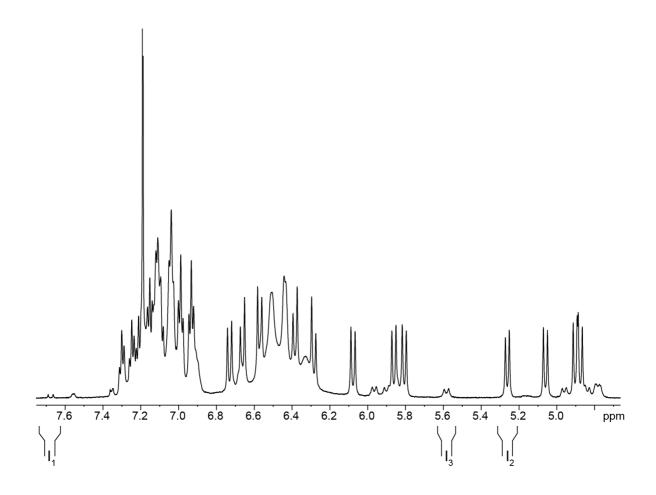
Supporting Information

for the article


Pd₂dba₃ as a Precursor of Soluble Metal Complexes and Nanoparticles: Determination of Pd Active Species for Catalysis and Synthesis

Sergey S. Zalesskiy, Valentine P. Ananikov *

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia; E-mail: val@joc.ac.ru; fax: +007 (499) 1355328.

1.	Characterization of pure freshly synthesized Pd ₂ dba ₃ ·CHCl ₃	.2
2.	Experimental setup used for the synthesis of Pd ₂ dba ₃ ·CHCl ₃	.3

1. Characterization of pure freshly synthesized Pd₂dba₃·CHCl₃

Figure S1. ¹H NMR spectrum of pure Pd_2dba_3 ·CHCl₃ in CDCl₃ at 600 MHz: $I_1 = 0.037$, $I_2 = 1.000$, $I_3 = 0.268$; calculated purity -98.6 % (see section 2.3 for description of integral notations $I_1 - I_3$ and for the equations).

The spectrum was recorded immediately after the synthesis of Pd₂dba₃·CHCl₃ as described in section 4.2 of the article using experimental setup showed below in the supporting information (p. S3 – S10). Sample preparation for NMR is described in section 4.3 of the article.

2. Experimental setup used for the synthesis of Pd₂dba₃·CHCl₃

Synthesis of $Pd_2dba_3 \cdot CHCl_3$ is shown on Pictures 1 – 17 (see Section 4.2 for description). The synthesis was carried out on air and we found the yield and purity of the complex well reproducible after several runs (synthesis under Ar is another possible option).

For re-purification of Pd_2dba_3 (as described in Section 4.5) the procedure shown on Pictures 12 - 17 should be utilized after removing insoluble part and evaporation of chloroform. The volumes of solvents used may be corrected depending on the amount of Pd_2dba_3 to be purified.

Picture 1.
Temperature stabilized magnetic stirrer used for the synthesis.

Picture 2. All solid reagents (Pd(OAc)₂, AcONa, and dba) were loaded into the flask.

Picture 3.
Solvent (MeOH, 10 mL) was added to the flask.

Picture 4. Heating started with stirring (temperature stabilized bath, 40°C).

Picture 5.
Heating proceeded under continuous stirring.
Solution color changed to brown-black in 5 min.

Picture 6.
Heating finished after 3 h at 40°C. The reaction mixture consisted of black precipitate and yellow liquid phase.

Picture 7.
Assembly used for vacuum-filtration. Right arm of the three-way adapter was connected to vacuum (water-jet pump).

Picture 8. Reaction mixture was filtered and washed with methanol (2×3 mL).

Picture 9.
Residue was washed with water (3×3 mL) to remove unreacted AcONa. Blue arrow indicates solid Pd₂dba₃ remained on the filter.

Picture 10. Solid Pd₂dba₃ on the filter after washing.

Picture 11.
Solid being washed off the filter with CHCl₃ (~25 mL). Dark solution of Pd₂dba₃ was collected into the flask.

Picture 12. CHCl₃ was removed on rotary evaporator (40°C, 20 mbar), reddish-brown solid of Pd₂dba₃ was obtained.

Picture 13. Solid was redissolved in a minimal amount of chloroform (~ 5 mL) and gave dark purple solution.

Picture 14.
Acetone (20 mL) was added to the chloroform solution of Pd₂dba₃. The mixture was kept overnight at -18 °C.

Picture 15.
After overnight storing at -18°C.
Pd₂dba₃·CHCl₃ was crystallized as a black precipitate at the bottom of the flask, the solution became pale red and transparent.

Picture 16. Pd₂dba₃·CHCl₃ was filtered and washed with cold acetone (5°C, 2×5 mL).

Picture 17.
The Pd₂dba₃·CHCl₃
product on the filter. ¹H
NMR spectrum is shown
on Figure S1.