Supporting Information

Sterically encumbered bipyridyl-derivatized conjugated polymers and conducting metallopolymers incorporating phenylenevinylene, phenyleneethynylene and fluorenylene segments

Susan He, Ashley A. Buelt, Jessica M. Hanley, Brad P. Morgan, Andrew G. Tennyson* and Rhett C. Smith*

Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC 29634

Email: rhett@clemson.edu

List of Supporting Information Figures:
Figure S1. NMR spectra of 2-(4-bromo-2,6-dimesitylphenyl)-1,3-dioxolane.
Figure S2. NMR spectra of 4-iodo-2,6-dimesitylbenzaldehyde.
Figure S3. NMR spectra of 5’-bis(4-iodo-2,6-dimesitylstyryl)-2,2’-bipyridine.
Figure S4. NMR spectra of 5’-bis(4-bromo-2,6-dimesitylstyryl)-2,2’-bipyridine.
Figure S5. NMR spectra of [PdCl₂(BrTABBr)].
Figure S6. Proton NMR spectrum of 1,4-bis(hexyloxy)-2,5-diiodobenzene.
Figure S7. Proton NMR spectrum of 2,7diiodo-9,9-dioctyl-9H-fluorene.
Figure S8. Proton NMR spectrum of PF₁.
Figure S9. Proton NMR spectrum of PF₃.
Figure S10. Proton NMR spectrum of PPE₁.
Figure S11. Proton NMR spectrum of PPE₃.
Figure S12. Absorption (A) and photoluminescence (B) spectra for PF₁ in the presence of 10 equiv. of the indicated metal ions in THF.
Figure S13. Absorption titration (A) and photoluminescence titration (B) spectra for PF₁ to Cd(ClO₄)₂ in THF.
Figure S14. Absorption titration (A) and photoluminescence titration (B) spectra for PF₁ to Cu(ClO₄)₂ in THF.
Figure S15. Absorption titration (A) and photoluminescence titration (B) spectra for PF₁ to Hg(O₂CCF₃)₂ in THF.
Figure S16. Absorption titration (A) and photoluminescence titration (B) spectra for PF₁ to Co(NO₃)₂ in THF.
Figure S17. Absorption titration (A) and photoluminescence titration (B) spectra for PF₁ to Zn(ClO₄)₂ in THF.
Figure S18. Absorption (A) and photoluminescence (B) spectra for PF3 in the presence of 10 equiv. of the indicated metal ions in THF.
Figure S19. Absorption titration (A) and photoluminescence titration (B) spectra for PF3 to Cd(ClO4)2 in THF.
Figure S20. Absorption titration (A) and photoluminescence titration (B) spectra for PF3 to Cu(ClO4)2 in THF.
Figure S21. Absorption titration (A) and photoluminescence titration (B) spectra for PF3 to Hg(O2CCF3)2 in THF.
Figure S22. Absorption titration (A) and photoluminescence titration (B) spectra for PF3 to Co(NO3)2 in THF.
Figure S23. Absorption titration (A) and photoluminescence titration (B) spectra for PF3 to Zn(ClO4)2 in THF.
Figure S24. Absorption (A) and photoluminescence (B) spectra for PPE1 in the presence of 10 equiv. of the indicated metal ions in THF.
Figure S25. Absorption titration (A) and photoluminescence titration (B) spectra for PPE1 to Cd(ClO4)2 in THF.
Figure S26. Absorption titration (A) and photoluminescence titration (B) spectra for PPE1 to Cu(ClO4)2 in THF.
Figure S27. Absorption titration (A) and photoluminescence titration (B) spectra for PPE1 to Hg(O2CCF3)2 in THF.
Figure S28. Absorption titration (A) and photoluminescence titration (B) spectra for PPE1 to Co(NO3)2 in THF.
Figure S29. Absorption titration (A) and photoluminescence titration (B) spectra for PPE1 to Zn(ClO4)2 in THF.
Figure S30. Absorption (A) and photoluminescence (B) spectra for PPE3 in the presence of 10 equiv. of the indicated metal ions in THF.
Figure S31. Absorption titration (A) and photoluminescence titration (B) spectra for PPE3 to Cd(ClO4)2 in THF.
Figure S32. Absorption titration (A) and photoluminescence titration (B) spectra for PPE3 to Cu(ClO4)2 in THF.
Figure S33. Absorption titration (A) and photoluminescence titration (B) spectra for PPE3 to Hg(O2CCF3)2 in THF.
Figure S34. Absorption titration (A) and photoluminescence titration (B) spectra for PPE3 to Co(NO3)2 in THF.
Figure S35. Absorption titration (A) and photoluminescence titration (B) spectra for PPE3 to Zn(ClO4)2 in THF.
Figure S36. ORTEP drawing from the single crystal X-ray diffraction structure of 2-(4-bromo-2,6-dimesitylphenyl)-1,3- dioxolane.
Table S1. Refinement details for 2-(4-bromo-2,6-dimesitylphenyl)-1,3-dioxolane.
Figure S37. ORTEP drawing from the single crystal X-ray diffraction structure of [PdCl2(BrTABBr)].
Table S2. Refinement details for [PdCl2(BrTABBr)].
Figure S1. Proton (A) and Carbon-13 (B) NMR spectra of 2-(4-bromo-2,6-dimesitylphenyl)-1,3-dioxolane in CDCl₃.
Figure S2. Proton (A) and Carbon-13 (B) NMR spectra of 4-iodo-2,6-dimesitylbenzaldehyde in CDCl$_3$.
Figure S3. Proton (A) and Carbon-13 (B) NMR spectra of 5′-bis(4-iodo-2,6-dimesitylstyryl)-2,2′-bipyridine in CDCl₃.
Figure S4. Proton (A) and Carbon-13 (B) NMR spectra of 5’-bis(4-bromo-2,6-dimesitylstyryl)-2,2’-bipyridine in CDCl$_3$.
Figure S5. Proton (A) and Carbon-13 (B) NMR spectra of $[\text{PdCl}_2(\text{Br-TAB-Br})]$ in THF-d_8.
Figure S6. Proton NMR spectrum of 1,4-bis(hexyloxy)-2,5-diiodobenzene in CDCl₃.
Figure S7. Proton NMR spectrum of 2,7-diiodo-9,9-dioctyl-9H-fluorene in CDCl$_3$.
Figure S8. Proton NMR spectrum of PF1 in CDCl₃.
Figure S9. Proton NMR spectrum of PF3 in CDCl3.
Figure S10. Proton NMR spectrum of PPE1 in CDCl₃.

Figure S11. Proton NMR spectrum of PPE3 in CDCl₃.
Figure S12. Absorption (A) and photoluminescence (B) spectra for PF1 (initial concentration of \(5.7 \times 10^{-7} \) M for (A) and \(2.0 \times 10^{-7} \) M for (B) and in the presence of 10 equiv. of the indicated metal ions in THF.
Figure S13. Absorption titration (A) and photoluminescence titration (B) spectra for PF1 (initial concentration of 5.7×10^{-7} M for A and 2.0×10^{-7} M for B) to Cd(ClO$_4$)$_2$ in THF
Figure S14. Absorption titration (A) and photoluminescence titration (B) spectra for PF1 (initial concentration of 5.7×10^{-7} M for A and 2.0×10^{-7} M for B) to Cu(ClO$_4$)$_2$ in THF.
Figure S15. Absorption titration (A) and photoluminescence titration (B) spectra for PF1 (initial concentration of 5.7×10^{-7} M for A and 2.0×10^{-7} M for B) to Hg(O$_2$CCF$_3$)$_2$ in THF.
Figure S16. Absorption titration (A) and photoluminescence titration (B) spectra for PF1 (initial concentration of 5.7×10^{-7} M for A and 2.0×10^{-7} M for B) to Co(NO$_3$)$_2$ in THF.
Figure S17. Absorption titration (A) and photoluminescence titration (B) spectra for PF1 (initial concentration of 5.7×10^{-5} M for A and 2.0×10^{-7} M for B) to Zn(ClO$_4$)$_2$ in THF.
Figure S18. Absorption (A) and photoluminescence (B) spectra for PF3 (initial concentration of 3.3×10^{-6} M for A and B) and in the presence of 20 equiv. of the indicated metal ions in THF.
Figure S19. Absorption titration (A) and photoluminescence titration (B) spectra for PF3 (initial concentration of 3.3×10^{-6} M for A and B) to Cd(ClO$_4$)$_2$ in THF.
Figure S20. Absorption titration (A) and photoluminescence titration (B) spectra for PF3 (initial concentration of 3.3×10^{-6} M for A and B) to Cu(ClO$_4$)$_2$ in THF.
Figure S21. Absorption titration (A) and photoluminescence titration (B) spectra for PF3 (initial concentration of 3.3×10^{-6} M for A and B) to Hg($O_2CCF_3)_2$ in THF.
Figure S22. Absorption titration (A) and photoluminescence titration (B) spectra for PF3 (initial concentration of 3.3×10^{-6} M for A and B) to Co(NO$_3$)$_2$ in THF.
Figure S23. Absorption titration (A) and photoluminescence titration (B) spectra for PF3 (initial concentration of 3.3×10^{-6} M for A and B) to Zn(ClO$_4$)$_2$ in THF.
Figure S24. Absorption (A) and photoluminescence (B) spectra for PPE1 (initial concentration of 2.2×10^{-7} M for A and 2.2×10^{-6} M) and in the presence of 10 equiv. of the indicated metal ions in THF.
Figure S25. Absorption titration (A) and photoluminescence titration (B) spectra for PPE1 (initial concentration of 2.2×10^{-5} M for A and 2.2×10^{-6} M for B) to Cd(ClO$_4$)$_2$ in THF.
Figure S26. Absorption titration (A) and photoluminescence titration (B) spectra for PPE1 (initial concentration of 2.2×10^{-5} M for A and 2.2×10^{-6} M for B) to Cu(ClO$_4$)$_2$ in THF.
Figure S27. Absorption titration (A) and photoluminescence titration (B) spectra for PPE1 (initial concentration of 2.2×10^{-5} M for A and 2.2×10^{-6} M for B) to Hg(O$_2$CCF$_3$)$_2$ in THF.
Figure S28. Absorption titration (A) and photoluminescence titration (B) spectra for PPE1 (initial concentration of 2.2×10^{-5} M for A and 2.2×10^{-6} M for B) to Co(NO$_3$)$_2$ in THF.
Figure S29. Absorption titration (A) and photoluminescence titration (B) spectra for PPE1 (initial concentration of 2.2×10^{-5} M for A and 2.2×10^{-6} M for B) to Zn(ClO$_4$)$_2$ in THF.
Figure S30. Absorption (A) and photoluminescence (B) spectra for PPE3 (initial concentration of \(1.2 \times 10^{-6}\) M for A and B) and in the presence of excess (>20 equiv.) of the indicated metal ions in THF.
Figure S31. Absorption titration (A) and photoluminescence titration (B) spectra for PPE3 (initial concentration of 1.2×10^{-6} M for A and B) to Cd(ClO$_4$)$_2$ in THF.
Figure S32. Absorption titration (A) and photoluminescence titration (B) spectra for PPE3 (initial concentration of 1.2×10^{-6} M for A and B) to Cu(ClO$_4$)$_2$ in THF.
Figure S33. Absorption titration (A) and photoluminescence titration (B) spectra for PPE3 (initial concentration of 1.2×10^{-6} M for A and B) to Hg(O$_2$CCF$_3$)$_2$ in THF.
Figure S34. Absorption titration (A) and photoluminescence titration (B) spectra for PPE3 (initial concentration of 1.2×10^{-6} M for A and B) to Co(NO$_3$)$_2$ in THF.
Figure S35. Absorption titration (A) and photoluminescence titration (B) spectra for PPE3 (initial concentration of 1.2×10^{-6} M for A and B) to Zn(ClO$_4$)$_2$ in THF.
Figure S36. ORTEP drawing from the single crystal X-ray diffraction structure of 2-(4-bromo-2,6-dimesitylphenyl)-1,3-dioxolane (50% probability ellipsoids). Hydrogen atoms are omitted for clarity.
Table S1. Refinement details for 2-(4-bromo-2,6-dimesitylphenyl)-1,3-dioxolane.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C27H30BrO2</td>
</tr>
<tr>
<td>Formula weight (g/mol)</td>
<td>465.41</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>163 (2)</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>8.134(1)</td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>9.735(2)</td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>14.893(2)</td>
</tr>
<tr>
<td>(\alpha) (deg)</td>
<td>89.772(6)</td>
</tr>
<tr>
<td>(\beta) (deg)</td>
<td>87.329(6)</td>
</tr>
<tr>
<td>(\gamma) (deg)</td>
<td>89.842(6)</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>1178.0(3)</td>
</tr>
<tr>
<td>(Z)</td>
<td>2</td>
</tr>
<tr>
<td>Calculated density (Mg/m³)</td>
<td>1.312</td>
</tr>
<tr>
<td>Absorption coefficient (mm(^{-1}))</td>
<td>1.765</td>
</tr>
<tr>
<td>(F(000))</td>
<td>484</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.43 × 0.29 × 0.22</td>
</tr>
<tr>
<td>Crystal color and shape</td>
<td>colourless chip</td>
</tr>
<tr>
<td>(\Theta) range for data collection (deg)</td>
<td>3.26 - 25.10</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-9 < h < 9</td>
</tr>
<tr>
<td></td>
<td>-11 < k < 11</td>
</tr>
<tr>
<td></td>
<td>-16 < l < 17</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>9038</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4179</td>
</tr>
<tr>
<td>Completeness to (\Theta)</td>
<td>25.10 (99.5 %)</td>
</tr>
<tr>
<td>Max. transmission</td>
<td>0.6975</td>
</tr>
<tr>
<td>Min. transmission</td>
<td>0.5175</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on (F^2)</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4179/0/277</td>
</tr>
<tr>
<td>Goodness of fit on (F^2)</td>
<td>1.081</td>
</tr>
<tr>
<td>Final R indices ((I > 2\sigma(I)))</td>
<td></td>
</tr>
<tr>
<td>(R1)</td>
<td>0.0411</td>
</tr>
<tr>
<td>(wR2)</td>
<td>0.0977</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td></td>
</tr>
<tr>
<td>(R1)</td>
<td>0.0549</td>
</tr>
<tr>
<td>(wR2)</td>
<td>0.1097</td>
</tr>
</tbody>
</table>
Figure S37. ORTEP drawing from the single crystal X-ray diffraction structure of [PdCl$_2$(BrTABBr)] (30% probability ellipsoids). Hydrogen atoms are omitted for clarity.
Empirical formula: C₆₂H₅₈Br₂Cl₂N₂Pd

Formula weight (g/mol): 1168.22

Temperature (K): 153 (2)

Wavelength (Å): 0.71073

Crystal system: Monoclinic

Space group: C2/c

Unit cell dimensions:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (Å)</td>
<td>48.072 (10)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>8.9440 (18)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>32.086 (6)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90.00</td>
</tr>
<tr>
<td>β (deg)</td>
<td>113.00 (3)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90.00</td>
</tr>
</tbody>
</table>

Volume (Å³): 12699 (4)

Z: 8

Calculated density (Mg/m³): 1.222

Absorption coefficient (mm⁻¹): 1.670

F(000): 4752

Crystal size (mm): 0.43 × 0.24 × 0.06

Crystal color and shape: yellow chip

Θ range for data collection (deg): 2.76 – 25.10

Limiting indices:

-57 < h < 52
0 < k < 10
0 < l < 38

Reflections collected: 23355

Independent reflections: 11132

Completeness to Θ: 25.10 (98.3 %)

Max. transmission: 0.9065

Min. transmission: 0.5337

Refinement method: Full-matrix least-squares on F²

Data / restraints / parameters: 11132/0/634

Goodness of fit on F²: 1.062

Final R indices (I > 2σ(I)):

R1: 0.0706
wR2: 0.1937

R indices (all data):

R1: 0.0959
wR2: 0.2138

Table S2. Refinement details for [PdCl₂(Br-TAB-Br)].