Supporting Information for
Magnetic Bead Sensing Platform Based Chemiluminescence Resonance Energy Transfer and Its Immunoassay Application

Guoxin Qin, Shulin Zhao*, Yong Huang, Jing Jiang, Fanggui Ye

Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, 541004, China.

Table of contents
1. Supplementary figures
 Figure S1 ---S2
 Figure S2 --S3
 Figure S3 ---S4
 Figure S4 ---S5
 Figure S5 ---S6
Figure S1. Chemiluminescence spectra of HRP catalyzed luminol-H$_2$O$_2$ system. Magnetic separation solutions (1); MBs-HRP-anti-IgG conjugates (2). The concentration of luminol was 5.0\times10^{-4}$ M; the concentration of H$_2$O$_2$ was 1.0\times10^{-3}$ M; the concentration of HRP-anti-IgG was 5.0\times10^{-10}$ M.
Figure S2. UV-visible absorption spectra of MBs (a), MBs-HRP-anti-IgG conjugates (b) and MBs-HRP-anti-IgG-FITC-IgG immune complex (c).
Figure S3. Effects of luminol concentration on the luminescence intensity ratio. The concentration of \(\text{H}_2\text{O}_2 \) was \(1.0 \times 10^{-3} \text{ M} \); the concentration of HRP-anti-IgG was \(5.0 \times 10^{-10} \text{ M} \); the concentration of FITC-IgG was \(5.0 \times 10^{-11} \text{ M} \); the concentration of human IgG was \(2.5 \times 10^{-9} \text{ M} \).
Figure S4. Effects of H₂O₂ concentration on the luminescence intensity ratio. The concentration of luminol was 5.0×10⁻⁴ M; the concentration of HRP-anti-IgG was 5.0×10⁻¹⁰ M; the concentration of FITC-IgG was 5.0×10⁻¹¹ M; the concentration of human IgG was 2.5×10⁻⁹ M.
Figure S5. The correlation relationship of results for the determination of IgG in diluted human sera samples by ELISA (Y axis) and the proposed method (X axis) with a correlation coefficient of 0.9993. The regression equation is $Y=1.0213X+0.0879$.