Viridaphin A₁ Glucoside, a Green Pigment Possessing Cytotoxic and Antibacterial Activity from the Aphid *Megoura crassicauda*

Mitsuyo Horikawa,*† To-sho Hoshiyama,† Masako Matsuzawa,† Takanori Shugyo,† Masami Tanaka,† Shinya Suzuki,† Masao Sato,† Takuya Ito,† Yoshinori Asakawa,† Hiroto Kaku,† Takeshi Nishii,† Makoto Inai,† Shigeru Takahashi,‡ and Tetsuto Tsunoda*†

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan, Faculty of Agriculture, Utsunomiya University, Utsunomiya 321-8505, Japan

horikawa@ph.bunri-u.ac.jp; tsunoda@ph.bunri-u.ac.jp

SUPPORTING INFORMATION

Contents

S1. Extraction and Isolation, MTT Assay for Cytotoxic Activity, and Antimicrobial Assay.
S2. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 1 (with CD$_3$COOD)
S3. 13C NMR (500 MHz, CD$_3$OD) spectrum of compound 1 (with CD$_3$COOD)
S4. 1H NMR (600 MHz, CD$_3$OD) spectrum of compound 1 (without CD$_3$COOD)
S5. 13C NMR (600 MHz, CD$_3$OD) spectrum of compound 1 (without CD$_3$COOD)
S6. 1H-1H COSY (600 MHz, CD$_3$OD) spectrum of compound 1 (without CD$_3$COOD)
S7. HMQC (600 MHz, CD$_3$OD) spectrum of compound 1 (without CD$_3$COOD)
S8. HMBC (600 MHz, CD$_3$OD) spectrum of compound 1 (without CD$_3$COOD)
S9. NOESY (600 MHz, CD$_3$OD) spectrum of compound 1 (without CD$_3$COOD)
S10. 1H NMR (600 MHz, DMSO-d_6) spectrum of compound 1 (without CD$_3$COOD)
S11. 13C NMR (600 MHz, DMSO-d_6) spectrum of compound 1 (without CD$_3$COOD)
S12. 1H-1H COSY (600 MHz, DMSO-d_6) spectrum of compound 1 (without CD$_3$COOD)
S13. HMQC (600 MHz, DMSO-d_6) spectrum of compound 1 (without CD$_3$COOD)
S14. HMBC (600 MHz, DMSO-d_6) spectrum of compound 1 (without CD$_3$COOD)
S15. NOESY (600 MHz, DMSO-d_6) spectrum of compound 1 (without CD$_3$COOD)
S16. 1H NMR (600 MHz, DMSO-d_6) spectrum of compound 3
S17. 13C NMR (600 MHz, DMSO-d_6) spectrum of compound 3
S18. 1H-1H COSY (600 MHz, DMSO-d_6) spectrum of compound 3
S19. HMQC (600 MHz, DMSO-d$_6$) spectrum of compound 3
S20. HMBC (600 MHz, DMSO-d$_6$) spectrum of compound 3
S21. ROESY (600 MHz, DMSO-d$_6$) spectrum of compound 3
S22. 1H NMR (600 MHz, acetone-d$_6$) spectrum of compound 3
S23. 13C NMR (600 MHz, acetone-d$_6$) spectrum of compound 3
S24. 1H-1H COSY (600 MHz, acetone-d$_6$) spectrum of compound 3
S25. HMQC (600 MHz, acetone-d$_6$) spectrum of compound 3
S26. HMBC (600 MHz, acetone-d$_6$) spectrum of compound 3
S27. HMBC (600 MHz, acetone-d$_6$) spectrum of compound 3
S28. HMBC (600 MHz, acetone-d$_6$) spectrum of compound 3
S29. NOESY (600 MHz, acetone-d$_6$) spectrum of compound 3
S30. ROESY (600 MHz, acetone-d$_6$) spectrum of compound 3
S31. IR spectrum of compound 1
S32. UV-visible spectrum [MeOH containing AcOH (125 mM)] of compound 1
S33. UV-visible spectrum (MeOH) of compound 1
S34. UV-visible spectrum (MeOH) of compound 3
Extraction and Isolation. The aphids (2.1 g) were crushed with a pestle in n-hexane and methanol several times. The combined methanol solutions were evaporated to give crude extracts. The extracts were subjected to reversed-phase silica gel chromatography (20 g, MeOH/H$_2$O=1:1) to afford the green pigment 1 (0.8 mg). To obtain a large amount of pigment 1, we did not attempt to separate the aphid, *M. crassicauda*, from the greenish aphid, *Acrthosiphon pisum*, which were found in close association on *Vicia sativa*, due to the loss incurred by separating these aphids. A mixture of these aphids (total 1.78 Kg) was crushed with a pestle in n-hexane (total 3 L) and methanol (total 7.5 L) several times. The combined methanol solutions were evaporated to give crude extracts. The extracts were subjected to reversed-phase silica gel chromatography (100 g, MeOH/H$_2$O=1:1) and Sephadex LH-20 (MeOH/EtOAc=1:1) several times to afford the green pigment 1 (97.3 mg).

MTT Assay for Cytotoxic Activity. HL-60 (human promyelocytic leukemia-60) cells were grown in suspension culture and incubated at 37 °C in RPMI-1640 medium supplemented with 10% FBS and glutamine (2 mM). The cytotoxicity of 1 in HL-60 cells was analyzed by colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay with some modifications.15 HL-60 cells (1×104) were plated on 96-well plates and incubated at 37 °C in 5% CO$_2$/95% atmosphere for 1 h. Then, serially diluted solutions of test compound 1 (10 µL) were added to final concentrations of 0.63 -100 µM. Then, the cells were incubated for 24 h. After 24 h, 10 µL of MTT (5 mg/mL: stock solution) was added, and cells were incubated for an additional 4 h. Next, cells were treated with 100 µL of 20% sodium dodecyl sulfate in 0.01 N HCl to solubilize the intracellular formazan crystals. The optical density (OD) of each well was measured with a microplate spectrophotometer equipped with a 570 nm filter. The absorbances of the sample-treated cells were compared to those of the vehicle (0.5% DMSO-standard medium)-treated control to calculate the percent change. The results of cytotoxic activity are expressed in terms of the IC$_{50}$.

Antimicrobial Assay. The following microorganisms were used to test for antimicrobial activity: *Bacillus subtilis* NBRC 3134, *Staphylococcus aureus* NBRC 5035, *Mycobacterium smegmatis* NBRC 13082, *Klebsiella pneumoniae* NBRC 3512 and *Pseudomonas aeruginosa* NBRC 12582. Bacterial strains were tested in a microdilution assay, and the minimum inhibitory concentration (MIC) values were determined. The bacterial strains were inoculated on YP agar plates (1% polypeptone, 0.2% yeast extract, 0.1% MgSO$_4$·7 H$_2$O, and 2% agar) and were incubated at 30 °C for 12 h. The stock solution of sample was prepared at 10 mg/mL in DMSO and further diluted to varying concentrations in 96 well plates that contained the incubated microbial strains. The plates were incubated at 37 °C overnight and growth inhibition was compared to that caused by varying concentrations of ampicillin (reference).

S1. Extraction and Isolation, MTT Assay for Cytotoxic Activity, and Antimicrobial Assay.
S2. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 1 (with CD$_3$COOD)
S3. 13C NMR (500 MHz, CD$_3$OD) spectrum of compound 1 (with CD$_3$COOD)
S4. 1H NMR (600 MHz, CD$_3$OD) spectrum of compound 1 (without CD$_3$COOD)
S5. 13C NMR (600 MHz, CD$_3$OD) spectrum of compound 1 (without CD$_3$COOD)
S6. 1H-1H COSY (600 MHz, CD$_3$OD) spectrum of compound 1 (without CD$_3$COOD)
S7. HMQC (600 MHz, CD$_3$OD) spectrum of compound 1 (without CD$_3$COOD)
S8. HMBC (600 MHz, CD$_3$OD) spectrum of compound 1 (without CD$_3$COOD)
S9. NOESY (600 MHz, CD$_3$OD) spectrum of compound 1 (without CD$_3$COOD)
S10. 1H NMR (600 MHz, DMSO-d_6) spectrum of compound 1 (without CD$_3$COOD)
S11. 13C NMR (600 MHz, DMSO-d_6) spectrum of compound 1 (without CD$_3$COOD)
1H-1H COSY (600 MHz, DMSO-d_6) spectrum of compound 1 (without CD$_3$COOD)
S13. HMQC (600 MHz, DMSO-d_6) spectrum of compound 1 (without CD$_3$COOD)
S14. HMBC (600 MHz, DMSO-d_6) spectrum of compound 1 (without CD$_3$COOD)
S15. NOESY (600 MHz, DMSO-d_6) spectrum of compound 1 (without CD$_3$COOD)
S16. 1H NMR (600 MHz, DMSO-d_6) spectrum of compound 3
S17. 13C NMR (600 MHz, DMSO-d_6) spectrum of compound 3
S18. 1H-1H COSY (600 MHz, DMSO-d_6) spectrum of compound 3
S19. HMQC (600 MHz, DMSO-d_6) spectrum of compound 3
S20. HMBC (600 MHz, DMSO-d_6) spectrum of compound 3
S21. ROESY (600 MHz, DMSO-d$_6$) spectrum of compound 3
S22. 1H NMR (600 MHz, acetone-d_6) spectrum of compound 3
S23. 13C NMR (600 MHz, acetone-d_6) spectrum of compound 3
S24. 1H-1H COSY (600 MHz, acetone -d_6) spectrum of compound 3
S25. HMQC (600 MHz, acetone -d₆) spectrum of compound 3
S26. HMBC (600 MHz, acetone -d_6) spectrum of compound 3
S27. HMBC (600 MHz, acetone -d₆) spectrum of compound 3
S28. HMBC (600 MHz, acetone -d_6) spectrum of compound 3
S29. NOESY (600 MHz, acetone -d_6) spectrum of compound 3
S30. ROESY (600 MHz, acetone -d₆) spectrum of compound 3
S31. IR spectrum of compound 1
S32. UV-visible spectrum [MeOH containing AcOH (125 mM)] of compound 1
S33. UV-visible spectrum (MeOH) of compound 1
S34. UV-visible spectrum (MeOH) of compound 3