57 – 3.79 (s, 3H), 6.87 – 7.14 (dt, J = 13.4, 1.5, 1.5 Hz, 1H), 7.14 – 7.38 (dt, J = 13.3, 7.4, 7.4 Hz, 1H). **$^{13}\text{C NMR}$** (101 MHz, Chloroform-d) δ 24.83, 27.06, 27.66, 28.39, 28.78, 28.99, 30.04, 33.98, 51.42, 116.84, 139.56, 142.75, 174.20. GC-MS (m/z): 212.1 [M]⁺. From GC-MS analysis of reaction mixture, it was observed that 20% starting material left unreacted.


(E)-10-bromo-1-nitrodec-1-ene (Scheme 5, 5d). Nitration was done by General Procedure A using 4 equiv. AgNO_2 with 10-bromo dec-1-ene (0.5 mmol, 100 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 100–200). Eluent: ethyl acetate/ petroleum ether (5:95 v/v); yellow liquid; isolated yield: 75% (99 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 1.37 – 1.46 (s, 4H), 1.58 – 1.62 (s, 4H), 1.78 – 1.89 (m, 5H), 2.23 – 2.30 (qd, J = 7.5, 7.5, 7.4, 1.6 Hz, 2H), 3.37 – 3.44 (t, J = 6.8, 6.8 Hz, 2H), 6.90 – 7.05 (dt, J = 13.4, 1.6, 1.6 Hz, 1H), 7.14 – 7.39 (dt, J = 13.4, 7.4, 7.4 Hz, 1H). **$^{13}\text{C NMR}$** (101 MHz, Chloroform-d) δ 27.86, 28.24, 28.62, 28.75, 29.16, 29.25, 32.89, 34.15, 139.77, 142.93.

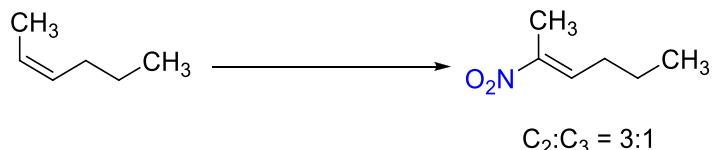
(R,E)-1-methyl-4-(1-nitroprop-1-en-2-yl)cyclohex-1-ene (Scheme 5, 5e). Nitration was done by general procedure A with ((R)-1-methyl-4-(prop-1-en-2-yl)cyclohex-1-ene (0.5 mmol, 85 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 100–200). Eluent: ethyl acetate/ petroleum ether (1:99 v/v); light yellowish liquid; isolated yield: 69% (62 mg). $^1\text{H NMR}$ (400 MHz, Chloroform-d) δ 1.63 – 1.68 (tq, J = 1.7, 1.7, 1.0, 0.9, 0.9 Hz, 5H), 1.69 – 1.76 (m, 1H), 1.82 – 1.86 (d, J = 1.4 Hz, 1H), 1.90 – 2.17 (m, 3H), 2.20 – 2.24 (d, J = 1.4 Hz, 3H), 5.36 – 5.43 (dtd, J = 4.8, 2.4, 2.4, 1.3 Hz, 1H), 6.95 – 6.98 (m, 1H). $^{13}\text{C NMR}$ (101 MHz, Chloroform-d) δ 17.21, 23.54, 27.01, 29.95, 30.02, 42.24, 119.35, 134.30, 135.16, 157.27. HRMS (ESI): calcd. for $\text{C}_{10}\text{H}_{16}\text{NO}_2$: 182.1181, found: 182.1173.



(1S,4R,E)-1-isopropyl-4-methyl-2-(nitromethylene)cyclohexane (Scheme 5, 5f). Nitration was done by general procedure A with (1S,4R)-1-isopropyl-4-methyl-2-methylenecyclohexane (0.5 mmol, 76 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (1:99 v/v); light yellowish liquid; isolated yield: 35% (30 mg). $^1\text{H NMR}$ (400 MHz, Chloroform-d) δ 0.74 – 1.12 (m, 9H), 1.13 – 2.23 (m, 7H), 2.45 – 2.63 (dd, J = 13.1, 7.3 Hz, 1H), 2.77 – 3.08 (ddt, J = 13.0, 4.7, 0.9, 0.9 Hz, 1H), 6.82 – 7.00 (q, J = 1.0, 1.0, 1.0 Hz, 1H). $^{13}\text{C NMR}$ (101 MHz, Chloroform-d) δ 19.83, 20.29, 21.86, 27.20, 27.49, 30.79, 33.58, 34.75, 50.66, 123.22, 133.93, 157.26. HRMS (ESI): calcd. for $\text{C}_{11}\text{H}_{20}\text{NO}_2$: 198.1494, found: 198.1503.

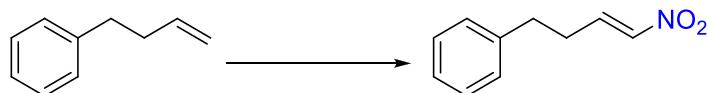

(1E,5Z)-1-nitrocycloocta-1,5-diene (Scheme 5, 5g). Nitration was done by general procedure A using CHCl_3 as the solvent with (1Z,5Z)-cycloocta-1,5-diene (0.5 mmol, 54 μ L) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh

60–120). Eluent: ethyl acetate/ petroleum ether (1:99 v/v); reddish orange liquid; isolated yield: 76% (58 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 2.40 – 2.55 (dtdd, J = 12.2, 6.1, 6.1, 3.0, 1.2 Hz, 4H), 2.55 – 2.68 (q, J = 6.4, 6.3, 6.3 Hz, 2H), 2.95 – 3.10 (m, 2H), 5.47 – 5.63 (m, 2H), 7.29 – 7.40 (t, J = 6.3, 6.3 Hz, 1H). **$^{13}\text{C NMR}$** (101 MHz, Chloroform-d) δ 25.81, 26.47, 26.86, 27.23, 127.83, 128.78, 135.41, 151.68. HRMS (ESI): calcd. for $\text{C}_8\text{H}_{12}\text{NO}_2$: 154.0868, found: 154.0867.

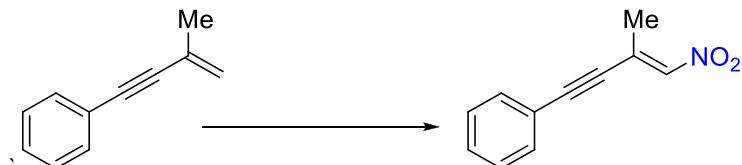


(E)-4-nitrooct-4-ene (Scheme 5, 5h).¹¹ Nitration was done by general procedure A with trans-4-octene (0.5 mmol, 56 μL) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 100–200). Eluent: petroleum ether; yellowish liquid; isolated yield: 51% (40 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 0.75 – 1.04 (m, 7H), 1.43 – 1.65 (ddt, J = 14.7, 7.3, 3.5, 3.5 Hz, 3H), 2.13 – 2.29 (q, J = 7.6, 7.6, 7.6 Hz, 2H), 2.44 – 2.66 (m, 2H), 7.00 – 7.18 (t, J = 7.9, 7.9 Hz, 1H). **$^{13}\text{C NMR}$** (101 MHz, Chloroform-d) δ 13.78, 13.99, 14.27, 21.39, 22.04, 22.84, 28.35, 30.13, 31.78, 136.55, 151.90. HRMS (ESI): calcd. for $\text{C}_8\text{H}_{15}\text{NO}_2\text{Na}$: 180.1000, found: 180.0999.

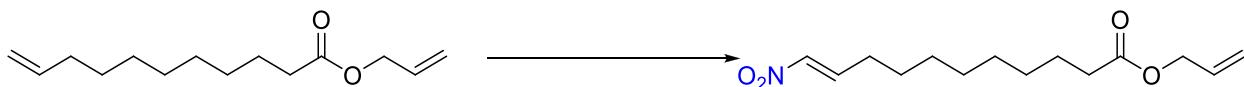
E-stereochemistry is determined based upon NOESY correlations between CH_2 -3 and CH_2 -6.



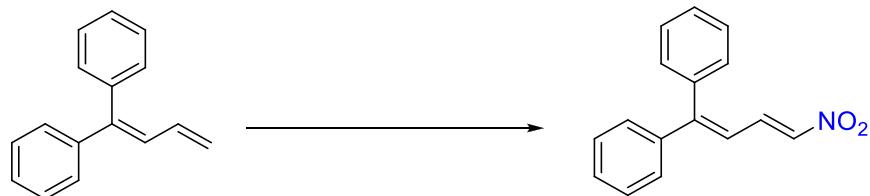
Selective NOESY correlation of **5h**.



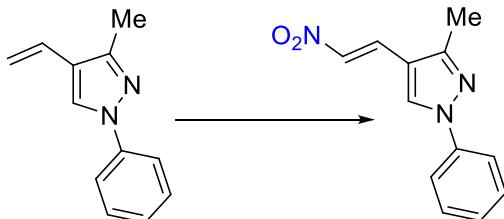
(E)-2-nitrohex-2-ene (Scheme 5, 5i). Nitration was done by general procedure A using CHCl_3 as the solvent with cis-2-hexene (0.5 mmol, 63 μL) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 100–200). Eluent: petroleum ether; light yellowish liquid; isolated yield (mixture of regioisomers): 76% (50 mg). **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 0.78 – 0.90 (m, 3H), 0.90 – 1.01 (dt, J = 10.3, 7.4, 7.4 Hz,


3H), 1.16 – 1.36 (m, 3H), 1.46 – 1.60 (h, J = 7.3, 7.3, 7.3, 7.3, 7.3 Hz, 2H), 1.84 – 1.92 (d, J = 7.4 Hz, 1H), 2.12 – 2.17 (d, J = 1.2 Hz, 2H), 2.17 – 2.25 (q, J = 7.8, 7.5, 7.5 Hz, 1H), 2.52 – 2.62 (t, J = 7.5, 7.5 Hz, 1H), 7.08 – 7.15 (td, J = 7.9, 7.9, 1.3 Hz, 1H). ^{13}C NMR (101 MHz, CDCl_3) δ 12.69, 13.74, 13.96, 14.31, 21.17, 21.85, 22.85, 25.46, 27.09, 28.01, 30.23, 31.78, 34.84, 131.84, 132.31, 136.42, 137.44.

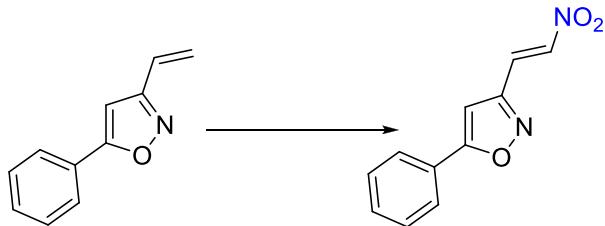
(E)-(4-nitrobut-3-enyl)benzene (Scheme 5, 5j).⁷ Nitration was done by general procedure A with but-3-enylbenzene (0.5 mmol, 66 μL) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/petroleum ether (1:99 v/v); dark reddish orange liquid; isolated yield: 53% (47 mg). ^1H NMR (400 MHz, Chloroform-d) δ 2.45 – 2.55 (qd, J = 7.5, 7.2, 7.2, 1.6 Hz, 2H), 2.70 – 2.78 (t, J = 7.5, 7.5 Hz, 2H), 6.79 – 6.96 (dt, J = 13.4, 1.6, 1.6 Hz, 1H), 7.08 – 7.13 (m, 2H), 7.13 – 7.20 (m, 2H), 7.20 – 7.25 (m, 2H). ^{13}C NMR (101 MHz, Chloroform-d) δ 30.13, 33.93, 126.63, 128.35, 128.74, 139.68, 139.99, 141.56. GC-MS (m/z): 177.1 [M]⁺.

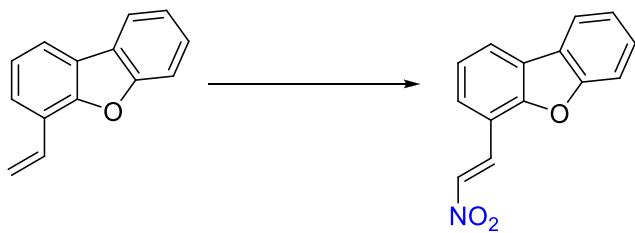


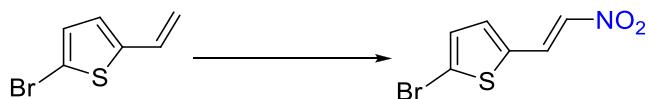
(E)-(3-methyl-4-nitrobut-3-en-1-ynyl)benzene (Scheme 5, 5k). Nitration was done by general procedure A with (3-methylbut-3-en-1-ynyl)benzene (0.35 mmol, 50 μL) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 100–200). Eluent: petroleum ether; orange-yellow liquid; isolated yield: 30% (20 mg). ^1H NMR (400 MHz, Chloroform-d) δ 2.35 – 2.73 (d, J = 1.6 Hz, 3H), 7.32 – 7.34 (q, J = 1.6, 1.5, 1.5 Hz, 1H), 7.35 – 7.45 (m, 3H), 7.46 – 7.54 (m, 2H). ^{13}C NMR (101 MHz, Chloroform-d) δ 20.29, 87.54, 100.02, 121.46, 128.83, 130.25, 132.33, 133.60, 141.34. GC-MS (m/z): 175.1 [M]⁺. HRMS (ESI): calcd. for $\text{C}_{11}\text{H}_{10}\text{NO}_2$: 188.0712, found: 188.0713.



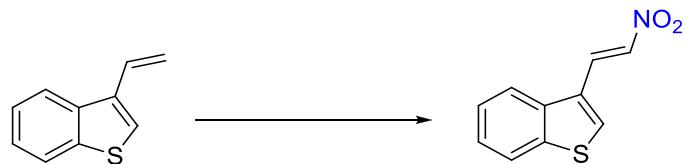
(E)-allyl 11-nitroundec-10-enoate (Scheme 5, 5l). Nitration was done by general procedure A with allyl undec-10-enoate (0.5 mmol, 127 μL) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/petroleum ether (2:98 v/v); light yellow liquid; isolated yield: 48% (64 mg). ^1H NMR (400 MHz, Chloroform-d) δ 1.18 – 1.35 (m, 10H), 1.53 – 1.65 (ddd, J = 16.0, 8.2, 4.1 Hz, 2H),


2.18 – 2.25 (qd, J = 7.5, 7.5, 7.4, 1.6 Hz, 2H), 2.25 – 2.31 (td, J = 7.6, 7.6, 3.8 Hz, 2H), 4.50 – 4.56 (dt, J = 5.7, 1.4, 1.4 Hz, 2H), 5.15 – 5.22 (dq, J = 10.4, 1.3, 1.3, 1.3 Hz, 1H), 5.23 – 5.31 (dq, J = 17.2, 1.5, 1.5, 1.5 Hz, 1H), 5.78 – 5.96 (ddt, J = 17.3, 10.4, 5.8, 5.8 Hz, 1H), 6.89 – 6.98 (dt, J = 13.4, 1.6, 1.6 Hz, 1H), 7.18 – 7.25 (m, 1H), 8.20 – 8.41 (s, 0H). ^{13}C NMR (101 MHz, Chloroform-d) δ 25.00, 27.83, 28.57, 29.15, 29.18, 29.19, 34.33, 39.65, 65.09, 76.91, 77.23, 77.55, 118.22, 132.46, 139.73, 142.91, 173.57. About 30% starting material was recovered after reaction.

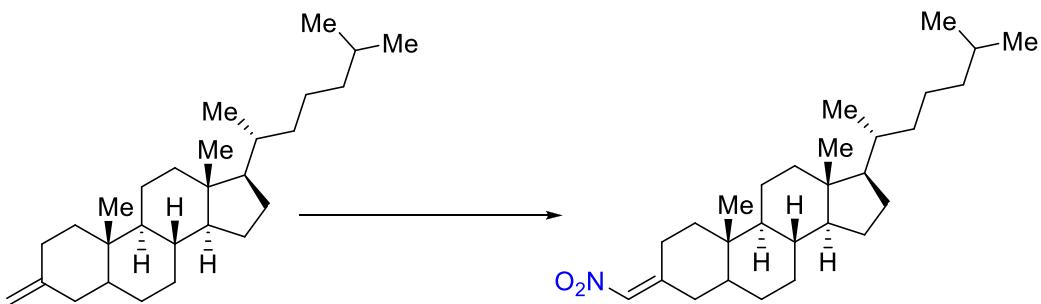

(E)-(4-nitrobuta-1,3-diene-1,1-diyldibenzene (Scheme 5, 5m).¹² Nitration was done by general procedure A with buta-1,3-diene-1,1-diyldibenzene (0.5 mmol, 103 μL) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 100–200). Eluent: petroleum ether; dark orange liquid; isolated yield: 10% (12 mg). ^1H NMR (400 MHz, Chloroform-d) δ 6.73 – 6.85 (m, 1H), 7.16 – 7.23 (m, 2H), 7.28 – 7.40 (m, 6H), 7.42 – 7.49 (dd, J = 5.0, 1.8 Hz, 3H), 7.63 – 7.74 (dd, J = 13.0, 12.1 Hz, 1H). ^{13}C NMR (101 MHz, Chloroform-d) δ 119.71, 128.68, 128.75, 128.79, 129.40, 129.96, 130.56, 137.29, 137.82, 139.65, 140.73, 157.34. GC-MS (m/z): 251.1 [M] $^+$.


(E)-3-methyl-4-(2-nitrovinyl)-1-phenyl-1H-pyrazole (Scheme 6, 6a). Nitration was done by general procedure A with 3-methyl-1-phenyl-4-vinyl-1H-pyrazole (0.5 mmol, 92 mg) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (6:94 v/v); yellow solid; isolated yield: 90% (100 mg). ^1H NMR (400 MHz, Chloroform-d) δ 2.46 – 2.52 (s, 3H), 7.30 – 7.40 (m, 1H), 7.44 – 7.53 (m, 3H), 7.62 – 7.72 (m, 2H), 7.98 – 8.09 (dd, J = 13.7, 0.5 Hz, 1H), 8.12 – 8.20 (s, 1H). ^{13}C NMR (101 MHz, Chloroform-d) δ 13.51, 113.63, 119.50, 127.74, 129.00, 129.88, 130.20, 135.13, 139.17, 151.47. HRMS (ESI): calcd. for $\text{C}_{12}\text{H}_{12}\text{N}_3\text{O}_2$: 230.0930, found: 230.0923. m. p. 143–144 $^{\circ}\text{C}$.

(E)-3-(2-nitrovinyl)-5-phenylisoxazole (Scheme 6, 6b). Nitration was done by general procedure A with 5-phenyl-3-vinylisoxazole (0.5 mmol, 86 mg) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (6:94 v/v); creamy solid; isolated yield: 80% (87 mg). **¹H NMR** (400 MHz, Chloroform-d) δ 6.68 – 6.77 (s, 1H), 7.43 – 7.58 (m, 3H), 7.63 – 7.74 (d, J = 13.8 Hz, 1H), 7.75 – 7.89 (m, 2H), 7.95 – 8.07 (d, J = 13.8 Hz, 1H). **¹³C NMR** (101 MHz, Chloroform-d) δ 97.69, 126.18, 126.60, 129.45, 130.33, 131.29, 142.19, 156.44, 172.13. HRMS (ESI): calcd. for $C_{11}H_9N_2O_3$: 217.0613, found: 217.0615. m. p. 186–187 °C.

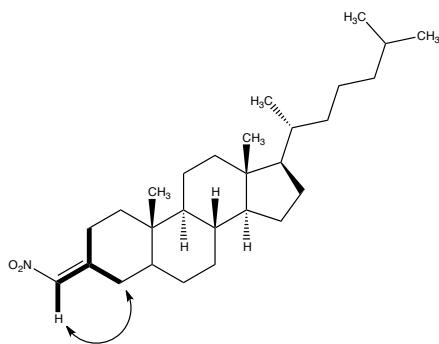


(E)-4-(2-nitrovinyl)dibenzo[b,d]furan (Scheme 6, 6c). Nitration was done by general procedure A with 4-vinyldibenzo[b,d]furan (0.5 mmol, 97 μ L, d=1 taken) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 100–200). Eluent: ethyl acetate/ petroleum ether (0.2:99.8 v/v); greenish yellow solid; isolated yield: 76% (90 mg). **¹H NMR** (400 MHz, Chloroform-d) δ 7.35 – 7.46 (m, 2H), 7.49 – 7.57 (dtd, J = 7.2, 4.4, 4.1, 1.3 Hz, 2H), 7.61 – 7.68 (dt, J = 8.3, 0.9, 0.9 Hz, 1H), 7.91 – 7.99 (m, 1H), 7.99 – 8.10 (dd, J = 7.7, 1.2 Hz, 1H), 8.09 – 8.21 (d, J = 13.6 Hz, 1H), 8.24 – 8.36 (d, J = 13.7 Hz, 1H). **¹³C NMR** (101 MHz, Chloroform-d) δ 76.91, 77.23, 77.54, 112.18, 115.47, 121.06, 123.24, 123.60, 123.86, 124.48, 125.52, 128.27, 130.66, 134.36, 139.91, 154.44, 156.21. HRMS (ESI): calcd. for $C_{14}H_{10}NO_3$: 240.0661, found: 240.0668. m. p. 123–124 °C.

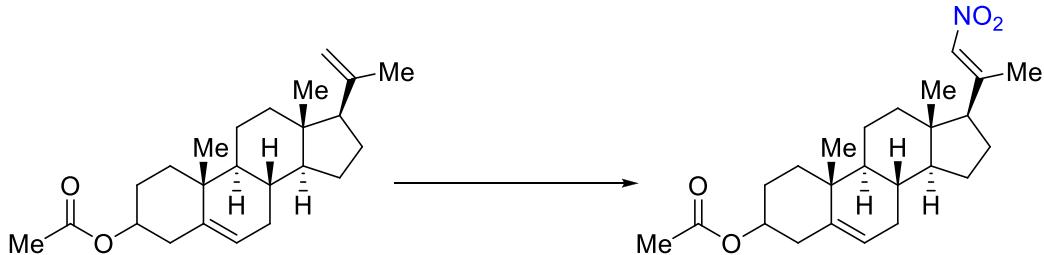


(E)-2-bromo-5-(2-nitrovinyl)thiophene (Scheme 6, 6d). Nitration was done by general procedure A with 2-bromo-5-vinylthiophene (0.16 mmol, 30 μ L, d=1 taken), 3.75 equiv $AgNO_2$ and 0.625 equiv TEMPO. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (0.5:99.5 v/v);

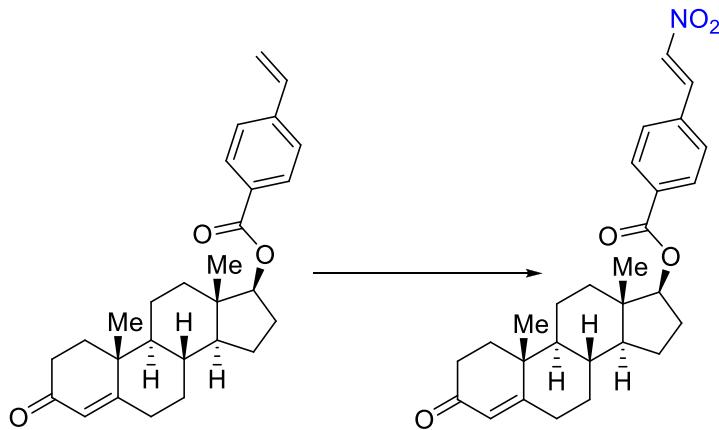
dark golden yellow solid; isolated yield: 81% (30 mg). **¹H NMR** (400 MHz, Chloroform-d) δ 7.09 – 7.15 (d, J = 3.9 Hz, 1H), 7.17 – 7.23 (dq, J = 4.0, 0.6, 0.6, 0.6 Hz, 1H), 7.33 – 7.42 (d, J = 13.4 Hz, 1H), 7.98 – 8.07 (dd, J = 13.4, 0.6 Hz, 1H). **¹³C NMR** (101 MHz, Chloroform-d) δ 119.82, 131.32, 132.07, 135.29, 135.38, 135.60. HRMS (ESI): calcd. for C₆H₅NO₂SBr: 233.9224, found: 233.9224.



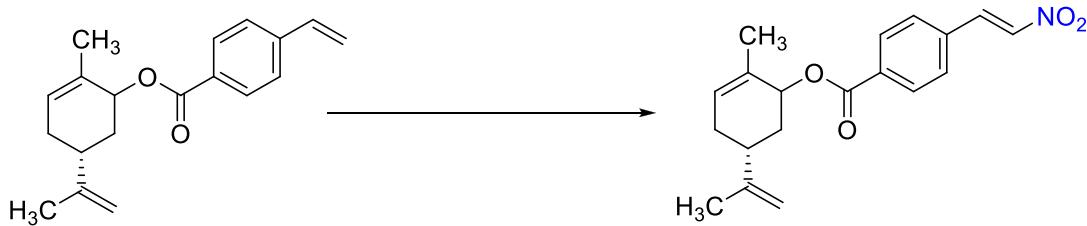
(E)-3-(2-nitroviny)benzo[b]thiophene (Scheme 6, 6e). Nitration was done by general procedure A with 3-vinylbenzo[b]thiophene (0.5 mmol, 80 μ L, d=1 taken) as the substrate. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 100–200). Eluent: ethyl acetate/ petroleum ether (0.5:99.5 v/v); dark orange solid; isolated yield: 59% (60 mg). **¹H NMR** (400 MHz, Chloroform-d) δ 7.40 – 7.55 (m, 2H), 7.65 – 7.76 (d, J = 13.7 Hz, 1H), 7.85 – 7.95 (m, 3H), 8.18 – 8.29 (dd, J = 13.7, 0.7 Hz, 1H). **¹³C NMR** (101 MHz, Chloroform-d) δ 122.06, 123.39, 125.75, 125.79, 127.12, 131.10, 133.09, 136.45, 136.68, 140.54. HRMS (ESI): calcd. for C₁₀H₈NO₂S: 206.0276, found: 206.0279. m. p. 112–113 °C.


(8R,9S,10S,13R,14S,17R,E)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-3-(nitromethylene)hexadecahydro-1H-cyclopenta[a]phenanthrene (Scheme 7, 7a). Nitration was done by general procedure A with (8R,9S,10S,13R,14S,17R)-10,13-dimethyl-3-methylene-17-((R)-6-methylheptan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthrene (0.4 mmol, 154 mg), 3 equiv AgNO₂ and 0.5 equiv TEMPO. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (0.5:99.5 v/v); creamy white solid; isolated yield: 93% (160 mg). **¹H NMR** (400 MHz, Chloroform-d) δ 0.54 – 0.78 (m, 6H), 0.78 – 1.20 (m, 25H), 1.20 – 1.41 (m, 4H), 1.42 – 1.63 (m, 3H), 1.63 – 1.74 (dq, J = 13.2, 3.6, 3.4, 3.4 Hz, 1H), 1.74 – 2.04 (m, 4H), 2.04 – 2.27 (m, 2H), 2.27 – 2.46 (m, 1H), 6.80 – 7.00 (q, J = 1.8, 1.8, 1.8 Hz, 1H). **¹³C NMR** (101 MHz, Chloroform-d) δ 12.08, 12.29, 18.87, 21.39, 22.78, 23.04, 24.03, 24.38, 28.23, 28.42, 29.13, 31.50, 32.06,

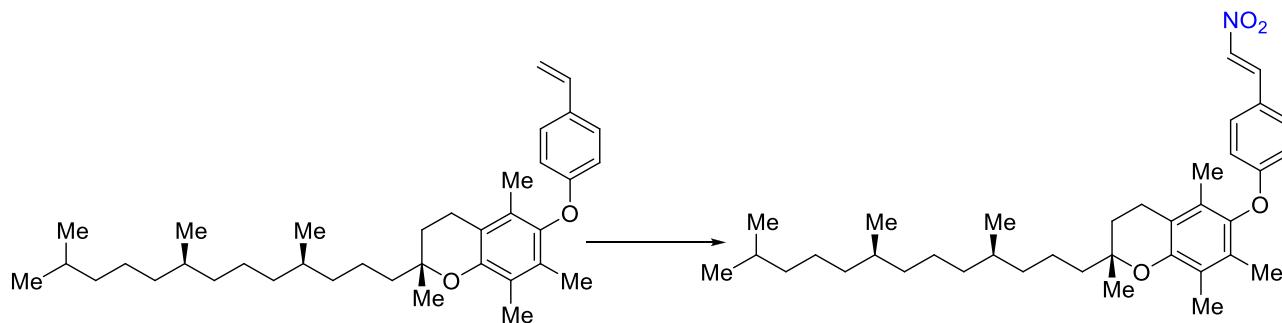
35.54, 35.99, 36.35, 36.84, 39.31, 39.71, 39.89, 40.09, 42.79, 48.32, 54.27, 56.42, 56.50, 132.16, 156.18. HRMS (ESI): calcd. for $C_{28}H_{48}NO_2$: 430.3685, found: 430.3676. m. p. 80-81 °C.


Selective COSY (bold lines) and NOESY correlations (arrow) of **7a**.

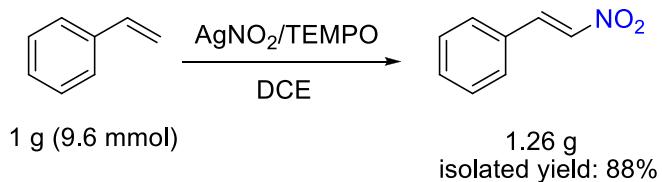
The structure of compound (**7a**) was established with the help of HRMS, one-dimensional (1H NMR and ^{13}C NMR), and two-dimensional (HSQC, COSY and NOESY) NMR spectral data. COSY spectrum revealed that the olefinic proton (δ_H 6.90) is coupled through allylic (four-bond) coupling to the two methylene groups at C-2 and C-4 (δ_H 2.40-1.90). NOESY spectrum displayed cross peaks (shown by two-headed arrow) between the olefinic proton (δ_H 6.90) and H-4 (δ_H 2.19 and 1.90, δ_C 36.8), suggesting that it is an *E*-isomer.



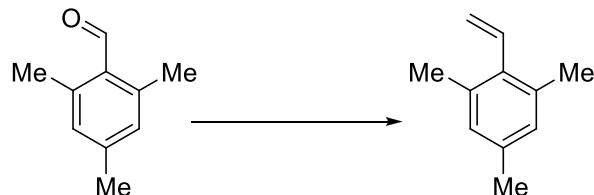
(8S,9S,10R,13S,14S,17S)-10,13-dimethyl-17-((E)-1-nitroprop-1-en-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl acetate (Scheme 7, 7b). Nitration was done by general procedure A with (*8S,9S,10R,13S,14S,17R*)-10,13-dimethyl-17-(prop-1-en-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl acetate (0.14 mmol, 50 mg), 3.2 equiv $AgNO_2$ and 0.7 equiv TEMPO. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (20:80 v/v); creamy white solid; isolated yield: 40% (20 mg). 1H NMR (400 MHz, Chloroform-d) δ 0.43 – 0.75 (d, J = 15.0 Hz, 2H), 0.77 – 1.08 (m, 4H), 1.08 – 1.37 (m, 4H), 1.37 – 1.67 (m, 3H), 1.67 – 1.95 (m, 3H), 1.95 – 2.16 (m, 3H), 2.16 – 2.43 (dd, J = 31.4, 3.4 Hz, 4H), 4.51 – 4.71 (m, 1H), 5.33 – 5.44 (dd, J = 4.7, 2.3 Hz, 1H), 6.94 – 7.06 (t, J = 1.3, 1.3 Hz, 1H), 7.22 – 7.31 (d, J = 3.2 Hz, 1H). ^{13}C NMR (101 MHz, Chloroform-d) δ 13.30,


19.48, 20.37, 21.08, 21.60, 24.44, 24.94, 27.86, 31.81, 32.25, 36.76, 37.12, 38.21, 38.51, 45.46, 50.11, 56.63, 58.43, 73.96, 122.34, 136.46, 139.90, 153.81, 170.73. HRMS (ESI): calcd. for C₂₄H₃₆NO₄: 402.2644, found: 402.2635.

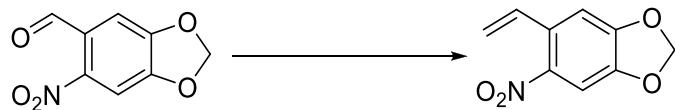
(8*R*,9*S*,10*R*,13*S*,14*S*,17*S*)-10,13-dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl 4-((*E*)-2-nitrovinyl)benzoate (Scheme 7, 7c). Nitration was done by general procedure A with (8*R*,9*S*,10*R*,13*S*,14*S*,17*S*)-10,13-dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl 4-vinylbenzoate (0.3 mmol, 125 mg), 3.3 equiv AgNO₂ and 0.5 equiv TEMPO. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 100–200). Eluent: ethyl acetate/ petroleum ether (30:70 v/v); light yellowish solid; isolated yield: 82% (110 mg). ¹H NMR (400 MHz, Chloroform-d) δ 0.91 – 1.10 (m, 5H), 1.10 – 1.35 (m, 4H), 1.35 – 1.53 (m, 2H), 1.53 – 1.81 (m, 6H), 1.81 – 1.96 (m, 2H), 1.97 – 2.09 (m, 1H), 2.23 – 2.51 (m, 4H), 4.02 – 4.23 (q, *J* = 7.1, 7.1, 7.1 Hz, 1H), 4.78 – 4.96 (dd, *J* = 9.2, 7.7 Hz, 1H), 5.64 – 5.82 (m, 1H), 7.48 – 7.54 (d, *J* = 8.0 Hz, 0H), 7.59 – 7.66 (m, 3H), 7.72 – 7.76 (d, *J* = 8.7 Hz, 0H), 7.99 – 8.05 (d, *J* = 13.9 Hz, 1H), 8.07 – 8.12 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 12.54, 17.63, 20.75, 23.81, 27.86, 31.69, 32.93, 34.13, 35.64, 35.92, 36.93, 38.82, 43.16, 50.48, 53.89, 83.77, 124.21, 129.16, 130.60, 133.72, 134.29, 137.81, 138.82, 165.56, 171.02, 199.66. HRMS (ESI): calcd. for C₂₈H₃₄NO₅: 464.2437, found: 464.2423. m. p. above 200 °C.



(5*R*)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-enyl 4-((*E*)-2-nitrovinyl)benzoate (Scheme 7, 7d). Nitration was done by general procedure A with (5*R*)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-enyl 4-vinylbenzoate (0.25 mmol, 71 μ L), 3 equiv AgNO_2 and 0.4 equiv TEMPO. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 100–200). Eluent: ethyl acetate/ petroleum ether (0.5:99.5 v/v); isolated yield: 67% (55 mg). ^1H NMR (400 MHz, Chloroform-d) δ 1.61 – 1.91 (d, J = 13.3 Hz, 7H), 1.91 – 2.26 (m, 2H), 2.26 – 2.58 (dd, J = 45.0, 23.3, 11.7, 4.9 Hz, 2H), 4.72 – 4.88 (m, 1H), 5.51 – 5.67 (m, 1H), 5.70 – 5.83 (q, J = 6.0, 6.0, 5.1 Hz, 1H), 5.83 – 5.96 (m, 1H), 7.62 – 7.82 (d, J = 9.0 Hz, 3H), 8.03 – 8.13 (d, J = 13.1 Hz, 1H), 8.14 – 8.25 (d, J = 7.3 Hz, 2H). ^{13}C NMR (101 MHz, Chloroform-d) δ 18.57, 20.44, 30.49, 33.24, 35.55, 39.72, 71.54, 108.93, 126.00, 127.95, 128.57, 130.07, 132.11, 133.14, 133.62, 137.23, 138.29, 148.05, 164.82. HRMS (ESI): calcd. for $\text{C}_{19}\text{H}_{22}\text{NO}_4$: 328.1549, found: 328.1541.

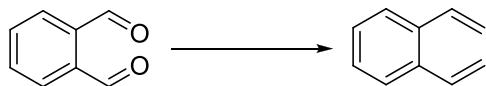

(*R*)-2,5,7,8-tetramethyl-6-(4-((*E*)-2-nitrovinyl)phenoxy)-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman (Scheme 7, 7e).¹³ Nitration was done by general procedure A with (*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)-6-(4-vinylphenoxy)chroman (0.2 mmol, 110 mg), 5 equiv AgNO_2 and 1 equiv TEMPO. Pure nitrated product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/ petroleum ether (0.5:99.5 v/v); bright yellowish solid; isolated yield: 90% (100 mg). ^1H NMR (400 MHz, Chloroform-d) δ 0.76 – 0.99 (m, 17H), 0.99 – 1.20 (m, 3H), 1.20 – 1.48 (m, 12H), 1.48 – 1.74 (m, 3H), 1.74 – 1.92 (m, 2H), 1.92 – 2.06 (d, J = 14.6 Hz, 7H), 2.06 – 2.17 (s, 3H), 2.56 – 2.69 (t, J = 6.9, 6.9 Hz, 2H), 6.79 – 6.86 (d, J = 8.8 Hz, 2H), 7.42 – 7.49 (d, J = 8.7 Hz, 2H), 7.49 – 7.55 (d, J = 13.6 Hz, 1H), 7.93 – 8.02 (d, J = 13.6 Hz, 1H). ^{13}C NMR (101 MHz, Chloroform-d) δ 12.04, 12.15, 13.02, 19.82, 19.88, 19.95, 20.81, 21.22, 22.83, 22.92, 24.04, 24.64, 25.01, 28.17, 31.32, 31.37, 32.85, 32.99, 37.48, 37.53, 37.58, 37.65, 37.74, 39.55, 40.16,

115.99, 118.27, 123.06, 123.78, 126.00, 127.84, 131.51, 135.20, 139.22, 142.95, 149.35, 162.56. HRMS (ESI): calcd. for $C_{37}H_{56}NO_4$: 578.4209, found: 578.4196.

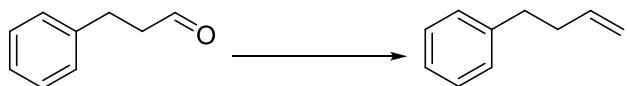


Gram scale reaction with styrene: To an oven dried two-neck round bottom flask fitted with a reflux condenser were added styrene (1 g), silver nitrite (3 g), tempo (0.6 g) and molecular sieves. After addition of about 30 mL dry DCE, it was kept in a pre-heated oil bath at 70 °C for 12 hours. After completion of the reaction, as detected by TLC analysis, reaction mixture was cooled to room temperature, filtered through a celite bed funnel, and purified by silica gel column chromatography (60-120 mesh). Crystalline yellow solid; isolated yield: 88% (1.26 g).

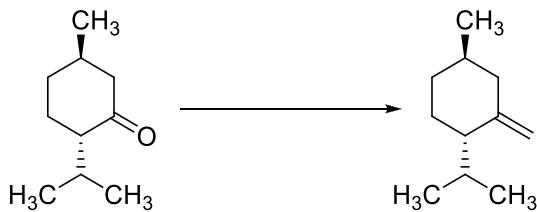
Characteristic data of starting materials prepared:



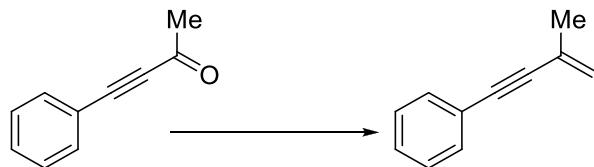
1,3,5-trimethyl-2-vinylbenzene. Reaction was done following General procedure B with 2,4,6-trimethylbenzaldehyde (2 mmol, 294 μ L) as the substrate. Pure olefin product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: petroleum ether; colorless liquid; isolated yield: 62% (180 mg). **^1H NMR** (400 MHz, Chloroform-d) δ 2.25 – 2.44 (d, J = 4.0 Hz, 9H), 5.25 – 5.35 (dd, J = 18.0, 2.1 Hz, 1H), 5.52 – 5.60 (dd, J = 11.5, 2.1 Hz, 1H), 6.66 – 6.79 (dd, J = 17.9, 11.5 Hz, 1H), 6.90 – 6.95 (d, J = 1.0 Hz, 2H). **^{13}C NMR** (101 MHz, Chloroform-d) δ 21.01, 21.13, 119.24, 128.71, 134.98, 135.20, 135.88, 136.34.



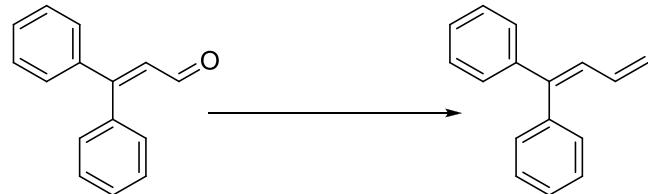
5-nitro-6-vinylbenzo[*d*][1,3]dioxole. Reaction was done following General procedure B with 6-nitrobenzo[*d*][1,3]dioxole-5-carbaldehyde (2 mmol, 390 mg) as the substrate. Pure olefin


product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate / petroleum ether (3:97 v/v); yellow solid. **¹H NMR** (400 MHz, Chloroform-d) δ 5.41–5.44 (dd, J = 10.0, 4 Hz, 1H), 5.60–5.65 (dd, J = 10.0, 4.0 Hz, 1H), 6.12 (s, 2H), 6.98 (s, 1H) 7.16–7.27 (m, 1H) 7.48 (s, 1H). **¹³C NMR** (101 MHz, Chloroform-d) δ 103.15, 105.38, 107.30, 118.07, 130.97, 133.35, 142.07, 147.63, 152.09.

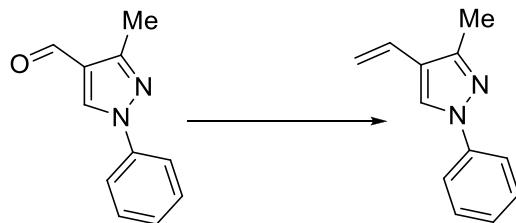
1,2-divinylbenzene. Reaction was done following General procedure B with phthalaldehyde (2 mmol, 268 mg) as the substrate. Pure olefin product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: petroleum ether; colorless liquid. **¹H NMR** (400 MHz, Chloroform-d) δ 5.32 – 5.44 (dd, J = 11.0, 1.4 Hz, 2H), 5.61 – 5.76 (dd, J = 17.4, 1.4 Hz, 2H), 6.98 – 7.16 (dd, J = 17.4, 10.9 Hz, 2H), 7.27 – 7.36 (m, 2H), 7.45 – 7.57 (dd, J = 5.7, 3.5 Hz, 2H). **¹³C NMR** (101 MHz, Chloroform-d) δ 116.53, 126.44, 127.99, 134.99, 136.23.



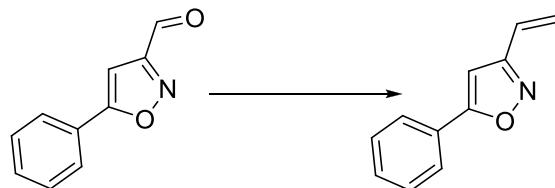
but-3-enylbenzene. Reaction was done following General procedure B with 3-phenylpropanal (2 mmol, 300 μ L) as the substrate. Pure olefin product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: petroleum ether; yellow liquid; isolated yield: 50% (150 mg). **¹H NMR** (400 MHz, Chloroform-d) δ 2.38 (m, 2H), 2.72 (m, 2H), 5.00 (m, 2H), 5.80–5.90 (m, 1H), 7.15–7.20 (m, 3H), 7.21–7.30 (m, 2H). **¹³C NMR** (101 MHz, Chloroform-d) δ 35.59, 35.74, 115.11, 126.00, 128.49, 128.63, 138.30, 142.06.



(1S,4R)-1-isopropyl-4-methyl-2-methylenecyclohexane. Reaction was done following General procedure B with (2S,5R)-2-isopropyl-5-methylcyclohexanone (5 mmol, 860 μ L) as the substrate. Pure olefin product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: petroleum ether; colorless liquid. **¹H NMR** (400 MHz, Chloroform-d) δ 0.87 – 0.90 (s, 1H), 0.90 – 0.92 (d, J = 1.7 Hz, 3H), 0.92 – 0.94 (d, J = 1.7 Hz, 3H), 0.94 – 0.97 (s, 2H), 1.02 – 1.44 (m, 2H), 1.47 – 1.63 (m, 1H), 1.63 – 1.74 (m, 2H), 1.74 – 1.88 (m, 2H), 1.88 – 2.15 (dq, J = 13.3, 6.6, 6.6 Hz, 1H), 2.16 – 2.45 (m, 1H), 4.53 – 4.66 (d,


$J = 1.9$ Hz, 1H), 4.66 – 4.87 (m, 1H). ^{13}C NMR (101 MHz, Chloroform-d) δ 19.23, 21.62, 22.34, 27.31, 27.61, 33.64, 34.24, 44.66, 49.62, 106.36, 151.28.

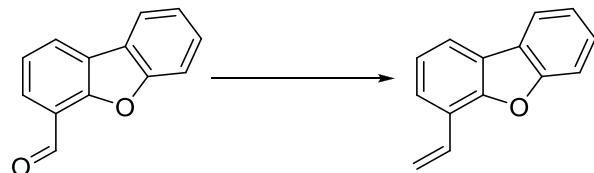
(3-methylbut-3-en-1-ynyl)benzene. Reaction was done following General procedure B with 4-phenylbut-3-yn-2-one (2 mmol, 280 μL) as the substrate. Pure olefin product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: petroleum ether. ^1H NMR (400 MHz, Chloroform-d) δ 1.72 – 2.41 (m, 3H), 5.29 – 5.34 (m, 1H), 5.39 – 5.44 (dd, $J = 2.1, 1.0$ Hz, 1H), 7.28 – 7.38 (dd, $J = 5.1, 2.0$ Hz, 3H), 7.42 – 7.50 (m, 2H). ^{13}C NMR (101 MHz, Chloroform-d) δ 23.71, 76.91, 77.23, 77.54, 88.57, 90.75, 122.15, 123.44, 127.04, 128.33, 128.46, 131.76.



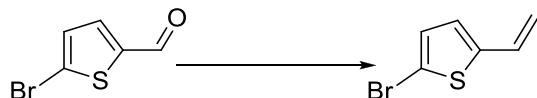
buta-1,3-diene-1,1-diylidobenzene. Reaction was done following General procedure B with 3,3-diphenylacrylaldehyde (1 mmol, 208 mg) as the substrate. Pure olefin product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: petroleum ether; Colorless dense liquid. ^1H NMR (400 MHz, Chloroform-d) δ 5.14 – 5.21 (m, 1H), 5.39 – 5.50 (m, 1H), 6.42 – 6.58 (dd, $J = 16.9, 11.1, 10.1, 1.0$ Hz, 1H), 6.71 – 6.82 (d, $J = 11.0$ Hz, 1H), 7.20 – 7.39 (m, 6H), 7.37 – 7.49 (m, 3H). ^{13}C NMR (101 MHz, Chloroform-d) δ 118.81, 127.58, 127.69, 127.77, 128.35, 128.38, 128.70, 130.60, 135.14, 139.82, 142.26, 143.31.



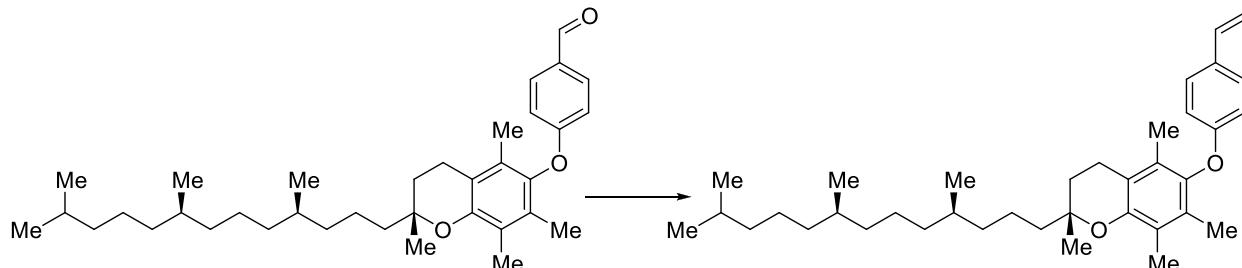
3-methyl-1-phenyl-4-vinyl-1H-pyrazole. Reaction was done following General procedure B with 3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (2 mmol, 372 mg) as the substrate. Pure olefin product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: ethyl acetate/petroleum ether (10:90 v/v); yellowish liquid; isolated yield: 81%


(300 mg). **¹H NMR** (400 MHz, Chloroform-d) δ 2.35 – 2.46 (d, J = 0.5 Hz, 3H), 5.08 – 5.25 (dd, J = 11.2, 1.4 Hz, 1H), 5.42 – 5.55 (dd, J = 17.8, 1.4 Hz, 1H), 6.50 – 6.64 (ddd, J = 17.7, 11.2, 0.7 Hz, 1H), 7.18 – 7.29 (m, 1H), 7.34 – 7.48 (m, 2H), 7.54 – 7.74 (m, 2H), 7.82 – 7.97 (s, 1H). **¹³C NMR** (101 MHz, Chloroform-d) δ 12.96, 113.03, 118.72, 120.67, 124.56, 126.09, 126.76, 129.43, 139.92, 148.74.

5-phenyl-3-vinylisoxazole. Reaction was done following General procedure B with 5-phenylisoxazole-3-carbaldehyde (1.5 mmol, 259 mg) as the substrate. Pure olefin product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: petroleum ether; creamy solid; isolated yield: 43% (110 mg). **¹H NMR** (400 MHz, Chloroform-d) δ 5.46 – 5.79 (dd, J = 11.0, 0.9 Hz, 1H), 5.79 – 6.20 (dd, J = 17.8, 0.9 Hz, 1H), 6.56 – 6.72 (s, 1H), 6.72 – 6.93 (dd, J = 17.8, 11.0 Hz, 1H), 7.33 – 7.56 (m, 3H), 7.69 – 7.87 (m, 2H). **¹³C NMR** (101 MHz, Chloroform-d) δ 96.32, 121.65, 125.39, 125.88, 127.41, 129.07, 130.30, 162.45, 169.87.

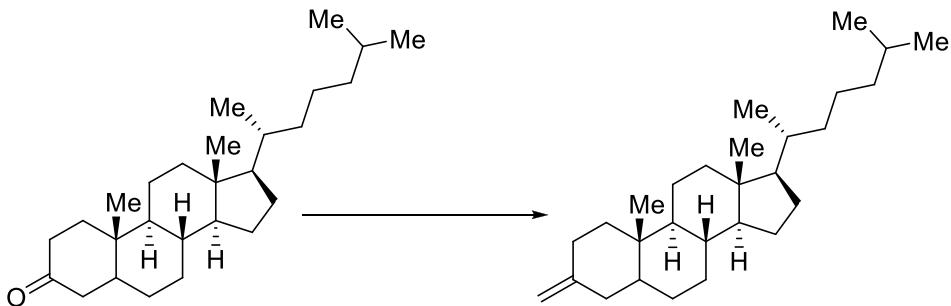


3-vinylbenzo[b]thiophene. Reaction was done following General procedure B with benzo[b]thiophene-3-carbaldehyde (1.5 mmol, 243 mg) as the substrate. Pure olefin product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: petroleum ether; yellowish liquid; isolated yield: 62% (150 mg). **¹H NMR** (400 MHz, Chloroform-d) δ 5.34 – 5.50 (dd, J = 11.1, 1.3 Hz, 1H), 5.75 – 5.93 (dd, J = 17.6, 1.3 Hz, 1H), 6.93 – 7.10 (ddd, J = 17.6, 11.1, 0.8 Hz, 1H), 7.32 – 7.59 (m, 3H), 7.81 – 8.08 (m, 2H). **¹³C NMR** (101 MHz, Chloroform-d) δ 115.75, 122.11, 122.44, 123.04, 124.44, 124.62, 129.37, 134.70, 137.79, 140.63.

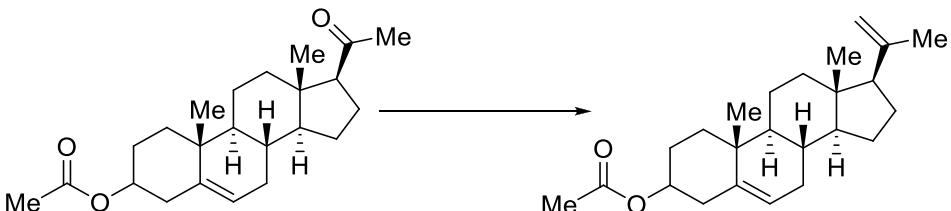


4-vinyldibenzo[b,d]furan. Reaction was done following General procedure B with dibenzo[b,d]furan-4-carbaldehyde (1.4 mmol, 273 mg) as the substrate. Pure olefin product was

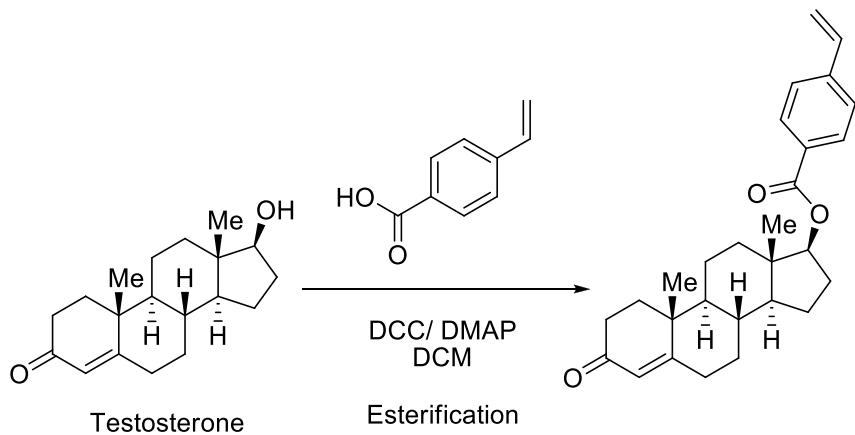
isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: petroleum ether; colorless liquid. **¹H NMR** (400 MHz, Chloroform-d) δ 5.50 – 5.69 (dt, J = 11.2, 1.1, 1.1 Hz, 1H), 6.19 – 6.44 (dt, J = 17.8, 1.1, 1.1 Hz, 1H), 7.06 – 7.21 (m, 1H), 7.29 – 7.43 (m, 2H), 7.43 – 7.58 (m, 2H), 7.58 – 7.73 (dq, J = 8.3, 0.7, 0.7, 0.7 Hz, 1H), 7.81 – 7.91 (dd, J = 7.7, 1.2 Hz, 1H), 7.91 – 8.06 (ddd, J = 7.7, 1.4, 0.7 Hz, 1H). **¹³C NMR** (101 MHz, Chloroform-d) δ 111.96, 117.64, 119.95, 120.86, 122.77, 122.98, 123.01, 124.22, 124.79, 125.51, 127.36, 131.50, 153.89, 156.32.

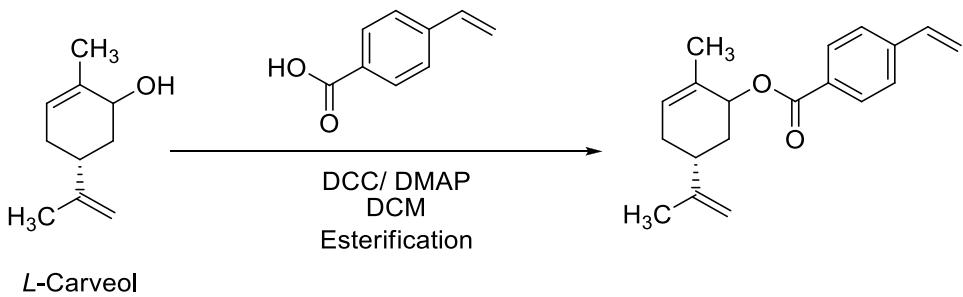


2-bromo-5-vinylthiophene. Reaction was done following General procedure B with 5-bromothiophene-2-carbaldehyde (0.26 mmol, 50 mg) as the substrate. Pure olefin product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: petroleum ether; yellowish liquid; isolated yield: 83% (40 mg). **¹H NMR** (400 MHz, Chloroform-d) δ 5.09 – 5.20 (m, 1H), 5.41 – 5.54 (m, 1H), 6.63 – 6.78 (m, 2H), 6.85 – 6.99 (d, J = 3.8 Hz, 1H). **¹³C NMR** (101 MHz, Chloroform-d) δ 111.43, 113.95, 126.25, 129.57, 130.36, 144.82.

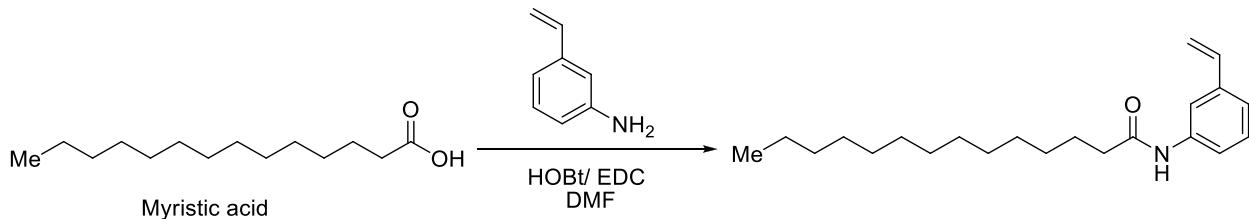


(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)-6-(4-vinylphenoxy)chroman.

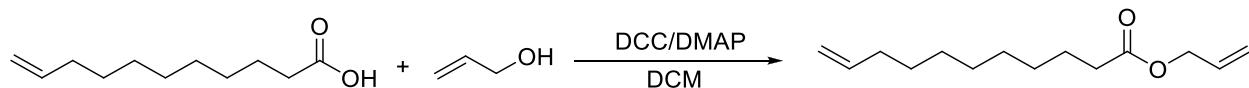

Reaction was done following General procedure B with 4-((R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yloxy)benzaldehyde (0.75 mmol, 400 mg) as the substrate. Pure olefin product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: petroleum ether; colorless liquid; isolated yield: 53% (210 mg). **¹H NMR** (400 MHz, Chloroform-d) δ 0.74 – 0.98 (dd, J = 7.9, 6.5 Hz, 1H), 0.98 – 1.18 (dddd, J = 24.9, 12.1, 7.1, 3.4 Hz, 3H), 1.18 – 1.36 (m, 9H), 1.36 – 1.57 (m, 3H), 1.58 – 1.71 (s, 3H), 1.71 – 1.91 (m, 2H), 1.92 – 2.07 (d, J = 16.2 Hz, 6H), 2.07 – 2.21 (s, 3H), 2.52 – 2.70 (t, J = 6.8, 6.8 Hz, 2H), 4.99 – 5.25 (dd, J = 10.8, 1.0 Hz, 1H), 5.51 – 5.70 (dd, J = 17.6, 1.0 Hz, 1H), 6.59 – 6.67 (m, 1H), 6.67 – 6.74 (d, J = 8.7 Hz, 2H), 7.27 – 7.32 (d, J = 8.7 Hz, 2H). **¹³C NMR** (101 MHz, Chloroform-d) δ 12.03, 12.20, 13.07, 14.41, 19.83, 19.90, 19.97, 20.83, 21.25, 22.85, 22.94, 24.07, 24.66, 25.03, 28.20, 31.49, 32.89, 33.01, 37.50, 37.57, 37.61, 37.68, 37.78, 39.58, 40.17, 53.62, 60.60, 75.22, 111.72, 114.92, 118.06, 123.46, 126.42, 127.64, 128.34, 130.79, 136.43, 143.51, 148.93, 158.86.


(8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-10,13-dimethyl-3-methylene-17-((*R*)-6-methylheptan-2-yl)hexadecahydro-1*H*-cyclopenta[*a*]phenanthrene. Reaction was done following General procedure B with cholestan-3-one (1 mmol, 386 mg) as the substrate. Pure olefin product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: petroleum ether; crystalline white solid; isolated yield: 55% (210 mg). **¹H NMR** (400 MHz, Chloroform-d) δ 0.57 – 0.74 (s, 5H), 0.74 – 0.93 (m, 14H), 0.93 – 1.20 (m, 10H), 1.20 – 1.43 (m, 5H), 1.43 – 1.61 (m, 3H), 1.61 – 1.72 (dtd, J = 12.8, 3.9, 3.8, 2.7 Hz, 2H), 1.72 – 1.92 (m, 3H), 1.92 – 2.08 (m, 2H), 2.08 – 2.25 (m, 2H), 4.22 – 4.87 (m, 2H). **¹³C NMR** (101 MHz, Chloroform-d) δ 12.00, 12.30, 18.89, 21.35, 22.80, 23.06, 24.05, 24.44, 28.24, 28.48, 29.13, 31.25, 32.22, 35.69, 36.03, 36.19, 36.39, 38.18, 39.74, 40.06, 40.27, 42.80, 48.29, 54.58, 56.47, 56.70, 106.16, 150.41. HRMS (ESI): calcd. for C₂₈H₄₈Na: 407.3654, found: 407.3651.

(8*S*,9*S*,10*R*,13*S*,14*S*,17*R*)-10,13-dimethyl-17-(prop-1-en-2-yl)2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl acetate. Reaction was done following General procedure B with pregnenolone acetate (0.5 mmol, 179 mg) as the substrate. Pure olefin product was isolated by column chromatography through a silica gel column (mesh 60–120). Eluent: petroleum ether; crystalline white solid; **¹H NMR** (400 MHz, Chloroform-d) δ 0.50 – 0.63 (s, 3H), 0.91 – 1.04 (s, 4H), 1.04 – 1.32 (m, 4H), 1.32 – 1.50 (m, 2H), 1.50 – 1.61 (m, 2H), 1.61 – 1.80 (m, 5H), 1.80 – 1.93 (m, 3H), 1.93 – 2.13 (s, 4H), 2.24 – 2.39 (m, 2H), 4.52 – 4.67 (dddd, J = 14.6, 11.3, 5.6, 4.0 Hz, 1H), 4.67 – 4.76 (dt, J = 2.0, 1.0, 1.0 Hz, 1H), 4.80 – 4.89 (ddd, J = 2.3, 1.4, 0.8 Hz, 1H), 5.31 – 5.44 (dq, J = 4.7, 1.8, 1.5, 1.5 Hz, 1H). **¹³C NMR** (101 MHz, Chloroform-d) δ 12.87, 19.53, 21.26, 21.63, 24.43, 24.85, 25.59, 27.95, 31.99, 32.37, 36.82, 37.20, 38.30, 38.81, 43.27, 50.36, 56.61, 57.40, 74.12, 110.90, 122.73, 139.86, 145.77, 170.70.

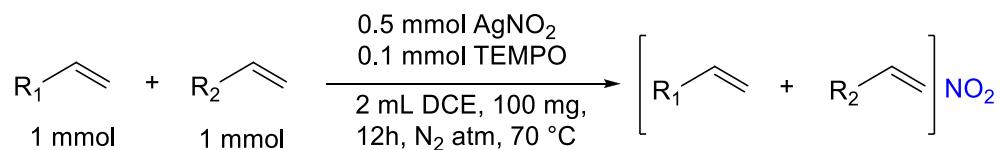


(8*R*,9*S*,10*R*,13*S*,14*S*,17*S*)-10,13-dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl 4-vinylbenzoate. 4-vinylbenzoic acid (1 mmol, 148 mg), testosterone (1 mmol, 288 mg), DCC (1.2 mmol, 247 mg), DMAP (1.2 mmol, 146 mg) and DCM (10 mL) were taken in a round bottom flask and stirred at room temperature for overnight. The crude reaction mixture was purified through column chromatography (100-200 mesh); Eluent: ethyl acetate/petroleum ether (15:85 v/v); white solid; isolated yield 38% (160 mg). **¹H NMR** (400 MHz, Chloroform-d) δ 0.90 – 1.33 (m, 10H), 1.34 – 1.50 (m, 2H), 1.51 – 1.78 (m, 5H), 1.78 – 1.95 (m, 3H), 1.95 – 2.17 (ddd, J = 13.4, 5.0, 3.2 Hz, 1H), 2.17 – 2.54 (m, 4H), 4.76 – 4.91 (dd, J = 9.1, 7.6 Hz, 1H), 5.30 – 5.45 (d, J = 11.0 Hz, 1H), 5.69 – 5.78 (m, 1H), 5.79 – 5.92 (d, J = 17.6 Hz, 1H), 6.63 – 6.85 (dd, J = 17.6, 10.9 Hz, 1H), 7.35 – 7.58 (m, 2H), 7.84 – 8.11 (m, 2H). **¹³C NMR** (101 MHz, Chloroform-d) δ 12.46, 17.57, 20.71, 23.78, 27.84, 31.66, 32.92, 34.09, 35.59, 35.85, 36.89, 38.78, 43.05, 50.44, 53.86, 83.10, 116.62, 124.11, 126.25, 129.89, 129.98, 136.17, 142.01, 166.40, 171.18, 199.68.



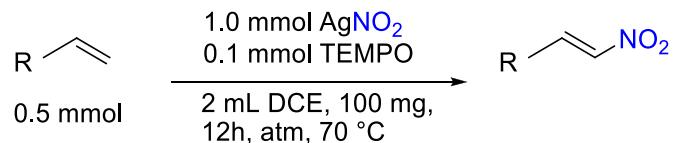
(5R)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-enyl 4-vinylbenzoate. 4-vinylbenzoic acid (1 mmol, 148 mg), *L*-carveol (1 mmol, 152 μ L), DCC (1.2 mmol, 247 mg), DMAP (1.2 mmol, 146 mg) and DCM (10 mL) were taken in a round bottom flask and stirred at room temperature for overnight. The crude reaction mixture was purified through column chromatography (60-120 mesh); Eluent: ethyl acetate/petroleum ether (1:99 v/v); **$^1\text{H NMR}$** (400 MHz, Chloroform-d) δ 1.61 – 1.82 (m, 7H), 1.85 – 2.20 (m, 2H), 2.20 – 2.55 (m, 2H), 4.66 – 4.81 (m, 1H), 5.33 – 5.45

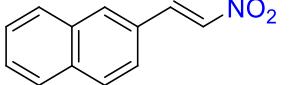
(dt, $J = 10.9, 1.0, 1.0$ Hz, 1H), 5.44 – 5.57 (dt, $J = 3.8, 1.6, 1.6$ Hz, 1H), 5.61 – 5.75 (m, 1H), 5.76 – 5.82 (dt, $J = 5.5, 1.9, 1.9$ Hz, 1H), 5.82 – 5.91 (ddd, $J = 17.6, 1.8, 0.8$ Hz, 1H), 6.61 – 6.89 (dd, $J = 17.6, 10.9$ Hz, 1H), 7.12 – 7.34 (s, 0H), 7.34 – 7.60 (dd, $J = 8.4, 1.4$ Hz, 2H), 7.90 – 8.17 (m, 2H).


N-(3-vinylphenyl)tetradecanamide.¹⁴ tetradecanoic acid (Myristic acid) (1 mmol, 228 μ L) was taken in round bottom flask, 5 mL DMF was added to it and was stirred at 0 °C. HOBT (1.1 mmol, 140 mg), EDC (1.1 mmol, 160 mg) was added to it and stirred at 0 °C for 15 mins and then for 30 mins at room temperature. 3-vinylaniline (1 mmol, 113 μ L) was added to it and reaction mixture was stirred at room temperature for overnight. The mixture was diluted with brine solution and extracted with ethyl acetate. Organic part was dried over Na_2SO_4 and concentrated at reduced pressure and product was purified through a silica gel column (mesh 60–120). White Solid; ¹H NMR (400 MHz, Chloroform-d) δ 0.84 – 0.91 (d, $J = 6.7$ Hz, 3H), 1.19 – 1.27 (s, 18H), 1.52 – 1.65 (m, 1H), 1.65 – 1.79 (p, $J = 7.6, 7.6, 7.5, 7.5$ Hz, 2H), 2.10 – 2.59 (td, $J = 7.6, 7.6, 3.7$ Hz, 3H), 5.06 – 5.38 (d, $J = 11.0$ Hz, 1H), 5.63 – 5.86 (dd, $J = 17.5, 0.9$ Hz, 1H), 6.49 – 6.81 (dd, $J = 17.6, 10.9$ Hz, 1H), 7.09 – 7.18 (dt, $J = 7.7, 1.3, 1.3$ Hz, 1H), 7.18 – 7.25 (m, 2H), 7.31 – 7.42 (m, 1H), 7.54 – 7.65 (t, $J = 1.9, 1.9$ Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 14.33, 22.90, 24.94, 25.84, 29.29, 29.48, 29.57, 29.65, 29.70, 29.89, 32.13, 34.12, 38.07, 114.64, 117.72, 119.36, 122.31, 129.29, 136.67, 138.41, 138.67, 171.80.

allyl undec-10-enoate. 10-undecenoic acid (1 mmol), allyl alcohol (1 mmol), DCC (1.2 mmol, 247 mg), DMAP (1.2 mmol, 146 mg) and DCM (10 mL) were taken in a round bottom flask and stirred at room temperature for overnight. The crude reaction mixture was purified through column chromatography (100-200 mesh); Eluent: ethyl acetate/petroleum ether (2:98 v/v); colorless liquid. ¹H NMR (400 MHz, Chloroform-d) δ 1.19 – 1.44 (m, 10H), 1.56 – 1.66 (t, $J = 7.3, 7.3$ Hz, 2H), 1.97 – 2.08 (tdd, $J = 8.1, 8.1, 6.0, 1.5$ Hz, 2H), 2.27 – 2.37 (t, $J = 7.6, 7.6$ Hz, 2H), 4.53 – 4.59 (dt, $J = 5.7, 1.5, 1.5$ Hz, 2H), 4.88 – 4.94 (ddd, $J = 10.2, 2.3, 1.2$ Hz, 1H), 4.94 – 5.03 (dt, $J = 17.1, 1.8, 1.8$ Hz, 1H), 5.18 – 5.25 (dt, $J = 10.4, 1.4, 1.4$ Hz, 1H), 5.25 – 5.35 (m, 1H), 5.73 – 5.85 (ddt, $J = 16.9, 10.2, 6.7, 6.7$ Hz, 1H), 5.85 – 5.97 (ddt, $J = 17.4, 10.4, 5.7, 5.7$ Hz, 1H).

Hz, 1H). ^{13}C NMR (101 MHz, CDCl_3) δ 25.11, 29.06, 29.22, 29.29, 29.37, 29.45, 33.97, 34.43, 65.09, 114.32, 118.22, 132.51, 139.32, 173.67.


Competition experiment 1: Olefins are nitrated selectively or preferentially based on slight difference in steric and electronic environment


	Olefin 1	Olefin 2	Result
1			Only styrene nitrated
2			Only styrene nitrated
3			Only terminal double bond nitrated

Results are based on ^1H NMR analysis of the crude reaction mixture.

Comparison under nitrogen and in air:

	Product	GC yield (Under Air)	GC yield (Under N_2)
1		81	83
2		57	52
3		72	75

4		73	75
---	---	----	----

X-ray crystallographic Data:

General Data Collection and Refinement Procedures:

The single crystal data was collected on a Bruker SMART APEX three circle diffractometer equipped with a CCD area detector and operated at 1500 W power (50 kV, 30 mA) to generate Mo K α radiation ($\lambda=0.71073$ Å). The incident X-ray beam was focused and monochromated using Bruker Excalibur Gobel mirror optics. Crystal of the C₃₂H₅₆N₄O₆ reported in the paper was mounted on nylon CryoLoops (Hampton Research) with Paraton-N (Hampton Research). Crystals were flash frozen to 293(2) K in a liquid nitrogen cooled stream of nitrogen.

Initial scans of each specimen were performed to obtain preliminary unit cell parameters and to assess the mosaicity (breadth of spots between frames) of the crystal to select the required frame width for data collection. In this case frame widths of 0.5° was judged to be appropriate and full hemispheres of data were collected using the Bruker SMART¹⁵ software suite. Following data collection, reflections were sampled from all regions of the Ewald sphere to re-determine unit cell parameters for data integration and to check for rotational twinning using CELL_NOW.¹⁶ In no data collection was evidence for crystal decay encountered. Following exhaustive review of the collected frames the resolution of the dataset was judged. Data was integrated using Bruker SAINT¹⁷ software with a narrow frame algorithm and a 0.400 fractional lower limit of average intensity. Data was subsequently corrected for absorption by the program SADABS.¹⁸ The space group determinations and test for merohedral twinning was carried out using XPREP.¹⁷ In this case, the highest possible space group was chosen. The structure was solved by direct method and refined using the SHELXTL 97¹⁹ software suite. Atoms were located from iterative examination of difference F-maps following least squares refinements of the earlier models. Final model was refined anisotropically (if the number of data permitted) until full convergence was achieved. Hydrogen atoms were placed in calculated positions (C-H = 0.93 Å) and included as riding atoms with isotropic displacement parameters 1.2-1.5 times Ueq of the attached C atoms. In some cases modeling of electron density within the voids of the frameworks did not lead to identification of recognizable solvent molecules in these structures, probably due to the highly disordered contents of the large pores in the frameworks. The ellipsoids in ORTEP diagrams are displayed at the 50% probability level unless noted otherwise.

ORTEP diagram of C₁₆H₂₈N₂O₃

Summary of crystallographic data for C₁₆H₂₈N₂O₃:

Crystal	C16 H28 N2 O3
Color	Colourless
Crystal description	Plate
Cell formula units Z	4
Cell volume	1037.60(7)
Size	0.25×0.20×0.14
Chemical formula weight	296.40
Crystal System	Orthorhombic
Space Group	P 21 1 1
Cell length a	8.0513(4)
Cell length b	10.4170(6)
Cell length c	19.4576(10)
Cell angle alpha	90.00
Cell angle beta	90.00
Cell angle gamma	90.00
V, Å ³ /ρ _{calc} , gcm ⁻¹	1631.92 (15)
Temp, K/λ, Å	293(2)
Z/μ mm ⁻¹	4
2θ _{max} [°]	29.08

Unique Reflections	3254
R factor all	0.0658
crystal_F_000	648.0

$$^aR1 = \sum \left| \left| F_o \right| - \left| F_c \right| \right| / \sum \left| F_o \right| ; wR^2 = \{ \sum [w (F_o^2 - F_c^2)^2] / \sum [w (F_o^2)^2] \}^{1/2}$$

Selected Bond Distances:

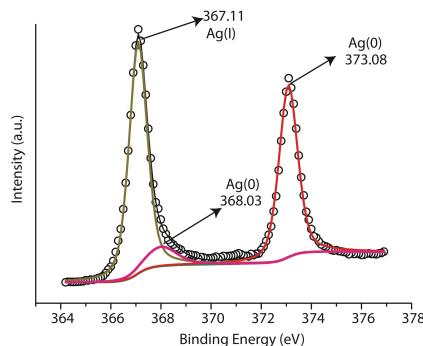
Bond	Length (Å)	Bond	Length (Å)
O1 C11	1.432(4)	C17 H17B	0.9700
O1 N2	1.463(3)	C19 C24	1.535(6)
N2 C23	1.502(5)	C19 C29	1.532(6)
N2 C8	1.504(4)	C19 H19A	0.9700
C7 N1	1.505(5)	C19 H19B	0.9700
C7 C32	1.510(6)	C20 C23	1.531(6)
C7 C11	1.564(5)	C20 H20A	0.9600
C7 H7	0.9800	C20 H20B	0.9600
C8 C34	1.529(5)	C20 H20C	0.9600
C8 C17	1.524(5)	C23 C25	1.530(6)
C8 C39	1.534(6)	C24 C27	1.509(6)
C11 C24	1.529(6)	C24 H24	0.9800
C11 H11	0.9800	C25 H25A	0.9600
C14 C38	1.503(6)	C25 H25B	0.9600
C14 C23	1.539(5)	C25 H25C	0.9600
C14 H14A	0.9700	C27 C32	1.522(6)

C14 H14B	0.9700	C27 H27A	0.9700
N1 O4	1.206(6)	C27 H27B	0.9700
N1 O3	1.208(5)	C29 C32	1.541(6)
C17 C38	1.509(7)	C29 H29A	0.9700
C17 H17A	0.9700	C29 H29B	0.9700

Selected Bond angles:

Bond	Angle (deg)	Bond	Angle (deg)
C11 O1 N2	111.7(2)	C42 C15 H15B	108.8
O1 N2 C23	107.2(3)	C5 C15 H15B	108.8
O1 N2 C8	105.3(2)	H15A C15 H15B	107.7
C23 N2 C8	117.2(3)	C9 C22 H22A	109.5
N1 C7 C32	113.8(3)	C9 C22 H22B	109.5
N1 C7 C11	111.4(3)	H22A C22 H22 B	109.5
C32 C7 C11	104.4(3)	C9 C22 H22C	109.5
N1 C7 H7	109.0	H22A C22 H22C	109.5
C32 C7 H7	109.0	H22B C22 H22C	109.5
C11 C7 H7	109.0	C9 C26 H26A	109.5
N2 C8 C34	115.5(3)	C9 C26 H26B	109.5
N2 C8 C17	107.2(3)	H26A C26 H26B	109.5
C34 C8 C17	111.1(3)	C9 C26 H26C	109.5
N2 C8 C39	107.2(3)	H26A C26 H26C	109.5
C34 C8 C39	108.6(4)	H26B C26 H26C	109.5
C17 C8 C39	106.8(4)	C30 C28 C31	101.2(4)

O1 C11 C24	114.8(3)	C30 C28 C13 106.1(3)	106.1(3)
O1 C11 C7	107.5(3)	C31 C28 C13	102.2(3)
C24 C11 C7	100.8(3)	C30 C28 H28	115.2
O1 C11 H11	111.1	C31 C28 H28	115.2
C24 C11 H11	111.1	C13 C28 H28	115.2

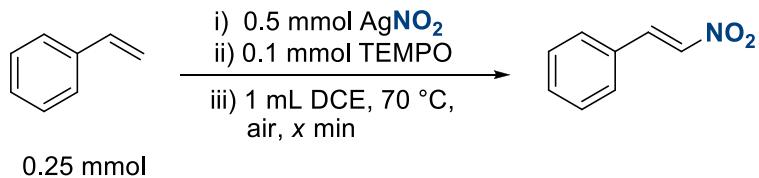


Experimental details for TEMPO-alkane-NO₂

Nitration of norbornene was attempted following general procedure A with 0.5 mmol substrate, 3 equiv. AgNO₂ and 0.4 equiv. TEMPO in DCE solvent. Pure nitrated product was isolated with silica gel column chromatography (60-120 mesh). Isolated yield: 60%; White solid. Single crystal of the compound was obtained in CHCl₃ solvent. ¹H NMR (400 MHz, Chloroform-d) δ 0.92 – 1.21 (m, 13H), 1.24 – 1.32 (m, 2H), 1.34 – 1.48 (dddd, J = 8.4, 6.6, 4.3, 2.2 Hz, 6H), 1.63 – 1.75 (m, 1H), 1.82 – 1.92 (dddd, J = 12.5, 8.7, 3.5, 1.7 Hz, 2H), 2.52 – 2.62 (d, J = 4.8 Hz, 1H), 2.71 – 2.77 (td, J = 4.4, 4.3, 1.7 Hz, 1H), 4.36 – 4.48 (t, J = 2.7, 2.7 Hz, 1H), 4.81 – 4.91 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 17.27, 20.02, 20.28, 20.57, 27.75, 33.47, 34.30, 34.64, 40.03, 40.27, 40.63, 45.83, 59.82, 59.93, 89.81, 94.82.

X-ray photoelectron spectroscopy for determining the oxidation state of silver:

We have carried out X-ray photoelectron spectroscopy (XPS) which showed formation of Ag(0) from the reaction mixture (Figure S2).

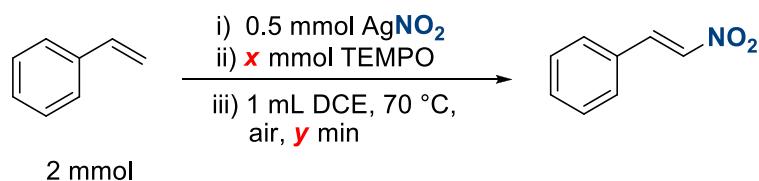

Figure S2: The deconvoluted XPS spectra of Ag3d shows peaks around 368.03 eV and 373.08 eV which are assigned for Ag(0) and the peak around 367.11 eV is for Ag(I), respectively.

Experimental details for kinetic study.

We have carried out a series of experiments in order to obtain the rate of reactions with respect to TEMPO. We plotted $\log(\text{Rate})$ vs. $\log(\text{TEMPO})$. The slope of this plot revealed a partial order with respect to TEMPO (assuming differential rate law to be multiplicative).

Using steady state analysis, it can be shown that both the suggested mechanisms (Scheme 8) are kinetically equivalent and have a partial order with respect to TEMPO undefined. In two extreme limits, the rate equation $[\text{Rate} = (k_2 k_1 C_{\text{olefin}} C_{\text{TEMPO}} C_{\text{AgNO}_2}) / (k_{-1} + k_2 C_{\text{TEMPO}})]$ gets modified to yield a partial order of 1 and 0. The $\log(\text{Rate})$ vs. $\log(\text{TEMPO})$ has been fitted to mean graph with an overall partial order of 0.4 conforming to the aforesaid limits.

A. Determination of time range for further kinetic study with styrene


Entry	Duration (min)	Conversion (%)	GC Yield (%)
1	5	14	3
2	10	22	13
3	15	46	31
4	20	73	55
5	25	77	58
6	30	90	73
7	35	95	77
8	40	92	76

B. 1. Observation of yield of product in different time interval with varying TEMPO loading

Substrate styrene was taken in excess (2 mmol) in presence of 0.25 equiv. AgNO_2 . With different TEMPO loading GC- yields of the product were determined with *n*-decane as the internal standard w.r.t. nitrating agent (AgNO_2). To unravel the kinetic dependence of the designed reaction on the concentration of TEMPO we have used data for different run with varying amount of the catalyst (ranging from 0.025 mmol to 0.15 mmol). Assuming the differential rate law to be of multiplicative form and to linearize the kinetic equation employed, we have used the concentration of the reactant in large excess so as to suppress their temporal variation for a given run. We have used the method of initial slope for evaluating the partial

order with respect to the catalyst. Owing to the initial induction phase in the kinetic profile we have used the slope (rate) corresponding to 6 min for each of the TEMPO loading.

For clarity and simplicity a representative plot involving only four of the aforesaid TEMPO concentrations has been shown (Figure S3). Using steady state analysis, it can be shown that both the suggested mechanisms (Scheme 8 in manuscript) are kinetically equivalent and have a partial order with respect to TEMPO undefined. In two extreme limits, the rate equation [Rate = $(k_2 k_1 C_{\text{olefin}} C_{\text{TEMPO}} C_{\text{AgNO}_2}) / (k_{-1} + k_2 C_{\text{TEMPO}})$] gets modified to yield order (w.r.t. TEMPO) of 1 and 0. The log(Rate) vs. log(TEMPO) has been fitted to mean graph with an overall partial order of 0.4 conforming to the aforesaid limits.

1. TEMPO loading = 0.025 mmol

Entry	Time (min)	GC Yield (%)
1	3	0
2	6	2
3	10	14
4	15	28
5	20	33
6	30	49
7	40	54

2. TEMPO loading = 0.05 mmol

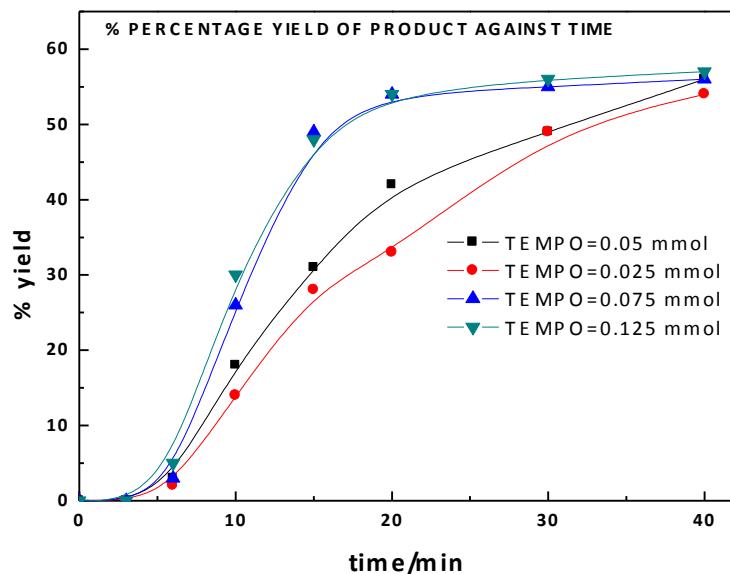
Entry	Time (min)	GC Yield (%)
1	3	0
2	6	3
3	10	18
4	15	31
5	20	42
6	30	49
7	40	56

3. TEMPO loading = 0.075 mmol

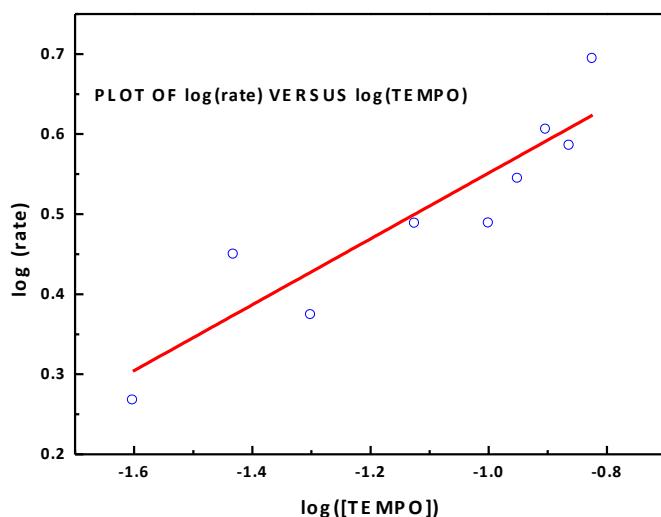
Entry	Time (min)	GC Yield (%)
1	3	0
2	6	3
3	10	26
4	15	49
5	20	54
6	30	55
7	40	56

4. TEMPO loading = 0.1 mmol

Entry	Time (min)	GC Yield (%)
1	3	0
2	6	8
3	10	25
4	15	44
5	20	48
6	30	58
7	40	57


5. TEMPO loading = 0.125 mmol

Entry	Time (min)	GC Yield (%)
1	3	0
2	6	5
3	10	30
4	15	48
5	20	54
6	30	56
7	40	57


Data for plotting log(Rate) vs. log(TEMPO) [The slope would yield the partial order w.r.t. TEMPO]

log(rate)	log(TEMPO)
0.267	-1.602
0.449	-1.432

0.374	-1.301
0.488	-1.125
0.489	-1.000
0.544	-0.951
0.605	-0.903
0.586	-0.863
0.694	-0.823

Figure S3: Variation of yield with respect to time with different TEMPO loading

Figure S4: Plot of $\log(\text{Rate})$ vs $\log(\text{TEMPO})$. The partial order obtained with respect to TEMPO is 0.4.

References:

(1) Jovel, I.; Prateeptongkum, S.; Jackstell, R.; Vogl, N.; Weckbecker, C.; Beller, M. *Adv. Synth. Catal.* **2008**, *350*, 2493.

(2) Yoshida, M.; Kitamikado, N.; Ikehara, H.; Hara, S. *J. Org. Chem.* **2011**, *76*, 2305.

(3) Alizadeh, A.; Khodaei, M. M.; Eshghi, A. *J. Org. Chem.* **2010**, *75*, 8295.

(4) Campos, P. J.; Garcia, B.; Rodriguez, M. A. *Tetrahedron Lett.* **2000**, *41*, 979.

(5) Neelakandeswari, N.; Sangami, G.; Emayavaramban, P.; Karvembu, R.; Dharmaraj, N.; Kim, H. Y. *Tetrahedron Lett.* **2012**, *53*, 2980.

(6) Chang, C.-F.; Huang, C.-Y.; Huang, Y.-C.; Lin, K.-Y.; Lee, Y.-J.; Wang, C.-J. *Synth. Commun.* **2010**, *40*, 3452.

(7) Mukaiyama, T.; Hata, E.; Yamada, T. *Chem. Lett.* **1995**, 505.

(8) Fryszkowska, A.; Fisher, K.; Gardiner, J. M.; Stephens, G. M. *J. Org. Chem.* **2008**, *73*, 4295.

(9) Taydakov, I. V.; Dutova, T. Y.; Sidorenko, E. N.; Krasnoselsky, S. S. *Chem. Heterocycl. Compd.* **2011**, *47*, 425.

(10) Motokura, K.; Tomita, M.; Tada, M.; Iwasawa, Y. *Chem. Eur. J.* **2008**, *14*, 4017.

(11) Hayama, T.; Tomoda, S.; Takeuchi, Y.; Nomura, Y. *Chem. Lett.* **1982**, 1109.

(12) Rodriguez, J. M.; Pujol, M. D. *Tetrahedron Lett.* **2011**, *52*, 2629.

(13) Salvi, L.; Davis, N. R.; Ali, S. Z.; Buchwald, S. L. *Org. Lett.* **2012**, *14*, 170.

(14) Di Marzo, V.; Ligresti, A.; Morera, E.; Nalli, M.; Ortar, G. *Bioorg. Med. Chem.* **2004**, *12*, 5161.

(15) Bruker (2005). APEX2. Version 5.053. Bruker AXS Inc., Madison, Wisconsin, USA.

(16) G. M. Sheldrick (2004). CELL_NOW. University of Göttingen, Germany. Steiner, Th. *Acta Cryst.* **1988**, *B54*, 456–463.

(17) Bruker (2004). SAINT-Plus (Version 7.03). Bruker AXS Inc., Madison, Wisconsin, USA.

(18) G. M. Sheldrick, (2002). SADABS (Version 2.03) and TWINABS (Version 1.02). University of Göttingen, Germany.

(19) G. M. Sheldrick, (1997). SHELXS '97 and SHELXL '97. University of Göttingen, Germany.