Supporting Information

Regioselective Alkyne Polyhydrosilylation: Synthesis and Photonic Properties of Poly(silylenevinylene)s

†Fok Ying Tung Research Institute, The Hong Kong University of Science & Technology (HKUST), Nansha, Guangzhou, China, ‡Department of Chemistry, HKUST, Clear Water Bay, Kowloon, Hong Kong, China, #State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China, ξThe Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China, and §Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

Table of Contents

Figure S1. (A) PL spectra of P2/6 in THF and THF/water mixtures with different water fractions. (B) Change in the relative PL intensity (I/I_0) with the composition of the THF/water mixture. Concentration: 10^{-5} M; excitation wavelength: 350 nm.

Figure S2. (A) PL spectra of P3/6 in THF and THF/water mixtures with different water fractions. (B) Change in the relative PL intensity (I/I_0) with the composition of the THF/water mixture. Concentration: 10^{-5} M; excitation wavelength: 350 nm.

Figure S3. (A) PL spectra of P4/6 in THF and THF/water mixtures with different water fractions. (B) Change in the relative PL intensity (I/I_0) with the composition of the THF/water mixture. Concentration: 10^{-5} M; excitation wavelength: 350 nm.
Figure S4. (A) PL spectra of P5/6 in THF and THF/water mixtures with different water fractions. (B) Change in the relative PL intensity (I/I_0) with the composition of the THF/water mixture. Concentration: 10^{-5} M; excitation wavelength: 350 nm.

Figure S5. (A) Fluorescence quenching of P2/6 in (A) THF and (B) THF/water mixture (1:9 v/v) by picric acid (PA). Concentration of P2/6: 10^{-5} M; excitation wavelength: 360 nm. (C and D) Stern–Volmer plots for fluorescence quenching of P2/6 by PA in (C) THF and (D) THF/water mixture (1:9 v/v). I_0 = PL intensity in the absence of PA in THF or THF/water mixture (1:9 v/v).

Figure S6. (A) Fluorescence quenching of P3/6 in (A) THF and (B) THF/water mixture (1:9 v/v) by picric acid (PA). Concentration of P3/6: 10^{-5} M; excitation wavelength: 360 nm. (C and D) Stern–Volmer plots for fluorescence quenching of P3/6 by PA in (C) THF and (D) THF/water mixture (1:9 v/v). I_0 = PL intensity in the absence of PA in THF or THF/water mixture (1:9 v/v).

Figure S7. (A) Fluorescence quenching of P4/6 in (A) THF and (B) THF/water mixture (1:9 v/v) by picric acid (PA). Concentration of P4/6: 10^{-5} M; excitation wavelength: 360 nm. (C and D) Stern–Volmer plots for fluorescence quenching of P4/6 by PA in (C) THF and (D) THF/water mixture (1:9 v/v). I_0 = PL intensity in the absence of PA in THF or THF/water mixture (1:9 v/v).

Figure S8. (A) Fluorescence quenching of P5/6 in (A) THF and (B) THF/water mixture (1:9 v/v) by picric acid (PA). Concentration of P5/6: 10^{-5} M; excitation wavelength: 360 nm. (C and D) Stern–Volmer plots for fluorescence quenching of P5/6 by PA in (C) THF and (D) THF/water mixture (1:9 v/v). I_0 = PL intensity in the absence of PA in THF or THF/water mixture (1:9 v/v).

Figure S9. Wavelength dependence of refractive index of thin films of P2/6. Data for the thin film of P2/6 after UV irradiation for 15 min at room temperature are denoted as P2/6*.

Figure S10. Wavelength dependence of refractive index of thin films of P3/6. Data for the thin film of P3/6 after UV irradiation for 15 min at room temperature are denoted as P3/6*.

Figure S11. Wavelength dependence of refractive index of thin films of P4/6. Data for the thin film of P4/6 after UV irradiation for 15 min at room temperature are denoted as P4/6*.
Figure S12. Wavelength dependence of refractive index of thin films of P5/6. Data for the thin film of P5/6 after UV irradiation for 15 min at room temperature are denoted as P5/6*.

Figure S1. (A) PL spectra of P2/6 in THF and THF/water mixtures with different water fractions. (B) Change in the relative PL intensity (I/I₀) with the composition of the THF/water mixture. Concentration: 10⁻⁵ M; excitation wavelength: 350 nm.

Figure S2. (A) PL spectra of P3/6 in THF and THF/water mixtures with different water fractions. (B) Change in the relative PL intensity (I/I₀) with the composition of the THF/water mixture. Concentration: 10⁻⁵ M; excitation wavelength: 350 nm.
Figure S3. (A) PL spectra of P4/6 in THF and THF/water mixtures with different water fractions. (B) Change in the relative PL intensity (I/I_0) with the composition of the THF/water mixture. Concentration: 10^{-5} M; excitation wavelength: 350 nm.

Figure S4. (A) PL spectra of P5/6 in THF and THF/water mixtures with different water fractions. (B) Change in the relative PL intensity (I/I_0) with the composition of the THF/water mixture. Concentration: 10^{-5} M; excitation wavelength: 350 nm.
Figure S5. (A) Fluorescence quenching of P2/6 in (A) THF and (B) THF/water mixture (1:9 v/v) by picric acid (PA). Concentration of P2/6: 10^{-5} M; excitation wavelength: 360 nm. (C and D) Stern–Volmer plots for fluorescence quenching of P2/6 by PA in (C) THF and (D) THF/water mixture (1:9 v/v). I_o = PL intensity in the absence of PA in THF or THF/water mixture (1:9 v/v).
Figure S6. (A) Fluorescence quenching of P3/6 in (A) THF and (B) THF/water mixture (1:9 v/v) by picric acid (PA). Concentration of P3/6: 10^{-5} M; excitation wavelength: 360 nm. (C and D) Stern–Volmer plots for fluorescence quenching of P3/6 by PA in (C) THF and (D) THF/water mixture (1:9 v/v). \(I_o = \) PL intensity in the absence of PA in THF or THF/water mixture (1:9 v/v).
Figure S7. (A) Fluorescence quenching of P4/6 in (A) THF and (B) THF/water mixture (1:9 v/v) by picric acid (PA). Concentration of P4/6: 10^{-5} M; excitation wavelength: 360 nm. (C and D) Stern–Volmer plots for fluorescence quenching of P4/6 by PA in (C) THF and (D) THF/water mixture (1:9 v/v). I_o = PL intensity in the absence of PA in THF or THF/water mixture (1:9 v/v).
Figure S8. (A) Fluorescence quenching of P5/6 in (A) THF and (B) THF/water mixture (1:9 v/v) by picric acid (PA). Concentration of P5/6: 10^{-5} M; excitation wavelength: 360 nm. (C and D) Stern–Volmer plots for fluorescence quenching of P5/6 by PA in (C) THF and (D) THF/water mixture (1:9 v/v). I_0 = PL intensity in the absence of PA in THF or THF/water mixture (1:9 v/v).
Figure S9. Wavelength dependence of refractive index of thin films of P2/6. Data for the thin film of P2/6 after UV irradiation for 15 min at room temperature are denoted as P2/6*.

Figure S10. Wavelength dependence of refractive index of thin films of P3/6. Data for the thin films of P3/6 after UV irradiation for 15 min at room temperature are denoted as P3/6*.
Figure S11. Wavelength dependence of refractive index of thin films of P4/6. Data for the thin films of P4/6 after UV irradiation for 15 min at room temperature are denoted as P4/6*.

Figure S12. Wavelength dependence of refractive index of thin films of P5/6. Data for the thin films of P5/6 after UV irradiation for 15 min at room temperature are denoted as P5/6*.