Catalytic partial oxidation of isoctane to hydrogen on rhodium catalysts: effect of tail-gas recycling

Torsten Kaltschmitt1,2, Claudia Diehm3,4, Olaf Deutschmann1,3*

1Institute for Catalysis Research and Technology,
2Institute for Nuclear and Energy Technologies,
3Institute for Chemical Technology and Polymer Chemistry,
4Helmholtz Research School Energy-Related Catalysis
at Karlsruhe Institute of Technology (KIT)
P.O. Box 6980, 76049 Karlsruhe, Germany

SUPPLEMENTAL MATERIAL

Nomenclature:

- Figure counting (Figs. 3-7) corresponds to the counting in the paper. Here results for much more conditions are shown.
- Additional figures (Figs. 10-11) are given at the end.

* Corresponding author: Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76128 Karlsruhe, Germany
Fax: 0049-721-608-44805, Email address: deutschmann@kit.edu
Fig. 1. Yield of H\textsubscript{2} and CO for cases 1-3 and the five different ReTG/C ratios. Full lines = all based C/H yield, symbol = fuel based C/H yield.
Fig. 2. Yield of H$_2$O and CO$_2$ for cases 1-3 and the five different ReTG/C ratios. Full lines = all based C/H yield, symbol = fuel based C/H yield.
Fig. 3. Yield of CH₄, C₂H₄, and C₃H₆ for cases 1-3 and the five different ReTG/C ratios. Full lines = all based C/H yield, symbol = fuel based C/H yield.
Fig. 6. Catalyst outlet temperature and fuel conversion for cases 1-3 and the five ReTG/C ratios.
Fig. 7. Mole fractions of H$_2$ and CO for cases 1-3 and the five different ReTG/C ratios. Full lines = calculated mole fractions at equilibrium for measured outlet temperatures, symbol = experiment.
Fig. 10. Molar flow rates of C$_1$-C$_3$ by-products for case 1-3 and the five ReTG/C ratios.
Fig. 11. Mole fractions of H$_2$O and CO$_2$ for case 1-3 and the five different ReTG/C ratios. Full lines = calculated mole fractions at equilibrium for measured outlet temperatures, symbol = experiment.