Supporting Information

Composition-graded Zn$_x$Cd$_{1-x}$Se@ZnO Core-shell Nanowire Array Electrodes for Photoelectrochemical Hydrogen Generation

Hongxing Li,1 Chuanwei Cheng,1 Xianglin Li,1 Jinping Liu,1 Cao Guan,1 Yee Yan Tay,2 Hong Jin Fan1,*

1Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
2School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore

*Corresponding author. Email: fanhj@ntu.edu.sg

Figure S1 Photocurrent versus voltage curve of the pristine ZnO nanowire photoanode.
The ZnSe@ZnO and CdSe@ZnO nanowire arrays were synthesized in a similar growth as that of composition-gradient structure except that only one precursor was placed inside the tube in order to obtain pure ZnSe and CdSe shell nanolayers. The Zn\textsubscript{x}Cd\textsubscript{1-x}Se@ZnO nanocable array with x about 0.5 was synthesized by a vertical deposition method by placing the substrate (near T2 in Figure 1 where the local temperature is about 500 °C) facing the incoming flux of the carrier gas with ZnCdSe vapor, similar to the Ref [1]. Their Photocurrent density-voltage characteristics are shown in Fig. S2.

![Figure S2](image)

Figure S2 Photocurrent density-voltage characteristics of the PEC photoanodes based on the ZnSe@ZnO, Zn\textsubscript{x}Cd\textsubscript{1-x}Se@ZnO (x~0.5), and CdSe@ZnO nanowire arrays.