Cumyl Ester as the C-terminal Protecting Group in the Enantioselective Alkylation of Glycine Benzophenone Imine.

Tomasz Respondek, Eric Cueny and Jeremy J Kodanko

Department of Chemistry, Wayne State Universty, 5101 Cass Ave, Detroit, MI 48202.

jkodanko@chem.wayne.edu

Supporting Information

(40 pages)

Part A. General considerations					
Part B. Experimental procedures and tabulated characterization data for new compounds	S4				
Part C. Determination of enantiomeric excess (ee):	S17				
Part D. ¹ H and ¹³ C NMR spectra for compounds	S31				
Part E. References	S40				

Part A. General Considerations

All reagents were purchased from commercial suppliers and used as received.

NMR spectra were recorded on a Varian FT-NMR Mercury-300, 400 or 500 MHz

Spectrometer. Low-resolution mass spectra were recorded on a Waters ZQ2000 single

quadrupole mass spectrometer using an electrospray ionization source, while high-

resolution mass spectra were recorded on a Waters-Micromass LCT Premier XE time of

flight mass spectrometer. IR spectra were recorded on a Nicolet FT-IR

spectrophotometer. Optical rotations were obtained by using Autopol III Automatic

Polarimeter. HPLC was performed on an Agilent 1200 Preparative Purification System

equipped with a multi-wavelength detector. Column purifications were performed using

silica gel flash chromatography unless mentioned otherwise. Compounds 1a¹, 1b¹, 3², 8³,

⁴and benzophenone imine⁵ used in this report were synthesized according to previously

reported literature procedures. All reactions were performed under ambient atmosphere

unless otherwise noted.

Compound abbreviations are as follows:

NBS: N-Bromosuccinimide

TBAH: Tetrabutylammonium hydrogensulfate

TFA: Trifluoroacetic acid

DIPEA: N,N-Diisopropylethylamine

S2

Structures of CPTC

Part B. Experimental procedures and tabulated characterization data for new compounds 2-phenylpropan-2-yl 2-bromoacetate (6).

Sodium hydride (60% in oil, 180 mg 4.50 mmol) was suspended in anhydrous ether (4.50 mL) and a solution of 2-phenyl-2-propanol in ether (6.50 mL) was added dropwise with stirring, under an Ar atmosphere. After 20 min the solids dissolved and the solution was cooled to 0°C. Trichloroacetonitrile (6.82 g, 47.2 mmol) was added dropwise over 15 min and the reaction mixture was allowed to warm up to rt over 60 min. The reaction mixture was concentrated to a syrup and pentane (4.50 ml) was added. The resulting solution was filtered and the filter cake was washed with pentane (2 × 5 mL). The filtrate was evaporated to give the crude imidate that was used as is without further purification. The imidate was stored at -20°C as solutions in cyclohexanes (1.00 mmol/1.00 mL) for periods up to 2 months.⁶

The imidates in cyclohexanes (3.00 mL, 3.00 mmol) were added to bromoacetic acid (417 mg, 3.00 mmol) in dry CH₂Cl₂ under Ar at rt and the resulting solution stirred for 12 h. Trichloroacetamide was removed by filtration and the filter cake was washed with CH₂Cl₂. The solvent was evaporated to give a solidifying crude mixture that was purified by flash chromatography on silica (5 to 10% EtOAc in hexanes) to afford the product **6** as an oil (696 mg, 2.71 mmol, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.32 (m, 4H), 7.32-7.25 (m, 1H), 3.80 (s, 2H), 1.82 (s, 6H), ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 145.1, 128.6, 127.6, 124.5, 84.1, 28.6, 27.5; IR (thin film) 3089, 3061, 3028, 2982, 2935,

2875, 1737, 1603, 1584, 1496, 1468, 1449, 1420, 1384, 1367, 1285, 1202, 1178, 1139, 1100, 1077, 1030, 960, 938, 909, 827, 764, 699 HRMS (ESMS) calcd for C₁₁H₁₃BrO₂Na 278.9997 (M+Na)⁺, found : 279.0003.

2-phenylpropan-2-yl 2-((diphenylmethylene)amino)acetate (1c).

To a solution of 2-phenylpropan-2-yl 2-bromoacetate (5.80 g, 22.6 mmol) in anhydrous CH_3CN (23 mL), DIPEA (3.93 mL, 22.56 mmol) and benzophenone imine⁵ (4.09 g, 22.6 mmol) were added under an Ar atmosphere. The resulting solution was stirred for 24 h at rt. After the completion of the reaction as determined by TLC analysis, the crude mixture was filtered through a cotton plug, dissolved with 75 mL of CH_2Cl_2 and 50 mL of 5% $NaHCO_3$ in H_2O . The organic layer was separated and the aqueous layer extracted with CH_2Cl_2 (2 × 50 mL). The organic layers were combined, dried over Na_2SO_4 , filtered and concentrated. The crude mixture was purified by flash chromatography on silica basified with 1% TEA (1% TEA in 4 to 9% EtOAC/hexanes) to give product **1c** as an oil (6.87g, 19.2 mmol, 85%).

¹H NMR (400 MHz, CDCl₃) δ 7.71-7.66 (m, 2H), 7.50-7.45 (m, 3H), 7.43-7.31 (m, 7H), 7.29-7.33 (m, 1H), 7.20-7.15 (m, 2H), 4.26 (s, 2H), 1.82 (s, 6H), ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 169.3, 145.9, 139.6, 136.3, 130.7, 130.3, 129.1, 129.0, 128.9, 128.5, 128.3, 128.0, 127.3, 124.6, 82.5, 56.6, 28.9; IR (thin film) 3058, 3026, 2980, 2929, 1744,

1659, 1625, 1598, 1577, 1495, 1446, 1383, 1343, 1315, 1274, 1193, 1137, 1102, 1076, 1029, 1000, 940, 907, 838, 764, 696 HRMS (ESMS) calcd for $C_{24}H_{24}NO_2$ 358.1807 $(M+H)^+$, found: 358.1807.

General procedure for the asymmetric alkylation of glycine benzophenone imine:

A solution of 2-phenylpropan-2-yl 2-((diphenylmethylene)amino)acetate (150 mg, 0.42 mmol) in Toluene/CHCl₃ (7/3, 1.05 mL) in a Schlenk flask was treated with the catalyst **3** (18.2 mg, 0.03 mmol) and the resulting solution was cooled to -55°C. The electrophile (0.30 mmol) was then added at -55°C and the resulting solution stirred for 3 min. CsOH·H₂O was then added in one portion (504 mg, 3.00 mmol) at -55°C and the resulting solution turned rapidly yellow and was stirred at -55°C for 12-24 h. The completion of the reaction was followed by TLC. The crude was then dissolved in 10 mL of H₂O and 20 mL of anhydrous ether. The organic layer was washed with H₂O (2 × 10 mL). The combined aqueous layers were then extracted with anhydrous ether (3 × 15 mL). All organic layers were combined, dried over Na₂SO₄ and evaporated. The crude mixture was purified by flash chromatography on silica basified with 1% TEA (1% TEA in 4 to 9% EtOAC/hexanes) to give the alkylation products **2a-g** as oils.

(S)-2-phenylpropan-2-yl 2-((diphenylmethylene)amino)-3-phenylpropanoate (2a):

2a was obtained as a yellow oil (115 mg, 0.257 mmol, 86 %). ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.64 (m, 2H), 7.47-7.17 (m, 14H), 7.16-7.09 (m, 2H), 6.71-6.55 (d, J = 5.7, Hz, 2H), 4.29-4.22 (dd, J = 8.9, 4.1 Hz, 1H), 3.38-3.20 (m, 2H), 1.85 (s, 3H), 1,80 (s, 3H), ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.3, 145.9, 139.7, 138.6, 136.5, 130.5, 130.2, 129.0, 128.5, 128.4, 128.4, 128.3, 127.9, 127.3, 126.5, 124.6, 82.7, 68.2, 39.6, 29.2, 28.6; IR (thin film) 3083, 3060, 3027, 2979, 2927, 2853, 1741, 1623, 1597, 1576, 1495, 1446, 1382, 1365, 1315, 1272, 1247, 1200, 1180, 1137, 1101, 1076, 1029, 1000, 975, 909, 841, 779, 762, 696, 637; [α] = -48.9° (c=0.922, CHCl₃); HRMS (ESMS) calcd for C₃₁H₃₀NO₂ 448.2277 (M+H)⁺, found : 448.2266.

(S)-2-phenylpropan-2-yl 3-(6-(((tert-butyldimethylsilyl)oxy)methyl)pyridin-3-yl)-2-((diphenylmethylene)amino)propanoate (2c):

2c was obtained as a yellow oil (140 mg, 0.237 mmol, 79 %). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 1.6 Hz, 1H), 7.64-7.58 (m, 2H), 7.44-7.20 (m, 13H), 6.74-6.60 (d, J = 7.3 Hz, 2H), 4.21-4.17 (dd, J = 8.9, 4.1 Hz, 1H), 3.28-3.12 (m, 2H), 1.79 (s, 3H), 1,75 (s, 3H), 0.94 (s, 9H), 0.10 (s, 6H), ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 169.9, 159.5, 150.0, 145.7, 139.3, 138.3, 136.3, 132.0, 130.6, 129.0, 128.8, 128.6, 128.5, 128.3, 127.7, 127.3, 124.5, 119.7, 82.9, 67.5, 66.2, 36.4, 29.2, 28.5, 26.2, 18.6, -5.1; IR (thin film) 3445 (broad), 3062, 2954, 2928, 2855, 1741, 1622, 1600, 1574, 1488, 1471, 1463, 1447, 1396, 1383, 1366, 1314, 1253, 1199, 1136, 1102, 1077, 1030, 1006, 838, 778, 763, 697, 667; $[\alpha]$ = -30.0° (c=0.3, CHCl₃); HRMS (ESMS) calcd for C₃₇H₄₅N₂O₃Si 593.3199 (M+H)⁺, found: 593.3201.

(S)-2-phenylpropan-2-yl 2-((diphenylmethylene)amino)propanoate (2d):

2d was obtained as a yellow oil (62 mg, 0.17 mmol, 56 %) ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.64 (m, 2H), 7.49-7.44 (m, 3H), 7.44-7.21 (m, 8H), 7.21-7.15 (m, 2H), 4.14-4.12 (q, J = 6.5 Hz, 1H), 1.79 (s, 3H), 1.75 (s, 3H), 1.44 (d, J = 6.5 Hz, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 169.7, 146.0, 139.8, 136.7, 130.5, 129.0, 128.8, 128.4, 128.3, 128.0, 127.2, 124.5, 82.3, 61.5, 29.1, 28.6; 19.2; IR (thin film) 3059, 3026, 2980, 2932, 2870, 1743, 1661, 1623, 1598, 1577, 1495, 1446, 1382, 1366, 1315, 1273, 1198, 1140, 1121, 1102, 1076, 1030, 1001, 951, 909, 841, 780, 764, 697; [α] = -35.8° (c=1.025, CH₂Cl₂); HRMS (ESMS) calcd for C₂₅H₂₆NO₂ 372.1964 (M+H)⁺, found: 372.1957

(S)-2-phenylpropan-2-yl 2-((diphenylmethylene)amino)butanoate (2e):

2e was obtained as a yellow oil (89 mg, 0.23 mmol, 77 %) ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.65 (m, 2H), 7.49-7.42 (m, 3H), 7.42-7.20 (m, 8H), 7.20-7.12 (m, 2H), 3.99-3.92 (dd, J = 8.1, 4.9 Hz, 1H), 2.06-1.87 (m, 2H), 1.80 (s, 3H), 1.76 (s, 3H), 0.89 (t, J = 7.3 Hz, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 170.3, 146.0, 139.9, 136.9, 130.4, 130.3, 129.0, 128.7, 128.6, 128.4, 128.3, 128.1, 127.1, 124.6, 82.3, 67.6, 29.1, 28.6; 26.9; 10.9; IR (thin film) 3060, 3027, 2976, 2932, 2874, 1739, 1660, 1623, 1598, 1577, 1496, 1447, 1383, 1366, 1316, 1276, 1198, 1139, 1102, 1076, 1030, 1000, 941, 919, 838, 780, 763, 698, 638; [α] = -56.2° (c=1.6, CHCl₃); HRMS (ESMS) calcd for C₂₆H₂₈NO₂ 386.2120 (M+H)⁺, found: 386.2121.

(S)-2-phenylpropan-2-yl 2-((diphenylmethylene)amino)pent-4-enoate (2f):

2f was obtained as a yellow oil (101 mg, 0.254 mmol, 85 %). ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.64 (m, 2H), 7.47-7.43 (m, 3H), 7.43-7.21 (m, 8H), 7.20-7.13 (m, 2H), 5.80-5.67 (m, 1H), 5.13-5.01 (m, 2H), 4.14-4.09 (dd, J = 7.3, 2.4 Hz, 1H), 2.78-2.62 (m, 2H), 1.80 (s, 3H), 1.75 (s, 3H), ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.3, 145.9, 139.8, 136.8, 134.9, 130.5, 129.0, 128.8, 128.7, 128.4, 128.3, 128.2, 127.2, 124.6, 117.7, 82.5, 66.1, 38.1, 29.2, 28.5; IR (thin film) 3061, 3025, 2980, 2928, 1741, 1623, 1598, 1576, 1495, 1446, 1414, 1383, 1365, 1314, 1271, 1245, 1194, 1137, 1102, 1076, 1030, 1000, 915, 839, 780, 763, 697, 651; [α] = -7.6° (c=1.84, CHCl₃); HRMS (ESMS) calcd for C₂₇H₂₈NO₂ 398.2120 (M+H)⁺, found: 398.2116.

(S)-2-phenylpropan-2-yl 2-((diphenylmethylene)amino)pent-4-ynoate (2g):

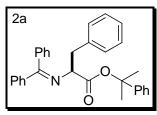
2g was obtained as a yellow oil (108 mg, 0.274 mmol, 91 %). ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.68 (m, 2H), 7.50-7.44 (m, 3H), 7.44-7.21 (m, 10H), 4.31-4.25 (dd, J = 8.1, 4.9 Hz, 1H), 2.91-2.75 (m, 2H), 1.98 (t, J = 2.4 Hz, 1H), 1.80 (s, 3H), 1.76 (s, 3H), ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 169.0, 145.6, 139.7, 136.4, 130.7, 129.2, 128.9, 128.7, 128.5, 128.3, 127.3, 124.6, 83.1, 81.5, 65.0, 29.1, 28.5; 23.4 ; IR (thin film) 3293, 3059, 3026, 2980, 2924, 2854, 1740, 1659, 1623, 1598, 1577, 1496, 1447, 1383, 1366, 1316, 1276, 1196, 1138, 1102, 1076, 1030, 1000, 942, 919, 838, 781, 764, 698, 638 ; [α] = -75.4° (c=1.0, CH₂Cl₂) ; HRMS (ESMS) calcd for C₂₇H₂₆NO₂ 396.1964 (M+H)⁺, found : 396.1971.

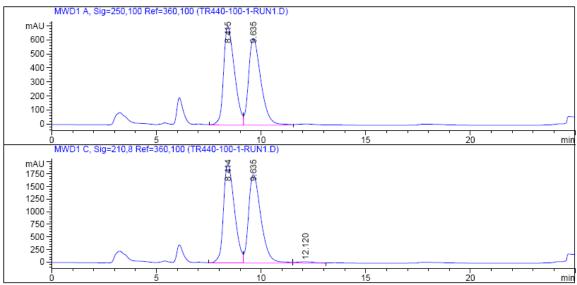
(S)-2-phenylpropan-2-yl 5-(6-(((tert-butyldimethylsilyl)oxy)methyl)pyridin-3-yl)-2-((diphenylmethylene)amino)pent-4-ynoate (9):

To a solution of, (S)-2-phenylpropan-2-yl 2-((diphenylmethylene)amino)pent-4-ynoate (99.0 mg, 0.25 mmol) 2g in anhydrous THF (3 mL) in a pressure flask under Ar were added 5-bromo-2-((tert-butyldimethylsilyloxy)methyl)pyridine 8 (83.0 mg, 0.28 mmol), Pd(PPh₃)₄ (29.0 mg, 0.03 mmol), CuI (7.00 mg, 0.04 mmol) and Et₃N (350 μL, 2.50 mmol). The solution turned quickly brown-black and was heated to 60°C for 36 h. The completion of the reaction was monitored by TLC. After completion of the reaction, the crude was extracted with CH₂Cl₂ (3×10 mL, addition of 15 mL of 5% NaHCO₃ in H₂O). The organic layers were collected, dried over Na₂SO₄ and evaporated. The crude was purified by flash chromatography on silica basified with 1% TEA (1% TEA in 4% EtOAC/hexanes) to give the alkylation product 9 as a yellow oil (117 mg, 0.19 mmol, 76%). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 2.4 Hz, 1H), 7.74-7.67 (m, 2H), 7.63 (dd, J = 8.1, 2.4 Hz, 1H) 7.47-7.39 (m, 5H), 7.39-7.31 (m, 4H), 7.31-7.20 (m, 5H), 4.81(s, 2H), 4.39-4.34 (dd, J = 8.1, 4.9 Hz, 1H), 3.14-2.98 (m, 2H), 1.82 (s, 3H), 1.78 (s, 3H),0.96 (s, 9H), 0.12 (s, 6H), ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 169.1, 160.4, 151.4, 145.6, 139.7, 139.4, 136.4, 130.7, 129.2, 129.0, 128.7, 128.5, 128.4, 128.3, 127.3, 124.5, 119.5, 118.9, 90.1, 83.1, 79.4, 66.2, 65.2, 29.1, 28.6, 26.2, 18.6, -5.1; IR (thin film) 3449

(broad), 3060, 3026, 2953, 2929, 2885, 2856, 1742, 1624, 1595, 1576, 1556, 1485, 1471, 1463, 1447, 1418, 1376, 1366, 1314, 1258, 1215, 1188, 1136, 1102, 1077, 1029, 1006, 987, 967, 908, 839, 779, 763, 697, 640; $[\alpha] = -23.5^{\circ}$ (c=1.18, CHCl₃); HRMS (ESMS) calcd for $C_{39}H_{45}N_2O_3Si$ 617.3199 (M+H)⁺, found: 617.3180.

(S) - 2 - (((9H-fluoren-9-yl)methoxy) carbonylamino) - 3 - (6 - ((tert-butyldimethylsilyl)oxy) methyl) pyridin-3-yl) propanoic acid (7).


From (S)-2-phenylpropan-2-yl compound 2c: mixture of 3-(6-(((tertbutyldimethylsilyl)oxy)methyl)pyridin-3-yl)-2-((diphenylmethylene)amino)propanoate (2c) (88.0 mg, 0.15 mmol), Pd(OH)₂/C (13.0 mg, 15% w/w) and MeOH (2.60 mL) was stirred at rt under H₂ (75 psi) for 12 h. The reaction mixture was filtered through celite to remove Pd/C and the filtrate was concentrated to give the deprotected amino acid (60 mg) as a colorless solid. The reaction mixture was analyzed by ¹H NMR spectroscopy to ensure completion of the hydrogenolysis step. The solid was dissolved in a 1:1 mixture of H₂O and acetone (2.00 mL), NaHCO₃ (25.0 mg, 0.295 mmol) and Fmoc-OSu (54.8 mg, 0.16 mmol) in dioxane (1.00 mL) were added and the resulting solution was stirred at rt for 16 h. After completion of the reaction as determined by TLC analysis, the pH of the reaction was brought to pH~4-5 with 10% citric acid in H₂O and extracted with EtOAC $(5 \times 10 \text{ mL})$. The organic layers were collected, dried over Na₂SO₄ and evaporated. The crude was purified by flash chromatography on silica (1 to 10% CH₃OH in CH₂Cl₂) to give 2c as an amorphous solid. NMR data and optical rotations for 10 agreed well with literature data.⁷

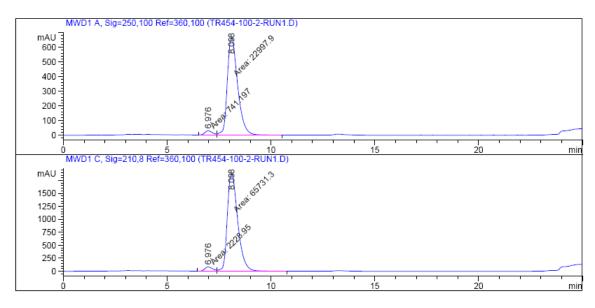

(S)-2-phenylpropan-2-yl 5-(6-(((tert-butyldimethylsilyl)oxy)methyl)pyridin-3-yl)-2-((diphenylmethylene)amino)pentanoate (10).

From compound 9: mixture of ((S)-2-phenylpropan-2-yl 5-(6-(((tertbutyldimethylsilyl)oxy)methyl)pyridin-3-yl)-2-((diphenylmethylene)amino)pent-4-ynoate (9) (100 mg, 0.16 mmol), Pd/C black (15 mg, 15% w/w) and MeOH (2.85 mL) was stirred at rt under H₂ (75 psi) for 36 h. The reaction mixture was filtered through celite to remove Pd/C and the filtrate was concentrated to give the deprotected amino acid (69 mg) as a colorless solid. The reaction mixture was analyzed by ¹H NMR spectroscopy to ensure completion of the hydrogenolysis step. The solid was dissolved in a 1:1 mixture of H₂O and acetone (2.20 mL), NaHCO₃ (27.0 mg, 0.32 mmol) and Fmoc-OSu (60.3 mg, 0.18 mmol) in dioxane (1.10 mL) were added. The resulting solution was stirred at rt for 16 h. After completion of the reaction as determined by TLC analysis, the pH of the reaction was brought to pH~4-5 with 10% citric acid in H₂O and the aqueous layer was extracted with EtOAC (5×10 mL). The organic layers were collected, dried over Na₂SO₄ and concentrated. The crude was purified by flash chromatography on silica (1 to 10% CH₃OH in CH₂Cl₂) to give **10** as an amorphous solid. NMR data and optical rotation for **10** agreed well with the literature data.

Part C. Determination of enantiomeric excess (ee):

(S)-2-phenylpropan-2-yl 2-((diphenylmethylene)amino)-3-phenylpropanoate (2a):

Area Percent Report


Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

Sample Amount : 50.00000 [ng/ul] (not used in calc.)

Use Multiplier & Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=250,100 Ref=360,100

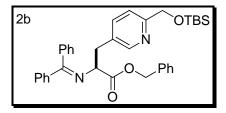
	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
-						
1	8.415	$\nabla\nabla$	0.5644	2.53885e4	704.59943	50.1218
2	9.635	$\nabla\nabla$	0.6130	2.52651e4	617.93176	49.8782

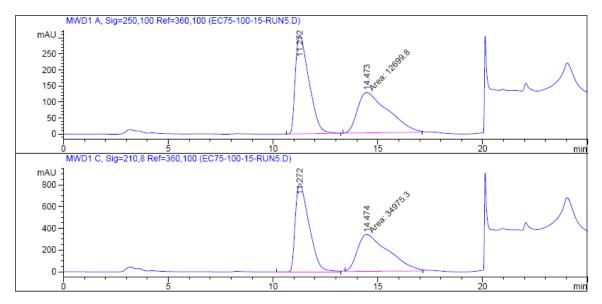
Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 50.00000 [ng/ul] (not used in calc.)
Use Multiplier & Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=250,100 Ref=360,100

	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	6.976	MF	0.4229	741.19720	29.20864	3.1223
2	8 098	MF	0.5752	2 29979=4	666 39508	96 8777


The enantiomeric excess was determined using HPLC on an Chiralcel OD-H chiral column ($250 \times 4.6 \text{ mm ID}$) for the racemic and enantioenriched substrates under isocratic conditions (100:2 Hexanes-Isopropanol) with a flowrate of 1.0 ml/min


Retention times: 6.98 min and 8.10 min

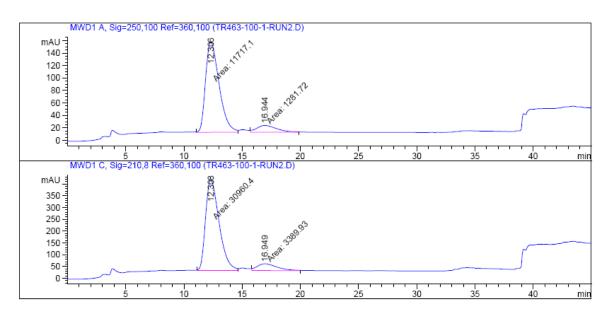
Enantiomeric excess: 94%

(S)-benzyl 3-(6-(((tert-butyldimethylsilyl)oxy)methyl)pyridin-3-yl)-2-

((diphenylmethylene)amino)propanoate (2b):

Area Percent Report

Sorted By : Signal


Multiplier : 1.0000 Dilution : 1.0000

Sample Amount : 50.00000 [ng/ul] (not used in calc.)

Use Multiplier & Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=250,100 Ref=360,100

	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %	
1	11.272	BB	0.6800	1.38770e4	307.77429	52.2148	
2	14 472	MM	1 6780	1 26999=4	126 14252	47 7952	

Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 50.00000 [ng/ul] (not used in calc.)
Use Multiplier & Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=250,100 Ref=360,100


			Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.306	MF	1.3516	1.17171e4	144.48506	90.1398
2	16.944	FM	1.9785	1281.71692	10.79684	9.8602

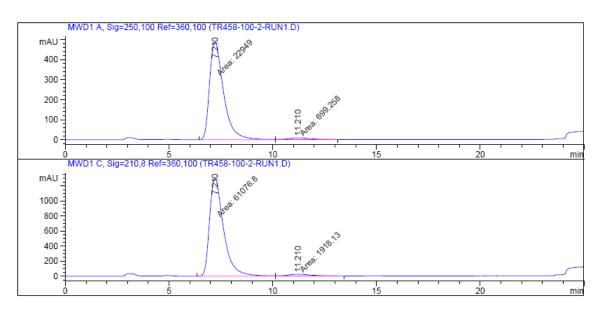
The enantiomeric excess was determined using HPLC on an Chiralcel OD-H chiral column ($250 \times 4.6 \text{ mm ID}$) for the racemic and enantioenriched substrates under isocratic conditions (100:1 Hexanes-Isopropanol) with a flowrate of 1.0 ml/min

Retention times: 12.31 min and 16.94 min

Enantiomeric excess: 80%

$(S) - 2 - phenylpropan-2 - yl \quad 3 - (6 - (((tert-butyldimethylsilyl)oxy)methyl)pyridin-3 - yl) - 2 - ((diphenylmethylene)amino)propanoate (2c):$

Area Percent Report


Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

Sample Amount : 50.00000 [ng/ul] (not used in calc.)

Use Multiplier & Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=250,100 Ref=360,100

	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	7.180	$\nabla\nabla$	0.7465	2.94167e4	601.60315	48.9894
2	11.064	VV	1.2278	3.06303e4	377.02859	51.0106

Area Percent Report

 Sorted By
 : Signal

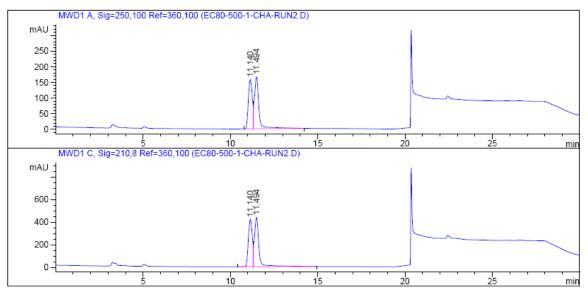
 Multiplier
 : 1.0000

 Dilution
 : 1.0000

Sample Amount : 50.00000 [ng/ul] (not used in calc.)

Use Multiplier & Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=250,100 Ref=360,100


Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		8
1	7.210	MF	0.7826	2.29490e4	488.74872	97.0431
2	11.210	FM	1.2771	699.25775	9.12578	2.9569

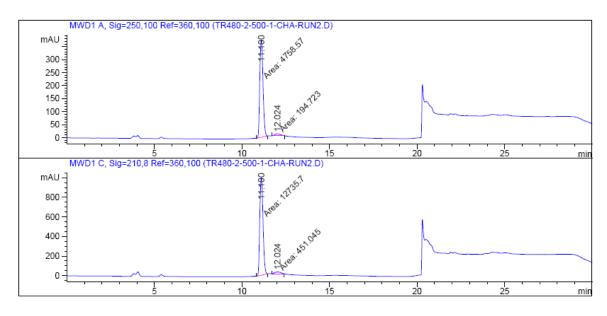
The enantiomeric excess was determined using HPLC on an Chiralcel OD-H chiral column ($250 \times 4.6 \text{ mm ID}$) for the racemic and enantioenriched substrates under isocratic conditions (100:2 Hexanes-Isopropanol) with a flowrate of 1.0 ml/min

Retention times: 7.21 min and 11.21 min

Enantiomeric excess: 94%

(S)-2-phenylpropan-2-yl 2-((diphenylmethylene)amino)propanoate (2d):

Area Percent Report


Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

Sample Amount : 50.00000 [ng/ul] (not used in calc.)

Use Multiplier & Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=250,100 Ref=360,100

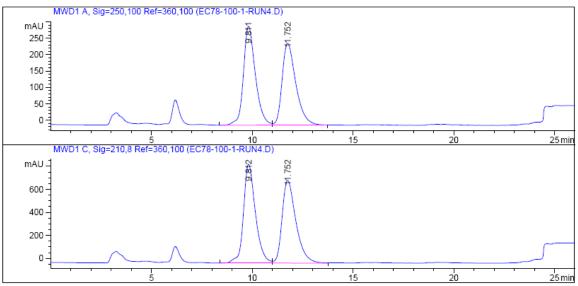
	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	11.140	BV	0.2512	2450.17700	157.71756	44.7847
2	11 494	77B	0 2644	2020 84131	165 94911	55 2152

Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 50.00000 [ng/ul] (not used in calc.)
Use Multiplier & Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=250,100 Ref=360,100

#			[min]	Area [mAU*s]	Height [mAU]	Area %
1	11.100	MM	0.2122	4758.56787	373.75891	96.0688
2	12.024	MM	0.4131	194.72266	7.85543	3.9312


The enantiomeric excess was determined using HPLC on an Chiralcel OD-H chiral column (250×4.6 mm ID) for the racemic and enantioenriched substrates under isocratic conditions (500:1 Hexanes-Isopropanol) with a flowrate of 1.0 ml/min

Retention times: 11.10 min and 12.02 min

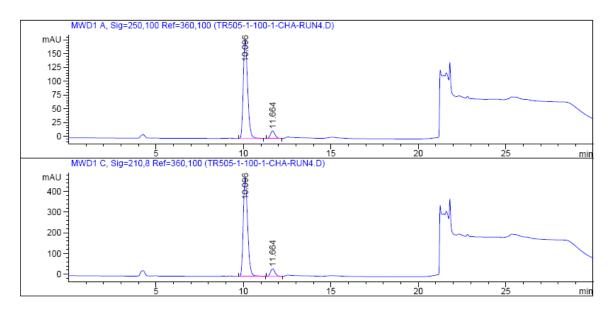
Enantiomeric excess: 92%

(S)-2-phenylpropan-2-yl 2-((diphenylmethylene)amino)butanoate (2e):

Area Percent Report

 Sorted By
 : Signal

 Multiplier
 : 1.0000


 Dilution
 : 1.0000

Sample Amount : 50.00000 [ng/ul] (not used in calc.)

Use Multiplier & Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=250,100 Ref=360,100

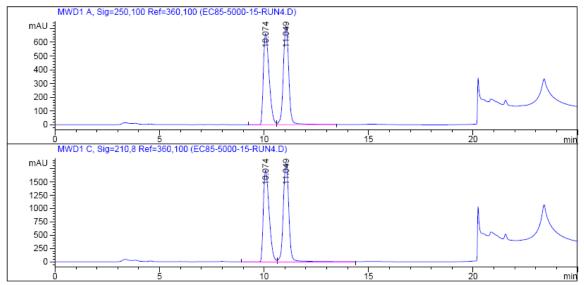
	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	9.811	VV	0.6124	1.23977e4	301.06070	51.2681
2	11 752	17B	0.7067	1 17844-4	249 67369	49 7219

Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 50.00000 [ng/ul] (not used in calc.)
Use Multiplier & Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=250,100 Ref=360,100


	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	10.096	BB	0.2684	3104.37109	178.95375	92.7437
2	11.664	BB	0.2772	242.88545	13.67393	7.2563


The enantiomeric excess was determined using HPLC on an Chiralcel OD-H chiral column (250×4.6 mm ID) for the racemic and enantioenriched substrates under isocratic conditions (100:1 Hexanes-Isopropanol) with a flowrate of 1.0 ml/min

Retention times: 10.10 min and 11.66 min

Enantiomeric excess: 85%

(S)-2-phenylpropan-2-yl 2-((diphenylmethylene)amino)pent-4-enoate (2f):

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

Sample Amount : 50.00000 [ng/ul] (not used in calc.)

Use Multiplier & Dilution Factor with ISTDs

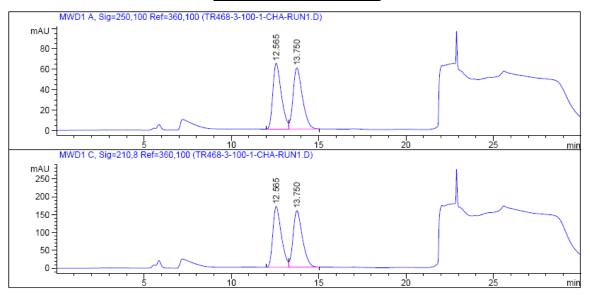
Signal 1: MWD1 A, Sig=250,100 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
							ĺ
1	10.074	BV	0.2960	1.25991e4	662.02496	49.1652	
2	11.049	VB	0.2847	1.30269e4	714.62256	50.8348	

Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 50.00000 [ng/ul] (not used in calc.)
Use Multiplier & Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=250,100 Ref=360,100


			Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.583	BV	0.3070	6401.47363	326.13348	95.4463
2	12.058	MM	0.2488	305.41464	20.46243	4.5537

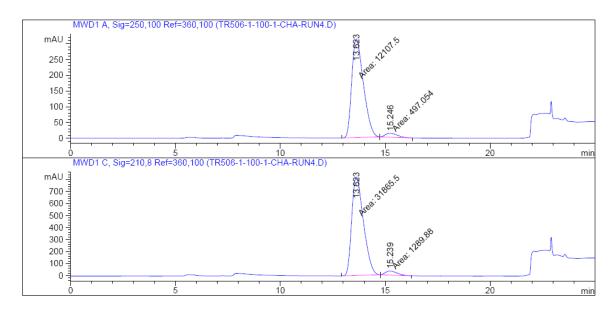
The enantiomeric excess was determined using HPLC on an Chiralcel OD-H chiral column (250×4.6 mm ID) for the racemic and enantioenriched substrates under isocratic conditions (500:1.5 Hexanes-Isopropanol) with a flowrate of 1.0 ml/min

Retention times: 10.58 min and 12.06 min

Enantiomeric excess: 91%

(S)-2-phenylpropan-2-yl 2-((diphenylmethylene)amino)pent-4-ynoate (2g):

Area Percent Report


Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

Sample Amount : 50.00000 [ng/ul] (not used in calc.)

Use Multiplier & Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=250,100 Ref=360,100

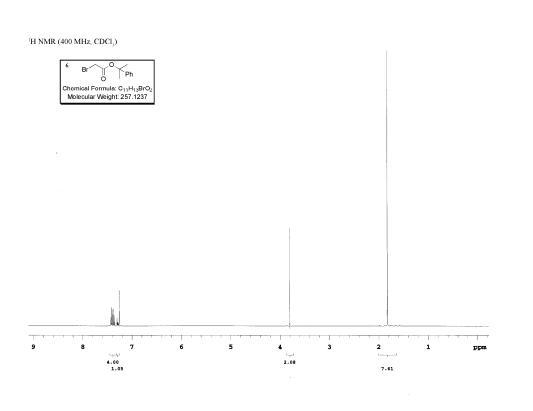
Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	12.565	BV	0.5123	2164.85962	64.38284	49.2588	
2	13.750	VB	0.5663	2230.01294	59.91125	50.7412	

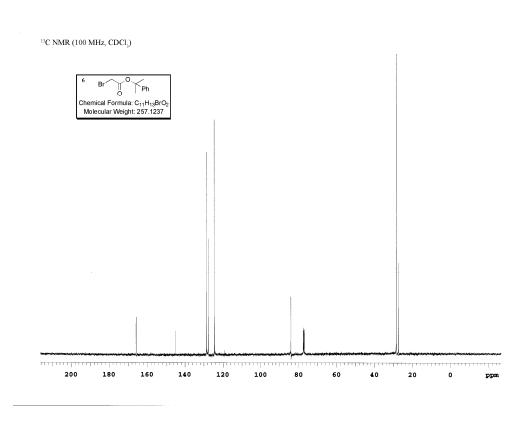
Area Percent Report

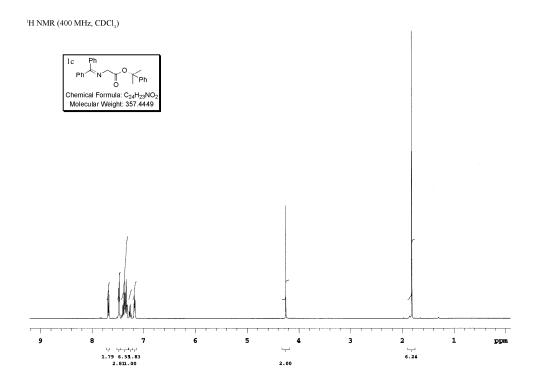
Area Percent Report

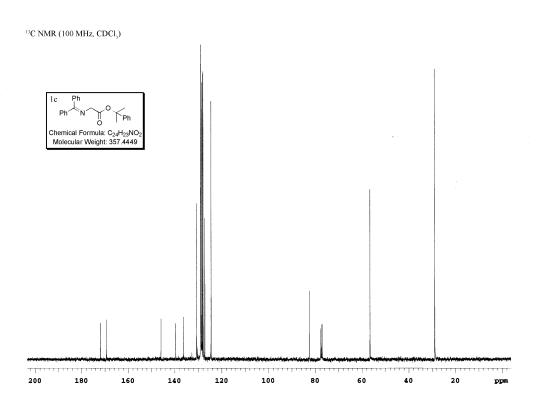
Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount : 50.00000 [ng/ul] (not used in calc.)
Use Multiplier & Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=250,100 Ref=360,100

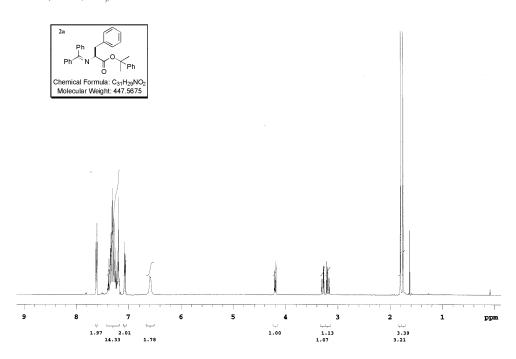

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	13.623	MM	0.6467	1.21075e4	312.01645	96.0565
2	15.246	MM	0.6549	497.05380	12.64924	3.9435

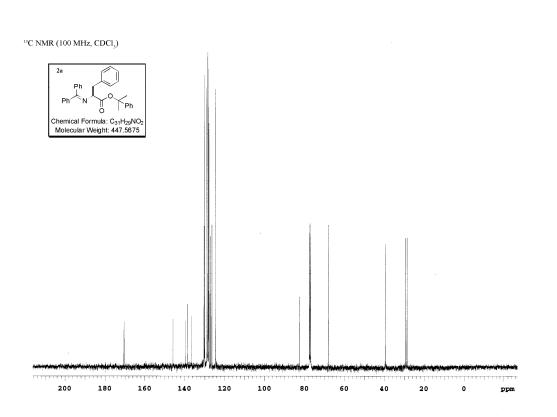

The enantiomeric excess was determined using HPLC on an Chiralcel OD-H chiral column ($250 \times 4.6 \text{ mm ID}$) for the racemic and enantioenriched substrates under isocratic conditions (100:1 Hexanes-Isopropanol) with a flowrate of 0.6 ml/min

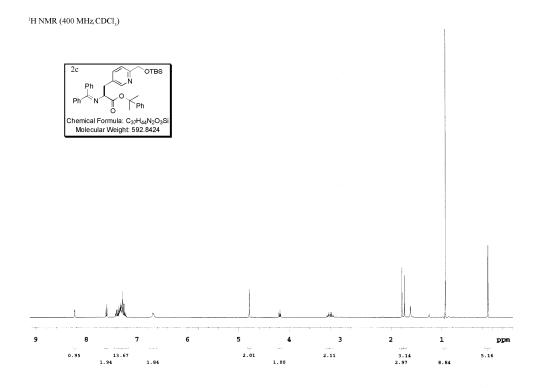

Retention times: 13.62 min and 15.25 min

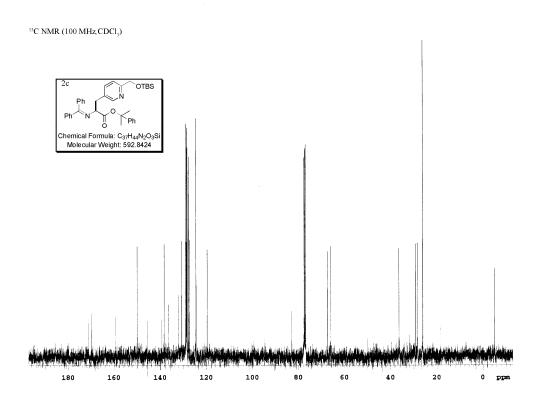

Enantiomeric excess: 92%

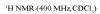
Part D. ¹H and ¹³C NMR spectra for compounds

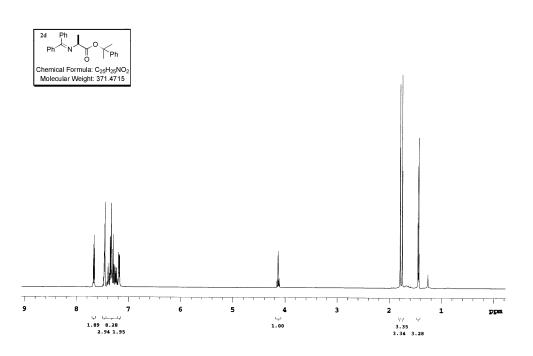


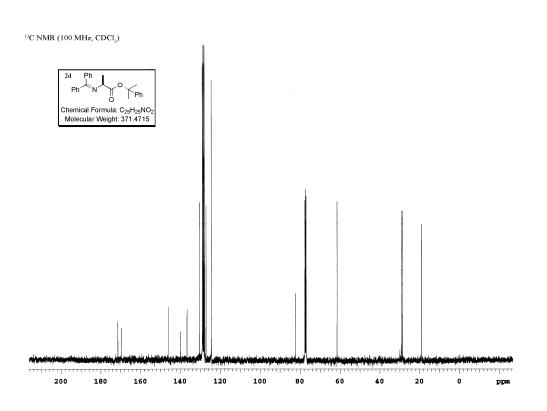


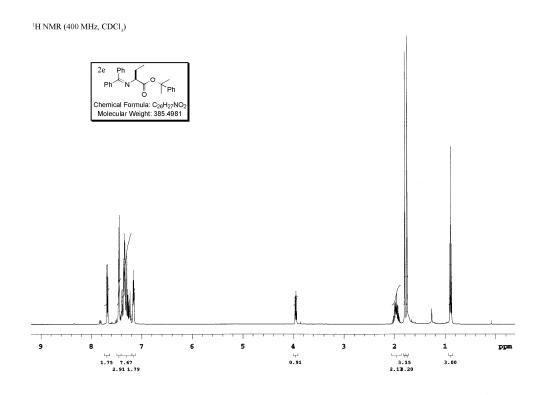


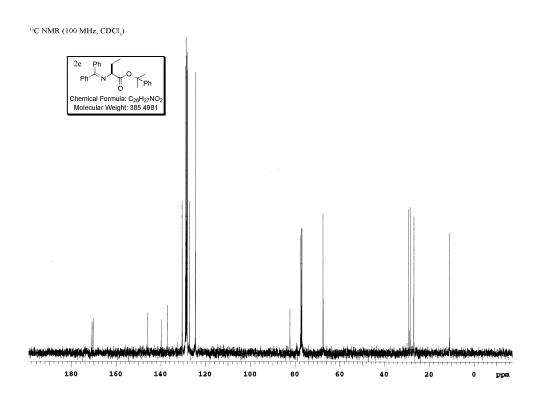


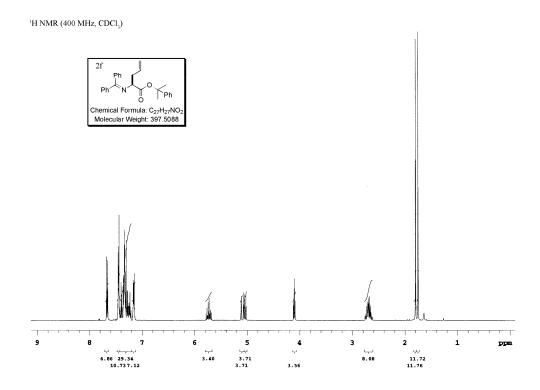


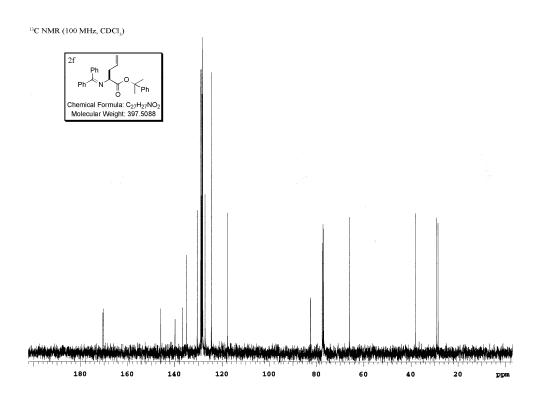


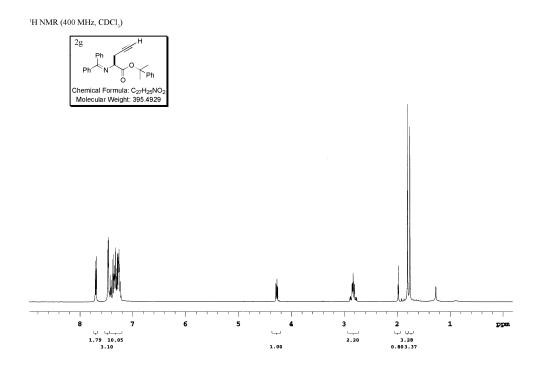


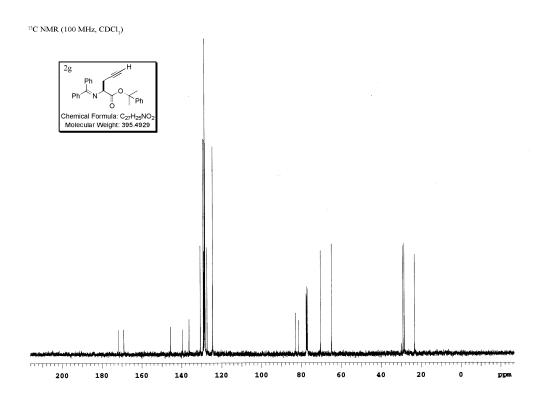


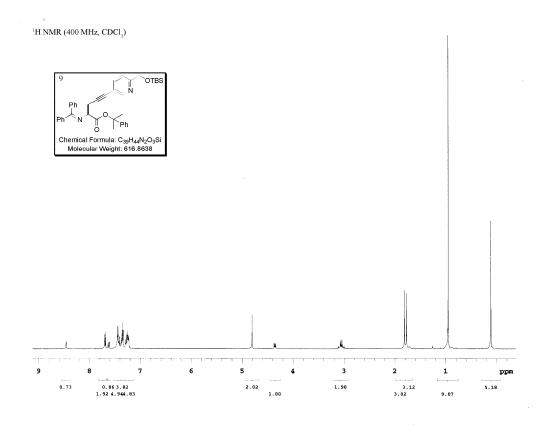


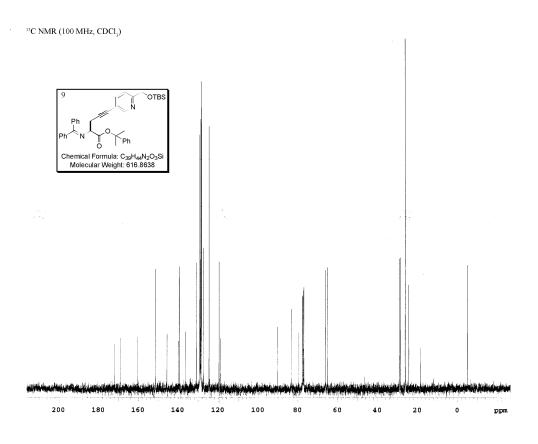












Part E: References

- 1. O'Donnell, M. J.; Polt, R. L., *Journal of Organic Chemistry* **1982,** 47 (13), 2663-2666.
- 2. Corey, E. J.; Xu, F.; Noe, M. C., *Journal of the American Chemical Society* **1997**, *119* (50), 12414-12415.
- 3. Kodanko, J. J.; Morys, A. J.; Lippard, S. J., Organic Letters 2005, 7 (21), 4585-4588.
- 4. Guthikonda, R. N.; Cama, L. D.; Quesada, M.; Woods, M. F.; Salzmann, T. N.; Christensen, B. G., *Journal of Medicinal Chemistry* **1987**, *30* (5), 871-880.
- 5. Pickard, P. L.; Tolbert, T. L., Organic Syntheses 1964, 44, 51.
- 6. Wessel, H.-P.; Iversen, T.; Bundle, D. R., *Journal of the Chemical Society, Perkin Transactions I* **1985**, 2247-2250.
- 7. Jabre, N. D.; Respondek, T.; Ulku, S. A.; Korostelova, N.; Kodanko, J. J., *Journal of Organic Chemistry* **2010,** *75* (3), 650-659.