Supporting Information

Temperature-induced transition from odd-even to even-odd effect in polyelectrolyte multilayers due to interpolyelectrolyte interactions

Peter Nestler1, Stephan Block1,2,* and Christiane A. Helm1,*

1Institut für Physik, Ernst-Moritz-Arndt Universität, Felix-Hausdorff-Str. 6, D-17487 Greifswald, Germany

2ZIK HIKE – Zentrum für Innovationskompetenz „Humorale Immunreaktionen bei kardiovaskulären Erkrankungen“, Fleischmannstr. 42–44, D-17475 Greifswald, Germany

UV-Vis spectra of the films on quartz slides are obtained with a Lambda 900 UV-Vis spectrometer by Perkin-Elmer (Wiesbaden, Germany). The absorbed intensity is calculated according to Beer-Lambert law

\[A = \log_{10}(I_0 / I) = \gamma c_0 l \]
(S.1)

where \(I_0 \) is the incident intensity (at a particular wavelength), \(I \) is the intensity after passage through a sample of length \(l \), \(\gamma \) is the molar extinction coefficient and \(c_0 \) is the molar concentration of the absorbing species.

From the absorption of PSS in bulk solution, one obtains from the absorbed intensity at \(\lambda = 225 \) nm

\[\gamma_{\text{PSS}} = 8.62 \cdot 10^3 \text{ L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}. \]
(S.2)

\(\gamma_{\text{PSS}} \) refers to the molar absorption coefficient of a PSS monomer. From these equations, the adsorbed mass per unit area is determined according to .
\[
\Gamma_{\text{PSS}} = \frac{1}{\gamma_{\text{PSS}}} A(225 \text{ nm}) = 116 \text{ nmol cm}^{-2} \cdot A(225 \text{ nm})
\]

(S.3)

Considering the molecular weight of a dissociated PSS monomer to be 183.2 Da (assuming that the PEM does not contain any counterions), one obtains

\[
\Gamma_{\text{PSS}} = 214 \text{ mg} \cdot \text{m}^{-2} \cdot A(225 \text{ nm})
\]

(S.4)

For the films prepared in 1 M NaCl solution at room temperature, one obtains in the linear growth regime 3.5 mg/m² per deposited layer PSS (corresponding to 1.9 nmol/cm²). Assuming charge compensation, and a PAH monomer weight of 58.1 Da (again assuming a counterion free PEM), the deposited mass per layer pair and unit area is 4.6 mg/m² (3.8 nmol/cm²). These data are in good agreement with literature values (Ramos et al., Macromolecules 2010, 43, 9063).

The surface coverage of a PSS layer is tripled if the deposition temperature is risen to 55°C (cf. Fig. S1). Yet we do not know if still each PSS monomer is balanced by a PAH monomer.

Finally, we would like to estimate the maximum surface coverage per layer pair obtained with 4 M salt solution at 40°C. The ellipsometric data show that the index of refraction of the whole film of all PEMs prepared scatters less than 5 % independent of preparation conditions (1.51 ± 0.02), corresponding to a water content of 40 ± 10 % (v/v). Therefore, the layer thickness is proportional to the surface coverage. In that case the thickness per layer pair is also proportional to the surface coverage. At room temperature and grown from 1 M salt solution, the thickness per polycation/polyanion bilayer is 6.1 nm. The highest bilayer thickness (49 nm) occurs at 4 M NaCl and 40°C. These numbers suggest that the surface coverage per layer pair increases by a factor of 8, to 37 mg/m².
Fig. S1, top: Absorption spectra of PSS/PAH multilayers in the UV range. Shown are spectra of PSS-terminated multilayers consisting of 4 to 8 PSS/PAH layer pairs (the adsorption solutions contain 1 M NaCl, the temperature is 55°C). Inset: Absorption of the PSS peak (225 nm) as function of the number of layers N.

Bottom: Absorption of the PSS peak (at 225 nm) as function of the number of layers N (1 M NaCl aqueous solution) and temperature as indicated (left). Average absorption increase per PSS layer as function of preparation temperature T (right), from which the adsorbed mass per unit area for one layer is determined (right axis). Each data point corresponds to a slope of one linear fit in the left figure.
Fig. S2: Refractive indices of PSS/PAH multilayers as function of layer number/thickness prepared from solutions with 1 M NaCl concentration and temperature as indicated. The refractive index is determined according to the model depicted in Fig. 1. At 19°C, the refractive index is constant, and independent of the terminating layer. With increasing layer number \(N \) the refractive index \(n_{\text{PEM}} \) approaches the value of the core zone and the contribution of the outermost layer gets less important.

<table>
<thead>
<tr>
<th>Salt concentration</th>
<th>1 M</th>
<th>2 M</th>
<th>3 M</th>
<th>4 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{x-over}}) (cf. Fig. 6)</td>
<td>44.3 °C</td>
<td>41.1 °C</td>
<td>39.8 °C</td>
<td>36.3 °C</td>
</tr>
<tr>
<td>Onset of deviation from (\Delta d_{\text{PAH}}=0.5\Delta d_{\text{PSS}}) (cf. Fig. 7)</td>
<td>30-35 °C</td>
<td>30 °C</td>
<td>34 °C</td>
<td>34 °C</td>
</tr>
<tr>
<td>(T_{\text{trans}}) on drying (ref. 1)</td>
<td>40 °C</td>
<td>30 °C</td>
<td>15 °C</td>
<td>-</td>
</tr>
<tr>
<td>(d_{\text{BL}(T_{\text{trans}})}) by ellipsometry (cf. Fig. 4)</td>
<td>8.15 nm</td>
<td>9.22 nm</td>
<td>ca. 8.5 nm</td>
<td>-</td>
</tr>
</tbody>
</table>

Table S1: \(T_{\text{x-over}}, T_{\text{trans}} \) and \(d_{\text{BL}(T_{\text{trans}})} \) as function of the salt concentration in the preparation solution. Also given is the temperature, at which the densification of the top PSS layer starts, above this temperature deviations from \(\Delta d_{\text{PAH}}=0.5\Delta d_{\text{PSS}} \) are observed.