Supporting Information

Exploitation of the Menshutkin reaction for the controlled assembly of halogen bonded architectures incorporating 1,2-diiodotetrafluorobenzene and 1,3,5-triiodotrifluorobenzene

Michael C. Pfrunder,a Aaron S. Micallef,b Llewellyn Rintoul,a Dennis P. Arnold,a Karl J. P. Davyb and John McMurtriea *

a Chemistry, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.

b Australian Institute for Bioengineering and Nanotechnology and Centre for Advanced Imaging, University of Queensland, St. Lucia, Queensland, 4072, Australia.

Figure S1. Powder XRD pattern of 1 (red) compared to pattern simulated from the X-ray crystal structure (blue).

Figure S2. Powder XRD pattern of 2 (red) compared to pattern simulated from the X-ray crystal structure (blue).
Figure S3. Powder XRD pattern of 3 (red) compared to pattern simulated from the X-ray crystal structure (blue).

Figure S4. Powder XRD pattern of 5 (red) compared to pattern simulated from the X-ray crystal structure (blue).
Figure S5. Powder XRD pattern of 6 (red) compared to pattern simulated from the X-ray crystal structure (blue).

Figure S6. 1H NMR (D$_6$-DMSO, D$_2$O) spectrum of 3
Figure S7. 1H NMR (D$_6$-DMSO, D$_2$O) spectrum of 4

Figure S8. 1H NMR (D$_6$-DMSO, D$_2$O) spectrum of 5
Figure S9. 1H NMR (D$_6$-DMSO, D$_2$O) spectrum of 6

Figure S10. 13C NMR (D$_6$-DMSO) spectrum of 3
Figure S11. 13C NMR (D$_6$-DMSO) spectrum of 4

Figure S12. 13C NMR (D$_6$-DMSO) spectrum of 5
Figure S13. 13C NMR (D_6-DMSO) spectrum of 6

Figure S14. Raman Spectrum of 1
Figure S15. Raman spectrum of 2

Figure S16. Raman spectrum of 3
Figure S17. Raman spectrum of 4

Figure S18. Raman spectrum of 5
Figure S19. Raman spectrum of 6