Supporting information

For

Large Improvement in Catalytic Activity due to Small Changes in Diimine ligands: New Mechanistic Insight into the Dirhodium(II, II) Complex-based Photocatalytic H₂ Production

Jingfan Xie,†‡ Chao Li,† Qianxiong Zhou,† Weibo Wang,† Yuanjun Hou,*,† Baowen Zhang,† Xuesong Wang*, †

†Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China, and ‡Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R. China

Table of contents:
Figure S1. The absorption spectrum changes of Rh₂phen₂ and Rh₂bpy₂ with Hg... S2
Figure S2. Stern-Volmer quenching of Ir-based photosensitizer by Rh₂phen₂, Rh₂bpy₂, and TEA S3
Figure S3. Transient absorption spectra of the multi-component systems .. S4
Figure S4. Time dependence of absorption spectrum changes of the Rh-based catalyst in THF/water (8:2, v/v) ... S5
Figure S1. The absorption spectrum changes of Rh$_2$phen$_2$ and Rh$_2$bpy$_2$ in THF/water (8:2, v/v) solutions upon addition and then removal of Hg.
Figure S2. Stern-Volmer plots for the luminescence lifetime quenching of the Ir-based photosensitizer by (a) Rh2phen2, (b) Rh2bpy2, and (c) TEA.
Figure S3. Transient absorption spectra of the multi-component systems based on Rh$_2$phen$_2$ and Rh$_2$bpy$_2$, respectively, that had underwent 20 h of irradiation for photocatalytic H$_2$ production. The spectra were recorded 1 µs after the laser irradiation at 420 nm. [Ir] = 0.05 mM, [TEA] = 0.6 M, [Rh-based catalyst] = 0.05 mM.
Figure S4. Absorption spectrum changes of the THF/water (8:2, v/v) solutions of 0.05 mM Rh₂phen₂ (a) and 0.05 mM Rh₂bpy₂ (b) during 9 h of irradiation.