Tedarene A and B: structural and stereochemical analysis of two new strained cyclic diarylheptanoids from the marine sponge *Tedania ignis*

Valeria Costantino, Ernesto Fattorusso, Alfonso Mangoni,* Cristina Perinu, Roberta Teta

The NeaNAT Group, Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy

Elisabetta Panza, Angela Ianaro

Dipartimento di Farmacologia Sperimentale, Università di Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy

Supporting Information

Table of contents

Figure S1 .. S2
Table S1. NMR data of tedarene B (minor conformer, SSR-2) ... S3
Table S4. Cartesian coordinates of the lowest-energy conformer of 1 in the CVFF force field.S4
Table S5. Cartesian coordinates of the optimized geometry of SSS-2 at the B3LYP/6-31G(d) levelS5
Table S6. Cartesian coordinates of the optimized geometry of SSR-2 at the B3LYP/6-31G(d) levelS6
1H-NMR spectra of tedarene A (1) (CD$_3$OD, 25 °C; CD$_3$OD, -40 °C; DMSO-d$_6$, 80 °C)....................S7
13C -NMR spectrum of tedarene A (1) (CD$_3$OD, 25 °C; CD$_3$OD, -40 °C)...S8
COSY spectrum of tedarene A (1) (CD$_3$OD, -23 °C) ...S9
ROESY spectrum of tedarene A (1) (CD$_3$OD, -40 °C) ..S10
HSQC spectrum of tedarene A (1) (CD$_3$OD, -23 °C) ..S11
HMBC spectrum of tedarene A (1) (CD$_3$OD, -23 °C) ..S12
1H-NMR spectrum of tedarene B (2) ..S13
COSY spectrum of tedarene B (2) ...S14
ROESY spectrum of tedarene B (2) ...S15
HSQC spectrum of tedarene B (2) ..S16
HMBC spectrum of tedarene B (2) ..S17
Figure S1. The four pairs of enatiomeric conformers of tedarene A (I) from the MD simulation (only one enantiomer of each pair is shown). Relative CVFF energies: (a) 0 kcal/mol; (b) +1.7 kcal/mol; (c) +3.0 kcal/mol; (d) +4.7 kcal/mol.
Table S1. 1H and 13C NMR spectroscopic data (CD$_3$OD, 700 MHz) of tedarene B (minor conformer, SSR-2)

<table>
<thead>
<tr>
<th>Position</th>
<th>δ_H [mult., J (Hz)]</th>
<th>δ_C</th>
<th>HMBCb</th>
<th>ROESY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>-</td>
<td>150.2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>-</td>
<td>132.3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>-</td>
<td>147.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>-</td>
<td>143.3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CH</td>
<td>7.21 (br. d, 8.3)</td>
<td>125.3</td>
<td>1, 3</td>
</tr>
<tr>
<td>6</td>
<td>CH</td>
<td>7.53 (br. d, 8.3)</td>
<td>121.4</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>7</td>
<td>CH$_2$ $^\alpha$ 2.99 (br. ddd, 15.9, 9.3, 5.7)</td>
<td>32.0</td>
<td>3, 4, 8, 9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CH$_2$ $^\beta$ 2.82 (br. ddd, 15.9, 9.3, 6.7)</td>
<td>34.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>CH</td>
<td>3.26 (ddd, 10.0, 8.7, 5.9)</td>
<td>52.2</td>
<td>3, 4, 10, 11</td>
</tr>
<tr>
<td>10</td>
<td>CH</td>
<td>5.12 (br. d, 15.6, 10.0)</td>
<td>140.8</td>
<td>8, 9, 12</td>
</tr>
<tr>
<td>11</td>
<td>CH</td>
<td>3.96 (br. d, 15.6, 10.0, 6.1)</td>
<td>131.2</td>
<td>9, 10</td>
</tr>
<tr>
<td>12</td>
<td>CH$_2$ $^\alpha$ 2.32 (m)</td>
<td>30.9</td>
<td>10, 11, 13</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>CH$_2$ $^\beta$ 2.30 (m)</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1'</td>
<td>C</td>
<td>-</td>
<td>153.2</td>
<td></td>
</tr>
<tr>
<td>2'</td>
<td>C</td>
<td>-</td>
<td>122.4</td>
<td></td>
</tr>
<tr>
<td>3'</td>
<td>CH</td>
<td>6.57 (br. d, 2.1)</td>
<td>143.8</td>
<td>2, 13, 1', 5'</td>
</tr>
<tr>
<td>4'</td>
<td>C</td>
<td>-</td>
<td>131.3</td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td>CH</td>
<td>6.84 (dd, 8.1, 2.1)</td>
<td>130.7</td>
<td>13, 1', 3'</td>
</tr>
<tr>
<td>6'</td>
<td>CH</td>
<td>6.69 (d, 8.1)</td>
<td>116.9</td>
<td>1', 2', 4'</td>
</tr>
</tbody>
</table>

a Assignment of methylene protons is stereospecific. Protons on the same side as H-9 are denoted as β; protons on the opposite side are denoted as α.

b HMBC correlations are from proton(s) stated to indicated carbon.
Table S2. Cartesian coordinates of the lowest-energy conformer of 1 in the CVFF force field.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-3.8246</td>
<td>0.8433</td>
<td>0.1481</td>
</tr>
<tr>
<td>C</td>
<td>-3.6739</td>
<td>-0.5620</td>
<td>0.2750</td>
</tr>
<tr>
<td>C</td>
<td>-2.4695</td>
<td>-1.1039</td>
<td>0.7949</td>
</tr>
<tr>
<td>C</td>
<td>-1.4352</td>
<td>-0.2239</td>
<td>1.2021</td>
</tr>
<tr>
<td>C</td>
<td>-1.5487</td>
<td>1.1808</td>
<td>1.0221</td>
</tr>
<tr>
<td>C</td>
<td>-2.7976</td>
<td>1.7083</td>
<td>0.5015</td>
</tr>
<tr>
<td>O</td>
<td>-0.4412</td>
<td>2.0446</td>
<td>1.2566</td>
</tr>
<tr>
<td>C</td>
<td>0.7282</td>
<td>1.4201</td>
<td>0.7472</td>
</tr>
<tr>
<td>C</td>
<td>1.6813</td>
<td>0.8720</td>
<td>1.6451</td>
</tr>
<tr>
<td>C</td>
<td>2.7089</td>
<td>0.0250</td>
<td>1.1599</td>
</tr>
<tr>
<td>C</td>
<td>2.7977</td>
<td>-0.2755</td>
<td>-0.2249</td>
</tr>
<tr>
<td>C</td>
<td>1.8830</td>
<td>0.3260</td>
<td>-1.1287</td>
</tr>
<tr>
<td>C</td>
<td>0.8541</td>
<td>1.1731</td>
<td>-0.6457</td>
</tr>
<tr>
<td>O</td>
<td>-2.8477</td>
<td>3.1034</td>
<td>0.3157</td>
</tr>
<tr>
<td>H</td>
<td>-1.9596</td>
<td>3.4879</td>
<td>0.5392</td>
</tr>
<tr>
<td>C</td>
<td>3.8313</td>
<td>-1.3146</td>
<td>-0.7264</td>
</tr>
<tr>
<td>C</td>
<td>-2.2023</td>
<td>-2.6300</td>
<td>0.8271</td>
</tr>
<tr>
<td>C</td>
<td>-1.2794</td>
<td>-2.9738</td>
<td>-0.3709</td>
</tr>
<tr>
<td>C</td>
<td>0.0469</td>
<td>-2.9119</td>
<td>-0.3009</td>
</tr>
<tr>
<td>C</td>
<td>0.9912</td>
<td>-3.2074</td>
<td>-1.6925</td>
</tr>
<tr>
<td>C</td>
<td>2.3163</td>
<td>-3.1168</td>
<td>-1.7569</td>
</tr>
<tr>
<td>C</td>
<td>3.2631</td>
<td>-2.7536</td>
<td>-0.5850</td>
</tr>
<tr>
<td>H</td>
<td>2.7495</td>
<td>-2.8743</td>
<td>0.4040</td>
</tr>
<tr>
<td>H</td>
<td>4.1174</td>
<td>-3.4849</td>
<td>-0.6007</td>
</tr>
<tr>
<td>H</td>
<td>2.8031</td>
<td>-3.3298</td>
<td>-2.7500</td>
</tr>
<tr>
<td>H</td>
<td>0.4385</td>
<td>-3.4879</td>
<td>-2.6323</td>
</tr>
<tr>
<td>H</td>
<td>0.5438</td>
<td>-2.6340</td>
<td>0.6654</td>
</tr>
<tr>
<td>H</td>
<td>-1.7587</td>
<td>-3.2356</td>
<td>-1.3537</td>
</tr>
<tr>
<td>H</td>
<td>4.7736</td>
<td>-1.2171</td>
<td>-0.1211</td>
</tr>
<tr>
<td>H</td>
<td>4.0961</td>
<td>-1.1067</td>
<td>-1.7981</td>
</tr>
<tr>
<td>H</td>
<td>1.9371</td>
<td>0.0878</td>
<td>-2.2252</td>
</tr>
<tr>
<td>H</td>
<td>3.4196</td>
<td>-0.4555</td>
<td>1.8848</td>
</tr>
<tr>
<td>H</td>
<td>0.0938</td>
<td>1.5885</td>
<td>-1.3615</td>
</tr>
<tr>
<td>H</td>
<td>1.5739</td>
<td>1.0434</td>
<td>2.7500</td>
</tr>
<tr>
<td>H</td>
<td>-4.7736</td>
<td>1.2704</td>
<td>-0.2748</td>
</tr>
<tr>
<td>H</td>
<td>-3.1665</td>
<td>-3.1983</td>
<td>0.7356</td>
</tr>
<tr>
<td>H</td>
<td>-1.7179</td>
<td>-2.9202</td>
<td>1.7975</td>
</tr>
<tr>
<td>H</td>
<td>-0.4892</td>
<td>-0.6643</td>
<td>1.6139</td>
</tr>
<tr>
<td>H</td>
<td>-4.5012</td>
<td>-1.2439</td>
<td>-0.0602</td>
</tr>
</tbody>
</table>
Table S3. Cartesian coordinates of the optimized geometry of SSS-2 at the B3LYP/6-31G(d) level.

<table>
<thead>
<tr>
<th>Element</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-3.0072251567</td>
<td>-1.3232263376</td>
<td>0.2211706232</td>
</tr>
<tr>
<td>C</td>
<td>-3.6633012412</td>
<td>-0.4543778603</td>
<td>-0.6468063758</td>
</tr>
<tr>
<td>C</td>
<td>-2.9396490951</td>
<td>0.4723833037</td>
<td>-1.4085941182</td>
</tr>
<tr>
<td>C</td>
<td>-1.556838058</td>
<td>0.4613622224</td>
<td>-1.2631285306</td>
</tr>
<tr>
<td>C</td>
<td>-0.8739973912</td>
<td>-0.2922820456</td>
<td>-0.2975891081</td>
</tr>
<tr>
<td>C</td>
<td>-1.6174247128</td>
<td>-1.2399703899</td>
<td>0.4428648887</td>
</tr>
<tr>
<td>C</td>
<td>0.5096989576</td>
<td>0.1795960084</td>
<td>0.0174900345</td>
</tr>
<tr>
<td>C</td>
<td>0.7065619893</td>
<td>1.491678798</td>
<td>0.5015175816</td>
</tr>
<tr>
<td>C</td>
<td>1.9999911796</td>
<td>2.0152265297</td>
<td>0.6469301895</td>
</tr>
<tr>
<td>C</td>
<td>3.1169423887</td>
<td>1.2417544344</td>
<td>0.3382329053</td>
</tr>
<tr>
<td>C</td>
<td>2.9456457862</td>
<td>-0.0588717816</td>
<td>-0.1271560431</td>
</tr>
<tr>
<td>C</td>
<td>1.6558044252</td>
<td>-0.5840506095</td>
<td>-0.2887108285</td>
</tr>
<tr>
<td>C</td>
<td>-0.3008335313</td>
<td>2.5463199942</td>
<td>1.0415087082</td>
</tr>
<tr>
<td>C</td>
<td>1.9616621265</td>
<td>3.4376065475</td>
<td>1.1637841006</td>
</tr>
<tr>
<td>C</td>
<td>-3.5709780222</td>
<td>1.6771790611</td>
<td>-2.061967261</td>
</tr>
<tr>
<td>C</td>
<td>-1.7213019333</td>
<td>2.5474087264</td>
<td>0.5235904954</td>
</tr>
<tr>
<td>C</td>
<td>-2.2605873771</td>
<td>3.2430607521</td>
<td>-0.4865252352</td>
</tr>
<tr>
<td>C</td>
<td>-3.6168208782</td>
<td>2.8930292174</td>
<td>-1.0551873137</td>
</tr>
<tr>
<td>C</td>
<td>1.4724088565</td>
<td>-1.82625594</td>
<td>-0.8398694512</td>
</tr>
<tr>
<td>C</td>
<td>-1.1224811014</td>
<td>-2.0284920835</td>
<td>1.416770095</td>
</tr>
<tr>
<td>C</td>
<td>2.0464683109</td>
<td>-3.1924768991</td>
<td>0.0791851065</td>
</tr>
<tr>
<td>C</td>
<td>1.4920629264</td>
<td>-4.2910968222</td>
<td>-0.714726519</td>
</tr>
<tr>
<td>C</td>
<td>1.3998976795</td>
<td>-2.9516780336</td>
<td>1.4032839341</td>
</tr>
<tr>
<td>C</td>
<td>3.5136257421</td>
<td>-3.067020198</td>
<td>0.1020501369</td>
</tr>
<tr>
<td>C</td>
<td>-3.5584200159</td>
<td>-2.0586782352</td>
<td>0.8004626202</td>
</tr>
<tr>
<td>C</td>
<td>-4.7506717859</td>
<td>-0.4850584724</td>
<td>-0.7150321452</td>
</tr>
<tr>
<td>C</td>
<td>-0.9629034202</td>
<td>1.1780173958</td>
<td>-1.8291031275</td>
</tr>
<tr>
<td>O</td>
<td>4.1196208935</td>
<td>1.6524637696</td>
<td>0.4455834544</td>
</tr>
<tr>
<td>O</td>
<td>3.7887990504</td>
<td>-0.6917933414</td>
<td>-0.3765081236</td>
</tr>
<tr>
<td>O</td>
<td>-0.3718898652</td>
<td>2.344649385</td>
<td>2.1247817422</td>
</tr>
<tr>
<td>H</td>
<td>0.138073068</td>
<td>4.6506460415</td>
<td>1.5447905057</td>
</tr>
<tr>
<td>H</td>
<td>0.4216332069</td>
<td>4.214988255</td>
<td>-0.149826479</td>
</tr>
<tr>
<td>H</td>
<td>2.6989003611</td>
<td>4.0938768655</td>
<td>0.6839388194</td>
</tr>
<tr>
<td>H</td>
<td>2.1664437337</td>
<td>3.4700246236</td>
<td>2.2461975399</td>
</tr>
<tr>
<td>H</td>
<td>-4.5993533817</td>
<td>1.4718024554</td>
<td>-2.3894529751</td>
</tr>
<tr>
<td>H</td>
<td>-3.003872487</td>
<td>1.9790368978</td>
<td>-2.9525478616</td>
</tr>
<tr>
<td>H</td>
<td>-2.3659312388</td>
<td>1.8196065147</td>
<td>1.0161613848</td>
</tr>
<tr>
<td>H</td>
<td>-1.6582728074</td>
<td>3.9589889014</td>
<td>-1.0480076936</td>
</tr>
<tr>
<td>H</td>
<td>-4.297586419</td>
<td>2.6124960435</td>
<td>-0.0241028427</td>
</tr>
<tr>
<td>H</td>
<td>-4.0654234348</td>
<td>3.7553040248</td>
<td>-1.5680310631</td>
</tr>
<tr>
<td>H</td>
<td>-0.152009598</td>
<td>-2.2344047711</td>
<td>1.3283086784</td>
</tr>
</tbody>
</table>
Table S4. Cartesian coordinates of the optimized geometry of SSR-2 at the B3LYP/6-31G(d) level.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2.8446869606</td>
<td>-0.9814126926</td>
<td>1.202265463</td>
</tr>
<tr>
<td></td>
<td>-3.710133935</td>
<td>-0.2145574144</td>
<td>0.4248587447</td>
</tr>
<tr>
<td></td>
<td>-3.2224987068</td>
<td>0.5253188606</td>
<td>-0.656328667</td>
</tr>
<tr>
<td>C</td>
<td>-1.8521398286</td>
<td>0.4402222049</td>
<td>-0.9245239044</td>
</tr>
<tr>
<td>C</td>
<td>-0.9384925467</td>
<td>-0.1871403666</td>
<td>-0.0777325189</td>
</tr>
<tr>
<td>C</td>
<td>-1.4532951383</td>
<td>-0.9549301963</td>
<td>0.9970312619</td>
</tr>
<tr>
<td>C</td>
<td>0.5016167986</td>
<td>0.2002841449</td>
<td>-0.200794196</td>
</tr>
<tr>
<td>C</td>
<td>0.9229806644</td>
<td>1.5178086436</td>
<td>0.1020748349</td>
</tr>
<tr>
<td>C</td>
<td>2.28635798</td>
<td>1.8443814818</td>
<td>0.0804076956</td>
</tr>
<tr>
<td>C</td>
<td>3.2386282554</td>
<td>0.9062805141</td>
<td>-0.3167961247</td>
</tr>
<tr>
<td>C</td>
<td>2.8359415791</td>
<td>-0.3709346214</td>
<td>-0.6893740959</td>
</tr>
<tr>
<td>C</td>
<td>1.481475072</td>
<td>-0.7265008714</td>
<td>-0.6129431127</td>
</tr>
<tr>
<td>C</td>
<td>0.1031724144</td>
<td>2.7346053074</td>
<td>0.6077953842</td>
</tr>
<tr>
<td>C</td>
<td>1.1489145083</td>
<td>3.8909136632</td>
<td>0.5740664944</td>
</tr>
<tr>
<td>C</td>
<td>2.5417987737</td>
<td>3.2338461482</td>
<td>0.6177045708</td>
</tr>
<tr>
<td>C</td>
<td>-3.9869581978</td>
<td>1.6593200862</td>
<td>-1.2956999468</td>
</tr>
<tr>
<td>C</td>
<td>-1.1289429501</td>
<td>3.102207819</td>
<td>-0.1847272952</td>
</tr>
<tr>
<td>C</td>
<td>-2.3926548647</td>
<td>3.010091886</td>
<td>0.2393727005</td>
</tr>
<tr>
<td>C</td>
<td>-3.6140404332</td>
<td>3.0722782877</td>
<td>-0.6473809646</td>
</tr>
<tr>
<td>O</td>
<td>1.0512846666</td>
<td>-1.9678184167</td>
<td>-1.0047234956</td>
</tr>
<tr>
<td>O</td>
<td>-0.7022371681</td>
<td>-1.6035658494</td>
<td>1.9125748728</td>
</tr>
<tr>
<td>S</td>
<td>1.7176091288</td>
<td>-3.3536406138</td>
<td>-0.1797571725</td>
</tr>
<tr>
<td>O</td>
<td>0.828221274</td>
<td>-4.404316079</td>
<td>-0.6790806204</td>
</tr>
<tr>
<td>O</td>
<td>1.533282295</td>
<td>-2.9637992457</td>
<td>1.2487040367</td>
</tr>
<tr>
<td>O</td>
<td>3.127045415</td>
<td>-3.427618861</td>
<td>-0.6025635488</td>
</tr>
<tr>
<td>H</td>
<td>-3.2136050468</td>
<td>-1.5793798325</td>
<td>2.0307631848</td>
</tr>
<tr>
<td>H</td>
<td>-4.769241681</td>
<td>-0.175870835</td>
<td>0.6774356758</td>
</tr>
<tr>
<td>H</td>
<td>-1.450152301</td>
<td>1.012372495</td>
<td>-1.7557587561</td>
</tr>
<tr>
<td>H</td>
<td>4.294807978</td>
<td>1.1699926218</td>
<td>-0.3383108245</td>
</tr>
<tr>
<td>H</td>
<td>3.5463531764</td>
<td>-1.124986313</td>
<td>-1.0065613548</td>
</tr>
<tr>
<td>H</td>
<td>-0.204856995</td>
<td>2.5352160518</td>
<td>1.6452751239</td>
</tr>
<tr>
<td>H</td>
<td>0.908369737</td>
<td>4.6151862939</td>
<td>1.378816151</td>
</tr>
<tr>
<td>H</td>
<td>1.0350224423</td>
<td>4.4339809318</td>
<td>-0.3733731703</td>
</tr>
<tr>
<td>H</td>
<td>3.2900588075</td>
<td>3.7947929064</td>
<td>0.042173095</td>
</tr>
<tr>
<td>H</td>
<td>2.920401299</td>
<td>3.1789638347</td>
<td>1.6499643398</td>
</tr>
<tr>
<td>H</td>
<td>5.0701757751</td>
<td>1.506168262</td>
<td>-1.2144868946</td>
</tr>
<tr>
<td>H</td>
<td>-3.7542901211</td>
<td>1.7107776174</td>
<td>-2.366628008</td>
</tr>
<tr>
<td>H</td>
<td>-0.9370589399</td>
<td>3.3935415057</td>
<td>-1.2214517832</td>
</tr>
<tr>
<td>H</td>
<td>-2.5641861399</td>
<td>2.6627889927</td>
<td>1.259140346</td>
</tr>
<tr>
<td>H</td>
<td>-4.4736251556</td>
<td>3.4285419502</td>
<td>-0.065906626</td>
</tr>
<tr>
<td>H</td>
<td>-3.4604115077</td>
<td>3.7978550805</td>
<td>-1.4563289105</td>
</tr>
<tr>
<td>H</td>
<td>0.1477012369</td>
<td>-1.9772372047</td>
<td>1.5564307434</td>
</tr>
</tbody>
</table>

Valeria Costantino, Ernesto Fattorusso, Alfonso Mangoni, Cristina Perinu, Roberta Teta, Elisabetta Panza, Angela Ianaro
Tedarene A and B: structural and stereochemical analysis of two new strained cyclic diarylheptanoids
from the marine sponge *Tedania ignis*
Valeria Costantino, Ernesto Fattoruso, Alfonso Mangoni, Cristina Perinu, Roberta Teta, Elisabetta Panza, Angela Ianaro

Tedarene A and B: structural and stereochemical analysis of two new strained cyclic diarylheptanoids

from the marine sponge *Tedania ignis*
Tedarene A and B: structural and stereochemical analysis of two new strained cyclic diarylheptanoids from the marine sponge *Tedania ignis*
Tedarene A and B: structural and stereochemical analysis of two new strained cyclic diarylheptanoids from the marine sponge *Tedania ignis*

Valeria Costantino, Ernesto Fattorusso, Alfonso Mangoni, Cristina Perinu, Roberta Teta, Elisabetta Panza, Angela Ianaro

COSY spectrum of tedarene A (1) (500 MHz, CD$_3$OD, -23 °C)
Tedarene A and B: structural and stereochemical analysis of two new strained cyclic diarylheptanoids from the marine sponge *Tedania ignis*

ROESY spectrum of tedarene A (1) (500 MHz, CD$_3$OD, -40 °C)
HSQC spectrum of tedarene A (1) (500 MHz, CD$_3$OD, -23 °C)
Valeria Costantino, Ernesto Fattorusso, Alfonso Mangoni, Cristina Perinu, Roberta Teta, Elisabetta Panza, Angela Ianaro

Tedarene A and B: structural and stereochemical analysis of two new strained cyclic diarylheptanoids from the marine sponge *Tedania ignis*

HMBC spectrum of tedarene A (1) (500 MHz, CD$_3$OD, -23 °C)
Tedarene A and B: structural and stereochemical analysis of two new strained cyclic diarylheptanoids from the marine sponge *Tedania ignis*

1H NMR spectrum of tedarene B (2) (700 MHz, CD$_3$OD)
COSY spectrum of tedarene B (2) (700 MHz, CD$_3$OD)
Valeria Costantino, Ernesto Fattorusso, Alfonso Mangoni, Cristina Perinu, Roberta Teta, Elisabetta Panza, Angela Ianaro

Tedarene A and B: structural and stereochemical analysis of two new strained cyclic diarylheptanoids from the marine sponge *Tedania ignis*

ROESY spectrum of tedarene B (2) (700 MHz, CD$_3$OD)
HSQC spectrum of tedarene B (2) (700 MHz, CD$_3$OD)

Valeria Costantino, Ernesto Fattorusso, Alfonso Mangoni, Cristina Perinu, Roberta Teta, Elisabetta Panza, Angela Ianaro

Tedarene A and B: structural and stereochemical analysis of two new strained cyclic diarylheptanoids
from the marine sponge *Tedania ignis*
Valeria Costantino, Ernesto Fattorusso, Alfonso Mangoni, Cristina Perinu, Roberta Teta, Elisabetta Panza, Angela Ianaro

Tedarene A and B: structural and stereochemical analysis of two new strained cyclic diarylheptanoids
from the marine sponge *Tedania ignis*

HMBC spectrum of tedarene B (2) (700 MHz, CD$_3$OD)