Supporting Information Figure 1: Phase diagram of the NaCl/X-AES/SCS/water/rapeseed oil system as a function of temperature [°C]. The starting formulations, without additional salt, consisted of 62.5 wt% water, 18.0 wt% X-AES, 5.5 wt% SXS, 14.0 wt% rapeseed oil. (a) Na$_2$SO$_4$, (b) NaOAc, (c) NaCl, (d) NaNO$_3$, (e) NaSCN. The clear, liquid crystalline, and turbid regions are shown in the diagram.

Supporting Information Figure 2: Phase diagram of the NaCl/X-AES/SCS/water/rapeseed oil system as a function of temperature [°C]. The starting formulations, without additional salt, consisted of 62.5 wt% water, 18.0 wt% X-AES, 5.5 wt% SXS, 14.0 wt% rapeseed oil. (a) Na$_2$SO$_4$, (b) NaOAc, (c) NaCl, (d) NaNO$_3$, (e) NaSCN. The clear, liquid crystalline, and turbid regions are shown in the diagram.
Supporting Information 3: Calculation of Micelle Sizes

Calculations were made to obtain the size of the micelles, if all the oil is covered by the surfactant (total mass ratio of X-AES/rapeseed oil = 1.3). Therefore, the total available surface area A can be calculated by:

$$A = N[X - AES] \times a[X - AES]$$

with N being the number of moles of X-AES and a the area per molecule. Considering an area per molecule of 90 Å^2/molecule for X-AES21,22 the total available surface area A can be calculated to $1.92 \times 10^{22} \text{ Å}^2$.

Furthermore, A is equal to the area of one droplet (with radius r) multiplied with the number of droplets n:

$$A = 4\pi r^2 \times n.$$

In addition, ignoring the short apolar tail of SXS the total volume of the apolar part V_{apolar} (oil phase + surfactant tail) can be estimated by:

$$V_{apolar} = N[X - AES] \times V[X - AES] + N[oil] \times V[oil]$$

where V_{apolar} was calculated to be $8.99 \times 10^{23} \text{ Å}^3$. Assuming that the total apolar oil volume is equal to the volume of one droplet (with radius r) multiplied with the number of droplets n:

$$V_{apolar} = \frac{4}{3} \pi r^3 \times n.$$

Thus, the radius can be calculated to be 140.47 Å. This result is much smaller than the sizes obtained from dynamic light scattering experiments in this work. Hence, these solutions must also contain a significant fraction of surfactant in small micelles with only minor amounts of oil.

Taking a radius of 20 nm (obtained from DLS measurements) the volume of one oil droplet can be obtained by:
with a value of $3.35 \times 10^7 \, \text{Å}^3$. Dividing the total oil volume by the volume of one oil droplet, the number of oil droplets in the sample can be calculated to 2.68×10^{16}. Additionally, the surface of one oil droplet can be obtained using the following expression:

$$A_{\text{oil droplet}} = 4\pi r^2$$

being $5.03 \times 10^5 \, \text{Å}^2$. Multiplying the surface area of one oil droplet with the total number of oil droplets in the solution, the total surface area can be calculated to $1.35 \times 10^{22} \, \text{Å}^2$. Hence the number of surfactant molecules, necessary to cover the oil droplets is 1.50×10^{20}.

Thus, 68% of the total amount of surfactant is necessary to cover the oil droplets, while 32% is in small micelles with almost no oil.