Supporting Information B

High-resolution absorption cross sections of formaldehyde in the 30285 – 32890 cm$^{-1}$ (304 – 330 nm) spectral region

Cheryl Tatum Ernest, Dieter Bauer, and Anthony J. Hynes

Division of Marine and Atmospheric Chemistry, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149
Figure SB.1 Spectral region 32700 – 32750 cm$^{-1}$ from the $2^64^1_0$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +0.545 cm$^{-1}$ and optimized transition dipole moment of 0.024 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.2 Spectral region 32750 – 32800 cm\(^{-1}\) from the \(v_{41}\) vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +0.545 cm\(^{-1}\) and optimized transition dipole moment of 0.024 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.3 Spectral region 32800 – 32850 cm$^{-1}$ from the $2^4\Sigma^+_g$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +0.545 cm$^{-1}$ and
optimized transition dipole moment of 0.024 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.

Figure SB.4 Spectral region 32850 – 32890 cm\(^{-1}\) from the \(2^3\Delta_1\) vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +0.545 cm\(^{-1}\) and
optimized transition dipole moment of 0.024 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.5 Spectral region 32100 – 32150 cm\(^{-1}\) from the \(^{21}\Sigma_g^+\) vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.015 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.6 Spectral region 32150 – 32200 cm\(^{-1}\) from the \(2_1^1\) vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.015 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.7 Spectral region 32200 – 32250 cm\(^{-1}\) from the \(2^{1}S_{0}\) vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.015 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.8 Spectral region 32250 – 32300 cm\(^{-1}\) from the \(2_{1}^{2}5_{0}^{1}\) vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.015 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.9 Spectral region 32300 – 32350 cm$^{-1}$ from the $^2_1^1S^1$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.015 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.10 Spectral region 32350 – 32400 cm\(^{-1}\) from the \(\nu_{10}^{\text{2l}}\) vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.015 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.11 Spectral region 32400 – 32440 cm\(^{-1}\) from the \(2^1 \Sigma^+_{\Pi} \rightarrow 2^1 \Sigma^+_\Pi\) vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.015 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.12 Spectral region 31600 – 31650 cm\(^{-1}\) from the \(\tilde{2}^3 \tilde{A}^1\) vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +0.315 cm\(^{-1}\) and optimized transition dipole moment of 0.0245 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.13 Spectral region 31650 – 31700 cm\(^{-1}\) from the \(2_{20}^34_{10}\) vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +0.315 cm\(^{-1}\) and optimized transition dipole moment of 0.0245 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.14 Spectral region 31700 – 31750 cm$^{-1}$ from the $2^3\Sigma_{u}^+ - 4^1\Sigma_{g}^+$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +0.315 cm$^{-1}$ and optimized transition dipole moment of 0.0245 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.15 Spectral region 31750 – 31800 cm$^{-1}$ from the $^{23}_{00}^{4}$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +0.315 cm$^{-1}$ and optimized transition dipole moment of 0.0245 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.16 Spectral region 31800 – 31850 cm$^{-1}$ from the $2^3a_1^1$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +0.315 cm$^{-1}$ and optimized transition dipole moment of 0.0245 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.17 Spectral region 31850 – 31900 cm$^{-1}$ from the $2^2 \Pi_{1/2}$ $4^1 \Pi_{1/2}$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +0.315 cm$^{-1}$ and optimized transition dipole moment of 0.0245 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.18 Spectral region 31300 – 31350 cm\(^{-1}\) from the \(2^2_0^4_0^3\) vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +1 cm\(^{-1}\) and optimized transition dipole moment of 0.021 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.19 Spectral region 31350 – 31400 cm$^{-1}$ from the $^2\Pi_{1/2}^3 \rightarrow ^4\Pi_{1/2}^3$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +1 cm$^{-1}$ and optimized transition dipole moment of 0.021 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.20 Spectral region 31400 – 31450 cm$^{-1}$ from the 2^2_0-4^3_0 vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +1 cm$^{-1}$ and optimized transition dipole moment of 0.021 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.21 Spectral region 31450 – 31500 cm\(^{-1}\) from the \(\tilde{2}^2 4_\Pi^3\) vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +1 cm\(^{-1}\) and optimized transition dipole moment of 0.021 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.22 Spectral region 31500 – 31550 cm$^{-1}$ from the $^2\tilde{g}_u^2 \tilde{g}_u^3$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +1 cm$^{-1}$ and optimized transition dipole moment of 0.021 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.23 Spectral region 31550 – 31590 cm$^{-1}$ from the $2^3_{00} + ^3_{44}$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with state origin increased by +1 cm$^{-1}$ and optimized transition dipole moment of 0.021 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale. This region was used to adjust the state origin.
Figure SB.24 Spectral region 30450 – 30500 cm$^{-1}$ from the $2^2_{0^0} 4^1_{0^0}$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.026 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.25 Spectral region 30500 – 30550 cm$^{-1}$ from the $2^2_0^0$ 4^1_0 vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.026 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.26 Spectral region 30550 – 30600 cm$^{-1}$ from the $^{2}_{0}0^{1}_{0}$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.026 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.27 Spectral region 30600 – 30650 cm$^{-1}$ from the $2^2 \Pi_{1}^1 - 4^2 \Pi_0^0$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.026 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.28 Spectral region 30650 – 30700 cm\(^{-1}\) from the \(^{2}_{0} ^{4}_{1}\) vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.026 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.29 Spectral region 30700 – 30750 cm\(^{-1}\) from the \(^{2}A^\prime_A^{1}\) vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.026 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.30 Spectral region 30280 – 30330 cm$^{-1}$ from the $^{2}A_{u}^{1/2}$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.020 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.31 Spectral region 30330 – 30380 cm$^{-1}$ from the $2^1 I_0^3$ vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.020 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.
Figure SB.32 Spectral region 30380 – 30420 cm$^{-1}$ from the 2^14^3 vibronic band. Top: comparison between measured absorption cross section and PGOPHER simulation (inverted) with optimized transition dipole moment of 0.020 D. Bottom: difference between the experimental and simulated spectra, plotted on the same vertical scale.