Porous Organic Salts towards Applicable Strategy for Construction of Versatile Porous Structures through Diamond Networks

Atsushi Yamamoto, Shinji Uehara, Tomoya Hamada, Mikiji Miyata, Ichiro Hisaki and Norimitsu Tohnai*

Table of Contents

Figure S1. Cubic-like hydrogen bonding network of the tetrahedral cluster in the *d*-POS 1a.
Figure S2. Stacking manners between the anthracene moieties of tetrahedral clusters in the *d*-POS 1a.
Figure S3. 1D array of the guest molecules in the *d*-POS 1a.
Figure S4. Crystal structure composed of 2-NS and TPMA.
Figure S5. Interpenetration manners of the *d*-POSs composed of 2-AS and TPMA.
Figure S1. Cubic-like hydrogen bonding network of the tetrahedral cluster in the \textit{d}-POS 1a.

Figure S2. Stacking manners between the anthracene moieties of tetrahedral clusters in the \textit{d}-POS 1a.

Figure S3. 1D array of the guest molecules in the \textit{d}-POS 1a.
Figure S4. Crystal structure composed of 2-NS and TPMA. (a) Top view of the structure. Hydrogen atoms are omitted for clarity except in the space-filling model of one supramolecular cluster. (b) Location of the naphthyl groups between neighboring clusters in the structure.

Figure S5. Interpenetration manners of the d-POSs composed of 2-AS and TPMA. d-POS 1a (a) 1b (b) and 1c (c). The independent diamond networks are indicated by blue, green and orange, respectively. Triphenylmethyl groups are omitted for clarity.