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Analytical procedures (text); phylogenetic characterizations of three isolated strains (Figure S1);
EIMS spectral data of metabolites formed by 4-tert-OP degradation (Figure S2); utilization and
degradability of APs by three isolated strains (Table S1); degradation of 4-tert-OP and cell growth of
isolated strains under aerobic and anaerobic conditions (Figure S3); cell growth of isolates strains with
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23 root extract (Figure S4); degradation of 4-tert-OP by isolated strains grown with root extract (Figure

24 S5); and proposed pathway for 4-tert-OP degradation by the three isolated strains (Figure S6).
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Analytical procedures

Bacterial cell density in liquid cultures was measured as ODggo and dry-weight of cells. For dry weight
measurement, the cells were harvested by centrifugation (9600 x g at 4 °C for 10 min), washed with 50
mM potassium phosphate buffer (pH 7.5), and then filtered through a preweighted filter (pore size, 0.2
um; polycarbonate; Millipore, Tokyo, Japan). In this study, ODgyo = 1 of washed cells of strains IT-1,
IT-4, and IT-5 were 0.483 mg dry-weight mL™', 0.496 mg dry-weight mL™', and 0.482 mg dry-weight
mLﬁl, respectively. The filter, together with the cells, was dried at 90 °C for 3 h and then weighted.
Bacterial cell density in sediments was measured as CFU. One gram wet-weight of sediment sample was
added to 10 mL of BSM. The mixture was then shaken and diluted serially with BSM. From appropriate
dilutions, 100-pL samples were spread on 4tOP-BSM (2000 mg L") agar plates, and the plates were
incubated at 28 °C in the dark. After 7 d, CFUs with an extended transparent halo on the plates were
counted.

Concentrations of tNP, 4-fert-OP, and other APs were determined by high-performance liquid
chromatography (HPLC). The metabolites produced by tNP and 4-ter-OP degradation were analyzed by
gas chromatography-mass spectrometry (GC-MS). In the experiments using tNP-spiked sediments and
4-tert-OP-spiked sediments, three vials from each treatment were sampled on each sampling day. The
upper parts of the plants (shoots and leaves) were separated from the roots, which were left in the
sediment, before extraction of tNP or 4-fert-OP. Both types of sediment (i.e., rhizosphere sediment with
roots and unvegetated sediment without roots) were acidified with 5 mL of salting-out solution (1 N HCI,
30% [w:v]), shaken with 20 mL of an ethyl acetate—n-hexane mixture (2:1, vol/vol) at 300 rpm for 20
min, sonicated in an ultrasonic bath (20 kHz, 200 W, 5-s intervals, 4 °C) for 20 min, and shaken again
for 20 min. Then, the organic layer was collected. The extract was dried under flowing nitrogen,
dissolved in an equal volume of acetonitrile, and analyzed by HPLC. In addition, the extract was directly
analyzed by GC-MS to determine the decrease in levels of NP isomers in the tNP mixture. We
confirmed that almost all of the tNP (more than 94%) and 4-tert-OP (more than 97%) was recovered

from the tNP-spiked or 4-tert-OP-spiked sediment by this method.
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In the liquid culture and whole-cell mixture experiments, the culture sampled at each sampling point
was acidified with 1 N HCI to pH 2 to 3, shaken for 3 min with an equal volume of an ethyl acetate—n-
hexane mixture (2:1, vol/vol), and centrifuged (3200 x g at 4 °C for 10 min); the organic layer was then
collected. For the HPLC analysis, the extract sample (500 pL) was dried under flowing nitrogen, and the
dry extract was dissolved in 500 pL of acetonitrile before analysis. For the GC-MS analysis, the extract
(2 to 10 mL) was dried under nitrogen flow, and the dry extract was dissolved in 100 pL of acetonitrile
before analysis. In addition, the extract (2 to 10 mL) was dried under nitrogen flow and then subjected to
trimethylsilylation (TMS) at 60 °C for 1 h using 100 pL. of a BSTFA-acetonitrile mixture (1:1, vol/vol).
The sample with TMS derivatization was analyzed by GC-MS.

HPLC analysis was conducted in a Shimadzu HPLC system with a UV/vis detector and a Shim-pack
VP-ODS column (150 mm x 4.6 mm, particle size 5 pum; Shimadzu, Kyoto, Japan). In the HPLC
analysis, an acetonitrile-water mixture (8:2, vol/vol) was used as the mobile phase, and detection was at
the wavelength of 277 nm. The GC-MS analysis was conducted with a Shimadzu GC-MS system
(GCMS-QP2010; Shimadzu) using an Rxi-Sms capillary column (30 m, 0.25 mm ID, 1.00 pm df;
Restek, Bellefonte, PA, USA). For the GC-MS analysis, two column temperature programs were used.
For the analysis of metabolites without TMS derivatization, the temperature was held at 60 °C for 2 min,
increased to 300 °C at 5 °C minfl, and then held at 300 °C for 5 min. For the analysis of metabolites
with TMS derivatization, the column temperature was held at 90 °C for 2 min, increased to 150 °C at a
rate of 15 °C minﬁl, increased to 300 °C at 5 °C minfl, and then held at 300 °C for 6 min. The injection,
interface, and ion source temperatures were 280 °C, 280 °C, and 250 °C, respectively. Helium

(99.995%) was used as the carrier gas at a flow rate of 1.0 mL min .
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Phylogenetic characterizations of isolated strains
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FIGURE S1. Phylogenetic relationships among strains IT-1, IT-4, and IT-5, type strains of
Sphingomonadaceae and Stenotrophomonas sp., and previously isolated 4-NP-degrading (*), 4-tert-OP-
degrading (*), and NPEO-degrading (**) bacterial strains, established by the neighbor-joining method
using 16S rRNA gene sequences. Numbers on branches indicate bootstrap confidence estimates
obtained with 1000 replicates. The scale bar represents an evolutionary distance (Knuc) of 0.01.

Strain IT-1 showed high sequence identity with Stenotrophomonas sp. BCc6 (99.3%), a known
NPEO-degrading bacterium, and Stenotrophomonas koreensis TR6-01" (97.6%). Strain IT-4 showed
high sequence identity with Sphingomonas sp. PWEI1 (99.8%), a known 4-tert-OP—degrading bacterium;
and Sphingobium cloacae S-3" (99.8%), a known branched 4-NP—degrading bacterium. Strain IT-5 also
showed high sequence identity with Sphingomonas sp. PWE1 (99.2%) and S. cloacae S-3" (99.1%).

Thus, we identified strain IT-1 as Stenotrophomonas sp. and strains IT-4 and IT-5 as Sphingobium sp.
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EIMS spectral data of 4-tert-OP and its metabolites
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FIGURE S2. EIMS spectra of metabolites I, II, and III formed by 4-tert-OP degradation by isolated
strains. (A) EIMS spectrum of metabolite I, identified as 2,2,4-trimethyl-1-pentanol, and its structure;
(B) EIMS spectrum of trimethylsilyl (TMS) derivative metabolite II, identified as hydroquinone, and its
structure; (C) EIMS spectrum of TMS derivative metabolite III, tentatively identified as 2-

octylhydroquinone.



122 Utilization and degradability of APs by isolated three strains

123

124

125 TABLE S1. Utilization and degradability of APs (2-tert-BP, 4-n-BP, 4-tert-BP, 4-n-OP, 4-tert-OP, 4-n-

126 NP, and tNP) by isolated three strains.

Substrate Strain IT-1 Strain IT-4 Strain IT-5

Growth® Transformation Growth® Transformation  Growth® Transformationr

ratio (%)" ratio (%)° atio (%)
2-tert-BP - 0 - 0 - 0
4-n-BP - 8.1 - 70.2 - 0
4-tert-BP - 16.5 - 98.9 - 40.3
4-n-OP - 95.1 - 91.9 - 76.2
4-tert-OP + 100 + 100 + 100
4-n-NP - 25.6 - 44.7 - 46.5
tNP + 87.8 + 92.6 + 82.1

127  *“+” indicates a substantial increase in cell density (ODgg) from the initial 0.02 to ODggo > 0.05; “="

128  indicates no substantial increase in cell density.

129  P°Transformation ratios (TR) were calculated from HPLC chromatograms obtained from 24-h cultures of
130  each strain whole cells and autoclaved sterile controls as follows: TR (%) = [1 — (substrate peak area

131  from whole-cell culture)/(substrate peak area from sterile control)] x 100.

132



133 Degradation of 4-fert-OP and cell growth of the isolated strains under aerobic and

134 anaerobic conditions
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147 FIGURE S3. Degradation of 4-fert-OP (squares) and cell growth of the isolated strains (circles) under
148  aerobic (closed symbols) and anaerobic (open symbols) conditions. Data are the means of triplicate

149  experiments, and the error bars indicate 95% confidence intervals.



150 Cell growth of isolates strains with root extract
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162 FIGURE S4. Cell growth of strains IT-1, IT-4, and IT-5. Circles represent cell densities in the
163  presence of 4-tert-OP (1 mM); triangles represent cell densities in the presence of glucose (1 mM); and
164  squares represent cell densities in the presence of root extract (140 mg-TOC L™). Data are the means of

165 triplicate experiments, and the error bars indicate 95% confidence intervals.



166 Degradation of 4-tert-OP by the isolated strains grown with root extract
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178 FIGURE S5. Degradation of 4-tert-OP by the isolated strains grown on 4-fert-OP (circles), glucose

179  (triangles), or root extract (squares).
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Proposed pathway for the degradation of 4-fert-OP by the isolated strains
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FIGURE S6. Proposed pathway for the degradation of 4-tert-OP by the isolated strains. (A) 4-tert-OP;
(B) putative ipso-hydroxylation intermediate (Appl. Environ. Microbiol. 2007, 73, 7373-7379.); (C)
hydroquinone; (D) 2,2,4,-trimethyl-1-pentanol; (E) 2-octylhydroquinone (tentative identification).
Because hydroquinone and 2,2,4-trimethyl-1-pentanol were detected as metabolites produced by 4-fert-
OP degradation by our three strains, we propose that a type Il ipso-substitution mechanism is involved in
degradation of NP and 4-fert-OP by our three strains. As in the case of strain TTNP3 (Appl. Microbiol.
Biotechnol. 2006, 72, 223-243; Appl. Environ. Microbiol. 2004, 70, 6897-6900.), a NIH shift product
(i.e., 2-tert-octylhydroquinone) was also detected as metabolites produced by 4-ter-OP degradation by

our three strains.
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